Java Code Examples for org.apache.flink.table.api.Types#STRING
The following examples show how to use
org.apache.flink.table.api.Types#STRING .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: JoinTest.java From sylph with Apache License 2.0 | 6 votes |
@Before public void init() { StreamExecutionEnvironment execEnv = StreamExecutionEnvironment.getExecutionEnvironment(); execEnv.setParallelism(4); execEnv.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime); tableEnv = (StreamTableEnvironmentImpl) StreamTableEnvironment.create(execEnv); tableEnv.registerFunction("from_unixtime", new TimeUtil.FromUnixTime()); //---create stream source TypeInformation[] fieldTypes = {Types.STRING(), Types.STRING(), Types.LONG()}; String[] fieldNames = {"topic", "user_id", "time"}; RowTypeInfo rowTypeInfo = new RowTypeInfo(fieldTypes, fieldNames); DataStream<Row> dataSource = execEnv.fromCollection(new ArrayList<>(), rowTypeInfo); tableEnv.registerTableSource("tb1", new SylphTableSource(rowTypeInfo, dataSource)); tableEnv.registerTableSource("tb0", new SylphTableSource(rowTypeInfo, dataSource)); final AntlrSqlParser sqlParser = new AntlrSqlParser(); this.dimTable = (CreateTable) sqlParser.createStatement( "create batch table users(id string, name string, city string) with(type = '" + JoinOperator.class.getName() + "')"); }
Example 2
Source File: Word2VecTest.java From Alink with Apache License 2.0 | 6 votes |
@Test public void train() throws Exception { TableSchema schema = new TableSchema( new String[] {"docid", "content"}, new TypeInformation <?>[] {Types.LONG(), Types.STRING()} ); List <Row> rows = new ArrayList <>(); rows.add(Row.of(0L, "老王 是 我们 团队 里 最胖 的")); rows.add(Row.of(1L, "老黄 是 第二 胖 的")); rows.add(Row.of(2L, "胖")); rows.add(Row.of(3L, "胖 胖 胖")); MemSourceBatchOp source = new MemSourceBatchOp(rows, schema); Word2Vec word2Vec = new Word2Vec() .setSelectedCol("content") .setOutputCol("output") .setMinCount(1); List<Row> result = word2Vec.fit(source).transform(source).collect(); Assert.assertEquals(rows.size(), result.size()); }
Example 3
Source File: FeatureHasherMapperTest.java From Alink with Apache License 2.0 | 6 votes |
@Test public void test1() throws Exception { TableSchema schema = new TableSchema(new String[] {"double", "bool", "number", "str"}, new TypeInformation<?>[] {Types.DOUBLE(), Types.BOOLEAN(), Types.STRING(), Types.STRING()}); Params params = new Params() .set(FeatureHasherParams.SELECTED_COLS, new String[] {"double", "bool", "number", "str"}) .set(FeatureHasherParams.OUTPUT_COL, "output") .set(FeatureHasherParams.RESERVED_COLS, new String[] {}); FeatureHasherMapper mapper = new FeatureHasherMapper(schema, params); assertEquals(mapper.map(Row.of(1.1, true, "2", "A")).getField(0), new SparseVector(262144, new int[]{62393, 85133, 120275, 214318}, new double[]{1.0, 1.0, 1.0, 1.1})); assertEquals(mapper.map(Row.of(2.1, true, "1", "A")).getField(0), new SparseVector(262144, new int[]{76287, 85133, 120275, 214318}, new double[]{1.0, 1.0, 1.0, 2.1})); assertEquals(mapper.getOutputSchema(), new TableSchema(new String[] {"output"}, new TypeInformation<?>[] {VectorTypes.VECTOR}) ); }
Example 4
Source File: FeatureHasherMapperTest.java From Alink with Apache License 2.0 | 6 votes |
@Test public void test2() throws Exception { TableSchema schema = new TableSchema(new String[] {"double", "bool", "number", "str"}, new TypeInformation<?>[] {Types.DOUBLE(), Types.BOOLEAN(), Types.STRING(), Types.STRING()}); Params params = new Params() .set(FeatureHasherParams.SELECTED_COLS, new String[] {"double", "bool", "number", "str"}) .set(FeatureHasherParams.OUTPUT_COL, "output") .set(FeatureHasherParams.NUM_FEATURES, 10); FeatureHasherMapper mapper = new FeatureHasherMapper(schema, params); assertEquals(mapper.map(Row.of(1.1, true, "2", "A")).getField(4), new SparseVector(10, new int[]{5, 8, 9}, new double[]{2.0, 1.1, 1.0})); assertEquals(mapper.map(Row.of(2.1, true, "1", "B")).getField(4), new SparseVector(10, new int[]{1, 5, 6, 8}, new double[]{1.0, 1.0, 1.0, 2.1})); assertEquals(mapper.getOutputSchema(), new TableSchema(new String[] {"double", "bool", "number", "str", "output"}, new TypeInformation<?>[] {Types.DOUBLE(), Types.BOOLEAN(), Types.STRING(), Types.STRING(), VectorTypes.VECTOR})); }
Example 5
Source File: FeatureHasherMapperTest.java From Alink with Apache License 2.0 | 6 votes |
@Test public void test3() throws Exception { TableSchema schema = new TableSchema(new String[] {"double", "bool", "number", "str"}, new TypeInformation<?>[] {Types.DOUBLE(), Types.BOOLEAN(), Types.STRING(), Types.STRING()}); Params params = new Params() .set(FeatureHasherParams.SELECTED_COLS, new String[] {"double", "bool", "number", "str"}) .set(FeatureHasherParams.OUTPUT_COL, "output") .set(FeatureHasherParams.NUM_FEATURES, 10) .set(FeatureHasherParams.CATEGORICAL_COLS, new String[] {"double"}); FeatureHasherMapper mapper = new FeatureHasherMapper(schema, params); assertEquals(mapper.map(Row.of(1.1, true, "2", "A")).getField(4), new SparseVector(10, new int[]{0, 5, 9}, new double[]{1.0, 2.0, 1.0})); assertEquals(mapper.map(Row.of(2.1, true, "1", "B")).getField(4), new SparseVector(10, new int[]{1, 5, 6}, new double[]{2.0, 1.0, 1.0})); }
Example 6
Source File: DCTMapperTest.java From Alink with Apache License 2.0 | 6 votes |
@Test public void test() throws Exception { TableSchema schema = new TableSchema(new String[] {"vec"}, new TypeInformation <?>[] {Types.STRING()}); DCTMapper dctMapper = new DCTMapper(schema, new Params().set(DCTParams.SELECTED_COL, "vec")); DCTMapper inverseDCTMapper = new DCTMapper(schema, new Params().set(DCTParams.SELECTED_COL, "vec").set(DCTParams.INVERSE, true)); String[] vectors = new String[] { "1.0 2.0 3.0 4.0 5.0", "1.0 2.0 1.0 2.0", "1.0 100000.0 -5000.0 0.1 0.0000005" }; for (String vector : vectors) { assertTrue( VectorUtil.parseDense((String) inverseDCTMapper.map(dctMapper.map(Row.of(vector))).getField(0)) .minus(VectorUtil.parseDense(vector)) .normL1() < 1e-10 ); } }
Example 7
Source File: SegmentMapperTest.java From Alink with Apache License 2.0 | 6 votes |
@Test public void test2() throws Exception { TableSchema schema = new TableSchema(new String[] {"sentence"}, new TypeInformation <?>[] {Types.STRING()}); String[] dictArray = new String[] {"低风险"}; Params params = new Params() .set(SegmentParams.SELECTED_COL, "sentence") .set(SegmentParams.USER_DEFINED_DICT, dictArray); SegmentMapper mapper = new SegmentMapper(schema, params); mapper.open(); assertEquals(mapper.map(Row.of("我们辅助用户简单快速低成本低风险的实现系统权限安全管理")).getField(0), "我们 辅助 用户 简单 快速 低成本 低风险 的 实现 系统 权限 安全 管理"); assertEquals(mapper.getOutputSchema(), schema); }
Example 8
Source File: PcaModelMapper.java From Alink with Apache License 2.0 | 5 votes |
public PcaModelMapper(TableSchema modelSchema, TableSchema dataSchema, Params params) { super(modelSchema, dataSchema, params); transformType = this.params.get(PcaPredictParams.TRANSFORM_TYPE); String[] keepColNames = this.params.get(PcaPredictParams.RESERVED_COLS); String predResultColName = this.params.get(PcaPredictParams.PREDICTION_COL); this.outputColsHelper = new OutputColsHelper(dataSchema, predResultColName, Types.STRING(), keepColNames); }
Example 9
Source File: DCTMapperTest.java From Alink with Apache License 2.0 | 5 votes |
@Test public void test2() throws Exception { TableSchema schema = new TableSchema(new String[] {"vec"}, new TypeInformation <?>[] {Types.STRING()}); DCTMapper dctMapper = new DCTMapper(schema, new Params().set(DCTParams.SELECTED_COL, "vec")); DCTMapper inverseDCTMapper = new DCTMapper(schema, new Params().set(DCTParams.SELECTED_COL, "vec").set(DCTParams.INVERSE, true)); Random generator = new Random(1234); int data_num = 10; int col_num = 31; Row[] rows = new Row[data_num]; for (int index = 0; index < data_num; index++) { double[] cur_double = new double[col_num]; for (int index2 = 0; index2 < col_num; index2++) { cur_double[index2] = ((int) (generator.nextDouble() * 512) - 256) * 1.0; } rows[index] = Row.of(VectorUtil.toString(new DenseVector(cur_double))); } for (Row row : rows) { assertTrue( VectorUtil.parseDense((String) inverseDCTMapper.map(dctMapper.map(row)).getField(0)) .minus(VectorUtil.parseDense((String) row.getField(0))) .normL1() < 1e-10 ); } }
Example 10
Source File: SegmentMapperTest.java From Alink with Apache License 2.0 | 5 votes |
@Test public void test1() throws Exception { TableSchema schema = new TableSchema(new String[] {"sentence"}, new TypeInformation <?>[] {Types.STRING()}); Params params = new Params() .set(SegmentParams.SELECTED_COL, "sentence"); SegmentMapper mapper = new SegmentMapper(schema, params); mapper.open(); assertEquals(mapper.map(Row.of("我们辅助用户简单快速低成本低风险的实现系统权限安全管理")).getField(0), "我们 辅助 用户 简单 快速 低成本 低 风险 的 实现 系统 权限 安全 管理"); assertEquals(mapper.getOutputSchema(), schema); }
Example 11
Source File: FlinkSqlTextBusiness.java From PoseidonX with Apache License 2.0 | 4 votes |
private static TypeInformation[] convertStringToType(String[] dataTypeStrArray) throws FlinkSqlException { TypeInformation[] dataTypeArray = new TypeInformation[dataTypeStrArray.length]; for(int i = 0;i< dataTypeStrArray.length;i++){ String type = dataTypeStrArray[i]; if("string".equals(type)){ dataTypeArray[i] = Types.STRING(); } else if("short".equals(type)){ dataTypeArray[i] = Types.SHORT(); } else if("int".equals(type)){ dataTypeArray[i] = Types.INT(); } else if("long".equals(type)){ dataTypeArray[i] = Types.LONG(); } else if("date".equals(type)){ dataTypeArray[i] = Types.SQL_DATE(); } else if("timestamp".equals(type)){ dataTypeArray[i] = Types.SQL_TIMESTAMP(); } else if("float".equals(type)){ dataTypeArray[i] = Types.FLOAT(); } else if("double".equals(type)){ dataTypeArray[i] = Types.DOUBLE(); } else if("byte".equals(type)){ dataTypeArray[i] = Types.BYTE(); } else{ throw new FlinkSqlException("类型错误["+dataTypeArray[i]+"]"); } } return dataTypeArray; }
Example 12
Source File: CodeGenFlinkTable.java From df_data_service with Apache License 2.0 | 4 votes |
public static void main(String args[]) { String transform = "flatMap(new FlinkUDF.LineSplitter()).groupBy(0).sum(1).print();\n"; String transform2 = "select(\"name\");\n"; String header = "package dynamic;\n" + "import org.apache.flink.api.table.Table;\n" + "import com.datafibers.util.*;\n"; String javaCode = header + "public class FlinkScript implements DynamicRunner {\n" + "@Override \n" + " public void runTransform(DataSet<String> ds) {\n" + "try {" + "ds."+ transform + "} catch (Exception e) {" + "};" + "}}"; String javaCode2 = header + "public class FlinkScript implements DynamicRunner {\n" + "@Override \n" + " public Table transTableObj(Table tbl) {\n" + "try {" + "return tbl."+ transform2 + "} catch (Exception e) {" + "};" + "return null;}}"; final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); StreamTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env); CsvTableSource csvTableSource = new CsvTableSource( "/Users/will/Downloads/file.csv", new String[] { "name", "id", "score", "comments" }, new TypeInformation<?>[] { Types.STRING(), Types.STRING(), Types.STRING(), Types.STRING() }); // lenient tableEnv.registerTableSource("mycsv", csvTableSource); TableSink sink = new CsvTableSink("/Users/will/Downloads/out.csv", "|"); Table ingest = tableEnv.scan("mycsv"); try { String className = "dynamic.FlinkScript"; Class aClass = CompilerUtils.CACHED_COMPILER.loadFromJava(className, javaCode2); DynamicRunner runner = (DynamicRunner) aClass.newInstance(); //runner.runTransform(ds); Table result = runner.transTableObj(ingest); // write the result Table to the TableSink result.writeToSink(sink); env.execute(); } catch (Exception e) { e.printStackTrace(); } }
Example 13
Source File: WordCountStream.java From df_data_service with Apache License 2.0 | 4 votes |
public static void main(String args[]) { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); StreamTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env); // Create a DataStream from a list of elements //DataStream<Integer> ds = env.fromElements(1, 2, 3, 4, 5); CsvTableSource csvTableSource = new CsvTableSource( "/Users/will/Downloads/file.csv", new String[] { "name", "id", "score", "comments" }, new TypeInformation<?>[] { Types.STRING(), Types.STRING(), Types.STRING(), Types.STRING() }); // lenient tableEnv.registerTableSource("mycsv", csvTableSource); TableSink sink = new CsvTableSink("/Users/will/Downloads/out.csv", "|"); //tableEnv.registerDataStream("tbl", ds, "a"); //Table ingest = tableEnv.fromDataStream(ds, "name"); Table in = tableEnv.scan("mycsv"); //Table in = tableEnv.ingest("tbl"); //Table in = tableEnv.fromDataStream(ds, "a"); Table result = in.select("name"); result.writeToSink(sink); try { env.execute(); } catch (Exception e) { } System.out.print("DONE"); }