Java Code Examples for org.apache.spark.sql.streaming.StreamingQuery#awaitTermination()
The following examples show how to use
org.apache.spark.sql.streaming.StreamingQuery#awaitTermination() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: ReadLinesFromMultipleFileStreams.java From net.jgp.labs.spark with Apache License 2.0 | 5 votes |
private void start() throws TimeoutException { log.debug("-> start()"); SparkSession spark = SparkSession.builder() .appName("Read lines over a file stream").master("local") .getOrCreate(); Dataset<Row> df = spark .readStream() .format("text") .load(StreamingUtils.getInputDirectory()); StreamingQuery query = df .writeStream() .outputMode(OutputMode.Update()) .format("console").start(); try { query.awaitTermination(); } catch (StreamingQueryException e) { log.error("Exception while waiting for query to end {}.", e .getMessage(), e); } // In this case everything is a string df.show(); df.printSchema(); }
Example 2
Source File: ReadLinesFromFileStream.java From net.jgp.labs.spark with Apache License 2.0 | 5 votes |
private void start() throws TimeoutException { log.debug("-> start()"); SparkSession spark = SparkSession.builder() .appName("Read lines over a file stream") .master("local") .getOrCreate(); Dataset<Row> df = spark .readStream() .format("text") .load(StreamingUtils.getInputDirectory()); StreamingQuery query = df .writeStream() .outputMode(OutputMode.Update()) .format("console") .start(); try { query.awaitTermination(); } catch (StreamingQueryException e) { log.error( "Exception while waiting for query to end {}.", e.getMessage(), e); } // Never executed df.show(); df.printSchema(); }
Example 3
Source File: SparkStructuredStreaming.java From -Data-Stream-Development-with-Apache-Spark-Kafka-and-Spring-Boot with MIT License | 4 votes |
public static void main(String[] args) throws InterruptedException, StreamingQueryException { System.setProperty("hadoop.home.dir", HADOOP_HOME_DIR_VALUE); final SparkConf conf = new SparkConf() .setMaster(RUN_LOCAL_WITH_AVAILABLE_CORES) .setAppName(APPLICATION_NAME) .set("spark.sql.caseSensitive", CASE_SENSITIVE); SparkSession sparkSession = SparkSession.builder() .config(conf) .getOrCreate(); Dataset<Row> meetupDF = sparkSession.readStream() .format(STREAM_FORMAT) .option("kafka.bootstrap.servers", KAFKA_BROKERS) .option("subscribe", KAFKA_TOPIC) .load(); meetupDF.printSchema(); Dataset<Row> rsvpAndTimestampDF = meetupDF .select(col("timestamp"), from_json(col("value").cast("string"), RSVP_SCHEMA) .alias("rsvp")) .alias("meetup") .select("meetup.*"); rsvpAndTimestampDF.printSchema(); Dataset<Row> window = rsvpAndTimestampDF .withWatermark("timestamp", "1 minute") .groupBy( window(col("timestamp"), "4 minutes", "2 minutes"), col("rsvp.guests")) .count(); StreamingQuery query = window.writeStream() .outputMode("complete") .format("console") .option("checkpointLocation", CHECKPOINT_LOCATION) .option("truncate", false) .start(); query.awaitTermination(); }
Example 4
Source File: SparkMLScoringOnline.java From -Data-Stream-Development-with-Apache-Spark-Kafka-and-Spring-Boot with MIT License | 4 votes |
public static void main(String[] args) throws InterruptedException, StreamingQueryException { System.setProperty("hadoop.home.dir", HADOOP_HOME_DIR_VALUE); // * the schema can be written on disk, and read from disk // * the schema is not mandatory to be complete, it can contain only the needed fields StructType RSVP_SCHEMA = new StructType() .add("event", new StructType() .add("event_id", StringType, true) .add("event_name", StringType, true) .add("event_url", StringType, true) .add("time", LongType, true)) .add("group", new StructType() .add("group_city", StringType, true) .add("group_country", StringType, true) .add("group_id", LongType, true) .add("group_lat", DoubleType, true) .add("group_lon", DoubleType, true) .add("group_name", StringType, true) .add("group_state", StringType, true) .add("group_topics", DataTypes.createArrayType( new StructType() .add("topicName", StringType, true) .add("urlkey", StringType, true)), true) .add("group_urlname", StringType, true)) .add("guests", LongType, true) .add("member", new StructType() .add("member_id", LongType, true) .add("member_name", StringType, true) .add("photo", StringType, true)) .add("mtime", LongType, true) .add("response", StringType, true) .add("rsvp_id", LongType, true) .add("venue", new StructType() .add("lat", DoubleType, true) .add("lon", DoubleType, true) .add("venue_id", LongType, true) .add("venue_name", StringType, true)) .add("visibility", StringType, true); final SparkConf conf = new SparkConf() .setMaster(RUN_LOCAL_WITH_AVAILABLE_CORES) .setAppName(APPLICATION_NAME) .set("spark.sql.caseSensitive", CASE_SENSITIVE); SparkSession spark = SparkSession .builder() .config(conf) .getOrCreate(); PipelineModel pipelineModel = PipelineModel.load(MODEL_FOLDER_PATH); Dataset<Row> meetupStream = spark.readStream() .format(KAFKA_FORMAT) .option("kafka.bootstrap.servers", KAFKA_BROKERS) .option("subscribe", KAFKA_TOPIC) .load(); Dataset<Row> gatheredDF = meetupStream.select( (from_json(col("value").cast("string"), RSVP_SCHEMA)) .alias("rsvp")) .alias("meetup") .select("meetup.*"); Dataset<Row> filteredDF = gatheredDF.filter(e -> !e.anyNull()); Dataset<Row> preparedDF = filteredDF.select( col("rsvp.group.group_city"), col("rsvp.group.group_lat"), col("rsvp.group.group_lon"), col("rsvp.response") ); preparedDF.printSchema(); Dataset<Row> predictionDF = pipelineModel.transform(preparedDF); StreamingQuery query = predictionDF.writeStream() .format(JSON_FORMAT) .option("path", RESULT_FOLDER_PATH) .option("checkpointLocation", CHECKPOINT_LOCATION) .trigger(Trigger.ProcessingTime(QUERY_INTERVAL_SECONDS)) .option("truncate", false) .start(); query.awaitTermination(); }
Example 5
Source File: VideoStreamProcessor.java From video-stream-classification with Apache License 2.0 | 4 votes |
public static void main(String[] args) throws Exception { //Read properties Properties prop = PropertyFileReader.readPropertyFile(); //SparkSesion SparkSession spark = SparkSession .builder() .appName("VideoStreamProcessor") .master(prop.getProperty("spark.master.url")) .getOrCreate(); //directory to save image files with motion detected final String processedImageDir = prop.getProperty("processed.output.dir"); logger.warn("Output directory for saving processed images is set to "+processedImageDir+". This is configured in processed.output.dir key of property file."); //create schema for json message StructType schema = DataTypes.createStructType(new StructField[] { DataTypes.createStructField("cameraId", DataTypes.StringType, true), DataTypes.createStructField("timestamp", DataTypes.TimestampType, true), DataTypes.createStructField("rows", DataTypes.IntegerType, true), DataTypes.createStructField("cols", DataTypes.IntegerType, true), DataTypes.createStructField("type", DataTypes.IntegerType, true), DataTypes.createStructField("data", DataTypes.StringType, true) }); //Create DataSet from stream messages from kafka Dataset<VideoEventData> ds = spark .readStream() .format("kafka") .option("kafka.bootstrap.servers", prop.getProperty("kafka.bootstrap.servers")) .option("subscribe", prop.getProperty("kafka.topic")) .option("kafka.max.partition.fetch.bytes", prop.getProperty("kafka.max.partition.fetch.bytes")) .option("kafka.max.poll.records", prop.getProperty("kafka.max.poll.records")) .load() .selectExpr("CAST(value AS STRING) as message") .select(functions.from_json(functions.col("message"),schema).as("json")) .select("json.*") .as(Encoders.bean(VideoEventData.class)); //key-value pair of cameraId-VideoEventData KeyValueGroupedDataset<String, VideoEventData> kvDataset = ds.groupByKey(new MapFunction<VideoEventData, String>() { @Override public String call(VideoEventData value) throws Exception { return value.getCameraId(); } }, Encoders.STRING()); //process Dataset<VideoEventData> processedDataset = kvDataset.mapGroupsWithState(new MapGroupsWithStateFunction<String, VideoEventData, VideoEventData,VideoEventData>(){ @Override public VideoEventData call(String key, Iterator<VideoEventData> values, GroupState<VideoEventData> state) throws Exception { logger.warn("CameraId="+key+" PartitionId="+TaskContext.getPartitionId()); VideoEventData existing = null; //check previous state if (state.exists()) { existing = state.get(); } //classify image VideoEventData processed = ImageProcessor.process(key,values,processedImageDir,existing); //update last processed if(processed != null){ state.update(processed); } return processed; }}, Encoders.bean(VideoEventData.class), Encoders.bean(VideoEventData.class)); //start StreamingQuery query = processedDataset.writeStream() .outputMode("update") .format("console") .start(); //await query.awaitTermination(); }
Example 6
Source File: JavaStructuredNetworkWordCountWindowed.java From SparkDemo with MIT License | 4 votes |
public static void main(String[] args) throws Exception { if (args.length < 3) { System.err.println("Usage: JavaStructuredNetworkWordCountWindowed <hostname> <port>" + " <window duration in seconds> [<slide duration in seconds>]"); System.exit(1); } String host = args[0]; int port = Integer.parseInt(args[1]); int windowSize = Integer.parseInt(args[2]); int slideSize = (args.length == 3) ? windowSize : Integer.parseInt(args[3]); if (slideSize > windowSize) { System.err.println("<slide duration> must be less than or equal to <window duration>"); } String windowDuration = windowSize + " seconds"; String slideDuration = slideSize + " seconds"; SparkSession spark = SparkSession .builder() .appName("JavaStructuredNetworkWordCountWindowed") .getOrCreate(); // Create DataFrame representing the stream of input lines from connection to host:port Dataset<Row> lines = spark .readStream() .format("socket") .option("host", host) .option("port", port) .option("includeTimestamp", true) .load(); // Split the lines into words, retaining timestamps Dataset<Row> words = lines .as(Encoders.tuple(Encoders.STRING(), Encoders.TIMESTAMP())) .flatMap( new FlatMapFunction<Tuple2<String, Timestamp>, Tuple2<String, Timestamp>>() { @Override public Iterator<Tuple2<String, Timestamp>> call(Tuple2<String, Timestamp> t) { List<Tuple2<String, Timestamp>> result = new ArrayList<Tuple2<String, Timestamp>>(); for (String word : t._1.split(" ")) { result.add(new Tuple2<String, Timestamp>(word, t._2)); } return result.iterator(); } }, Encoders.tuple(Encoders.STRING(), Encoders.TIMESTAMP()) ).toDF("word", "timestamp"); // Group the data by window and word and compute the count of each group Dataset<Row> windowedCounts = words.groupBy( functions.window(words.col("timestamp"), windowDuration, slideDuration), words.col("word") ).count().orderBy("window"); // Start running the query that prints the windowed word counts to the console StreamingQuery query = windowedCounts.writeStream() .outputMode("complete") .format("console") .option("truncate", "false") .start(); query.awaitTermination(); }
Example 7
Source File: JavaStructuredKafkaWordCount.java From SparkDemo with MIT License | 4 votes |
public static void main(String[] args) throws Exception { if (args.length < 3) { System.err.println("Usage: JavaStructuredKafkaWordCount <bootstrap-servers> " + "<subscribe-type> <topics>"); System.exit(1); } String bootstrapServers = args[0]; String subscribeType = args[1]; String topics = args[2]; SparkSession spark = SparkSession .builder() .appName("JavaStructuredKafkaWordCount") .getOrCreate(); // Create DataSet representing the stream of input lines from kafka Dataset<String> lines = spark .readStream() .format("kafka") .option("kafka.bootstrap.servers", bootstrapServers) .option(subscribeType, topics) .load() .selectExpr("CAST(value AS STRING)") .as(Encoders.STRING()); // Generate running word count Dataset<Row> wordCounts = lines.flatMap(new FlatMapFunction<String, String>() { @Override public Iterator<String> call(String x) { return Arrays.asList(x.split(" ")).iterator(); } }, Encoders.STRING()).groupBy("value").count(); // Start running the query that prints the running counts to the console StreamingQuery query = wordCounts.writeStream() .outputMode("complete") .format("console") .start(); query.awaitTermination(); }
Example 8
Source File: JavaStructuredNetworkWordCount.java From SparkDemo with MIT License | 4 votes |
public static void main(String[] args) throws Exception { if (args.length < 2) { System.err.println("Usage: JavaStructuredNetworkWordCount <hostname> <port>"); System.exit(1); } String host = args[0]; int port = Integer.parseInt(args[1]); SparkSession spark = SparkSession .builder() .appName("JavaStructuredNetworkWordCount") .getOrCreate(); // Create DataFrame representing the stream of input lines from connection to host:port Dataset<Row> lines = spark .readStream() .format("socket") .option("host", host) .option("port", port) .load(); // Split the lines into words Dataset<String> words = lines.as(Encoders.STRING()) .flatMap(new FlatMapFunction<String, String>() { @Override public Iterator<String> call(String x) { return Arrays.asList(x.split(" ")).iterator(); } }, Encoders.STRING()); // Generate running word count Dataset<Row> wordCounts = words.groupBy("value").count(); // Start running the query that prints the running counts to the console StreamingQuery query = wordCounts.writeStream() .outputMode("complete") .format("console") .start(); query.awaitTermination(); }
Example 9
Source File: VideoStreamProcessor.java From video-stream-analytics with Apache License 2.0 | 4 votes |
public static void main(String[] args) throws Exception { //Read properties Properties prop = PropertyFileReader.readPropertyFile(); //SparkSesion SparkSession spark = SparkSession .builder() .appName("VideoStreamProcessor") .master(prop.getProperty("spark.master.url")) .getOrCreate(); //directory to save image files with motion detected final String processedImageDir = prop.getProperty("processed.output.dir"); logger.warn("Output directory for saving processed images is set to "+processedImageDir+". This is configured in processed.output.dir key of property file."); //create schema for json message StructType schema = DataTypes.createStructType(new StructField[] { DataTypes.createStructField("cameraId", DataTypes.StringType, true), DataTypes.createStructField("timestamp", DataTypes.TimestampType, true), DataTypes.createStructField("rows", DataTypes.IntegerType, true), DataTypes.createStructField("cols", DataTypes.IntegerType, true), DataTypes.createStructField("type", DataTypes.IntegerType, true), DataTypes.createStructField("data", DataTypes.StringType, true) }); //Create DataSet from stream messages from kafka Dataset<VideoEventData> ds = spark .readStream() .format("kafka") .option("kafka.bootstrap.servers", prop.getProperty("kafka.bootstrap.servers")) .option("subscribe", prop.getProperty("kafka.topic")) .option("kafka.max.partition.fetch.bytes", prop.getProperty("kafka.max.partition.fetch.bytes")) .option("kafka.max.poll.records", prop.getProperty("kafka.max.poll.records")) .load() .selectExpr("CAST(value AS STRING) as message") .select(functions.from_json(functions.col("message"),schema).as("json")) .select("json.*") .as(Encoders.bean(VideoEventData.class)); //key-value pair of cameraId-VideoEventData KeyValueGroupedDataset<String, VideoEventData> kvDataset = ds.groupByKey(new MapFunction<VideoEventData, String>() { @Override public String call(VideoEventData value) throws Exception { return value.getCameraId(); } }, Encoders.STRING()); //process Dataset<VideoEventData> processedDataset = kvDataset.mapGroupsWithState(new MapGroupsWithStateFunction<String, VideoEventData, VideoEventData,VideoEventData>(){ @Override public VideoEventData call(String key, Iterator<VideoEventData> values, GroupState<VideoEventData> state) throws Exception { logger.warn("CameraId="+key+" PartitionId="+TaskContext.getPartitionId()); VideoEventData existing = null; //check previous state if (state.exists()) { existing = state.get(); } //detect motion VideoEventData processed = VideoMotionDetector.detectMotion(key,values,processedImageDir,existing); //update last processed if(processed != null){ state.update(processed); } return processed; }}, Encoders.bean(VideoEventData.class), Encoders.bean(VideoEventData.class)); //start StreamingQuery query = processedDataset.writeStream() .outputMode("update") .format("console") .start(); //await query.awaitTermination(); }
Example 10
Source File: StructuredDemo.java From structured-streaming-avro-demo with BSD 3-Clause "New" or "Revised" License | 4 votes |
public static void main(String[] args) throws StreamingQueryException, TimeoutException { //set log4j programmatically LogManager.getLogger("org.apache.spark").setLevel(Level.WARN); LogManager.getLogger("org.apache.kafka").setLevel(Level.WARN); LogManager.getLogger("akka").setLevel(Level.ERROR); //on windows we may need to configure winutils if hadoop_home is not set //System.setProperty("hadoop.home.dir", "c:/app/hadoop"); //configure Spark SparkConf conf = new SparkConf() .setAppName("kafka-structured") .set("spark.driver.bindAddress", "localhost") .setMaster("local[*]"); //initialize spark session SparkSession sparkSession = SparkSession .builder() .config(conf) .getOrCreate(); //reduce task number sparkSession.sqlContext().setConf("spark.sql.shuffle.partitions", "3"); //data stream from kafka Dataset<Row> ds1 = sparkSession .readStream() .format("kafka") .option("kafka.bootstrap.servers", "localhost:9092") .option("subscribe", "mytopic") .option("startingOffsets", "earliest") .load(); //print kafka schema ds1.printSchema(); //start the streaming query Dataset<Row> ds2 = ds1 .select(from_avro(col("value"), USER_SCHEMA).as("rows")) .select("rows.*"); //print avro schema converted to dataframe :) ds2.printSchema(); StreamingQuery query1 = ds2 .groupBy("str1") .count() .writeStream() .queryName("Test query") .outputMode("complete") .format("console") .start(); query1.awaitTermination(); }
Example 11
Source File: StructuredStreamingExample.java From Apache-Spark-2x-for-Java-Developers with MIT License | 3 votes |
public static void main(String[] args) throws StreamingQueryException { System.setProperty("hadoop.home.dir", "C:\\softwares\\Winutils"); SparkSession sparkSession = SparkSession.builder().master("local[*]").appName("structured Streaming Example") .config("spark.sql.warehouse.dir", "file:////C:/Users/sgulati/spark-warehouse").getOrCreate(); Dataset<Row> inStream = sparkSession.readStream().format("socket").option("host", "10.204.136.223") .option("port", 9999).load(); Dataset<FlightDetails> dsFlightDetails = inStream.as(Encoders.STRING()).map(x -> { ObjectMapper mapper = new ObjectMapper(); return mapper.readValue(x, FlightDetails.class); }, Encoders.bean(FlightDetails.class)); dsFlightDetails.createOrReplaceTempView("flight_details"); Dataset<Row> avdFlightDetails = sparkSession.sql("select flightId, avg(temperature) from flight_details group by flightId"); StreamingQuery query = avdFlightDetails.writeStream() .outputMode("complete") .format("console") .start(); query.awaitTermination(); }