Java Code Examples for com.google.common.primitives.Longs#concat()
The following examples show how to use
com.google.common.primitives.Longs#concat() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: QBlockHashTable.java From dremio-oss with Apache License 2.0 | 5 votes |
private void addDataBlocks() { try(RollbackCloseable rollbackable = new RollbackCloseable()) { // make sure can fit the next batch. listener.addBatch(); { FixedBlockVector newFixed = new FixedBlockVector(allocator, pivot.getBlockWidth()); rollbackable.add(newFixed); newFixed.ensureAvailableBlocks(MAX_VALUES_PER_BATCH); fixedBlocks = ObjectArrays.concat(fixedBlocks, newFixed); tableFixedAddresses = Longs.concat(tableFixedAddresses, new long[]{newFixed.getMemoryAddress()}); } { VariableBlockVector newVariable = new VariableBlockVector(allocator, pivot.getVariableCount()); rollbackable.add(newVariable); newVariable.ensureAvailableDataSpace(pivot.getVariableCount() == 0 ? 0 : MAX_VALUES_PER_BATCH * defaultVariableLengthSize); variableBlocks = ObjectArrays.concat(variableBlocks, newVariable); initVariableAddresses = Longs.concat(initVariableAddresses, new long[]{newVariable.getMemoryAddress()}); openVariableAddresses = Longs.concat(openVariableAddresses, new long[]{newVariable.getMemoryAddress()}); maxVariableAddresses = Longs.concat(maxVariableAddresses, new long[]{newVariable.getMaxMemoryAddress()}); } rollbackable.commit(); } catch (Exception e) { throw Throwables.propagate(e); } }
Example 2
Source File: LBlockHashTableNoSpill.java From dremio-oss with Apache License 2.0 | 5 votes |
private void addDataBlocks(){ // make sure can fit the next batch. listener.resized(currentOrdinal + MAX_VALUES_PER_BATCH); try(RollbackCloseable rollbackable = new RollbackCloseable()) { { FixedBlockVector newFixed = new FixedBlockVector(allocator, pivot.getBlockWidth()); rollbackable.add(newFixed); newFixed.ensureAvailableBlocks(MAX_VALUES_PER_BATCH); fixedBlocks = ObjectArrays.concat(fixedBlocks, newFixed); tableFixedAddresses = Longs.concat(tableFixedAddresses, new long[]{newFixed.getMemoryAddress()}); } { VariableBlockVector newVariable = new VariableBlockVector(allocator, pivot.getVariableCount()); rollbackable.add(newVariable); newVariable.ensureAvailableDataSpace(pivot.getVariableCount() == 0 ? 0 : MAX_VALUES_PER_BATCH * defaultVariableLengthSize); variableBlocks = ObjectArrays.concat(variableBlocks, newVariable); initVariableAddresses = Longs.concat(initVariableAddresses, new long[]{newVariable.getMemoryAddress()}); openVariableAddresses = Longs.concat(openVariableAddresses, new long[]{newVariable.getMemoryAddress()}); maxVariableAddresses = Longs.concat(maxVariableAddresses, new long[]{newVariable.getMaxMemoryAddress()}); } rollbackable.commit(); } catch (Exception e) { throw Throwables.propagate(e); } }
Example 3
Source File: BaseNDArray.java From nd4j with Apache License 2.0 | 5 votes |
@Override public INDArray repeat(int dimension, long... repeats) { Nd4j.getCompressor().autoDecompress(this); if (dimension < 0) dimension += rank(); if (repeats.length < rank()) { if (dimension > 0) repeats = Longs.concat(ArrayUtil.nTimes((long) rank() - repeats.length, 1), repeats); //append rather than prepend for dimension == 0 else repeats = Longs.concat(repeats, ArrayUtil.nTimes((long) rank() - repeats.length, 1)); } long[] newShape = new long[rank()]; for (int i = 0; i < newShape.length; i++) newShape[i] = size(i) * repeats[i]; INDArray ret = Nd4j.create(newShape); //number of times to repeat each value long repeatDelta = ArrayUtil.prod(newShape) / length(); for (int i = 0; i < tensorssAlongDimension(dimension); i++) { INDArray thisTensor = tensorAlongDimension(i, dimension); INDArray retTensor = ret.tensorAlongDimension(i, dimension); int retIdx = 0; for (int k = 0; k < thisTensor.length(); k++) { for (int j = 0; j < repeatDelta; j++) { retTensor.putScalar(retIdx++, thisTensor.getDouble(k)); } } } return ret; }
Example 4
Source File: LBlockHashTable.java From dremio-oss with Apache License 2.0 | 4 votes |
/** * Add a new data block (batch) to the hashtable (and accumulator). Memory * allocation is needed for the following things: * * (1) Add new {@link FixedBlockVector} to array of fixed blocks. * (2) Add new {@link VariableBlockVector} to array of variable blocks. * (3) Add new {@link org.apache.arrow.vector.FieldVector} as a new target vector * in {@link com.dremio.sabot.op.aggregate.vectorized.BaseSingleAccumulator} * to store computed values. This is done for _each_ accumulator inside * {@link com.dremio.sabot.op.aggregate.vectorized.AccumulatorSet}. * * All of the above operations have to be done in a single transaction * as one atomic unit of work. This allows us to handle OutOfMemory situations * without creating any inconsistent state of data structures. */ private void addDataBlocks(){ final long currentAllocatedMemory = allocator.getAllocatedMemory(); FixedBlockVector[] oldFixedBlocks = fixedBlocks; long[] oldTableFixedAddresses = tableFixedAddresses; try(RollbackCloseable rollbackable = new RollbackCloseable()) { FixedBlockVector newFixed; VariableBlockVector newVariable; { /* add new target accumulator vector to each accumulator. * since this is an array based allocation, we can fail in the middle * later on we revert on each accumulator and that might be a NO-OP * for some accumulators */ listener.addBatch(); } /* if the above operation was successful and we fail anywhere in the following * operations then we need to revert memory allocation on accumulator (all accumulators * in NestedAccumulator) */ { newFixed = new FixedBlockVector(allocator, pivot.getBlockWidth()); /* no need to rollback explicitly */ rollbackable.add(newFixed); newFixed.ensureAvailableBlocks(MAX_VALUES_PER_BATCH); /* if we fail while allocating memory in above step, the state of fixed block array is still * consistent so we don't have to revert anything. */ fixedBlocks = ObjectArrays.concat(fixedBlocks, newFixed); tableFixedAddresses = Longs.concat(tableFixedAddresses, new long[]{newFixed.getMemoryAddress()}); } { newVariable = new VariableBlockVector(allocator, pivot.getVariableCount()); /* no need to rollback explicitly */ rollbackable.add(newVariable); newVariable.ensureAvailableDataSpace(variableBlockMaxLength); /* if we fail while allocating memory in above step, the state of variable block array is still consistent */ variableBlocks = ObjectArrays.concat(variableBlocks, newVariable); initVariableAddresses = Longs.concat(initVariableAddresses, new long[]{newVariable.getMemoryAddress()}); openVariableAddresses = Longs.concat(openVariableAddresses, new long[]{newVariable.getMemoryAddress()}); maxVariableAddresses = Longs.concat(maxVariableAddresses, new long[]{newVariable.getMaxMemoryAddress()}); } listener.commitResize(); rollbackable.commit(); /* bump these stats only after all new allocations have been successful as otherwise we would revert everything */ allocatedForFixedBlocks += newFixed.getCapacity(); allocatedForVarBlocks += newVariable.getCapacity(); } catch (Exception e) { logger.debug("ERROR: failed to add data blocks, exception: ", e); /* explicitly rollback resizing operations on NestedAccumulator */ listener.revertResize(); fixedBlocks = oldFixedBlocks; tableFixedAddresses = oldTableFixedAddresses; /* do sanity checking on the state of all data structures after * memory allocation failed and we rollbacked. this helps in proactively detecting * potential IndexOutOfBoundsException and seg faults due to inconsistent state across * data structures. */ Preconditions.checkArgument(fixedBlocks.length == variableBlocks.length, "Error: detected inconsistent state in hashtable after memory allocation failed"); listener.verifyBatchCount(fixedBlocks.length); /* at this point we are as good as no memory allocation was ever attempted */ Preconditions.checkArgument(allocator.getAllocatedMemory() == currentAllocatedMemory, "Error: detected inconsistent state of allocated memory"); /* VectorizedHashAggOperator inserts data into hashtable and will handle (if OOM) this exception */ throw Throwables.propagate(e); } }
Example 5
Source File: ArrayUtil.java From nd4j with Apache License 2.0 | 4 votes |
/** * Get the tensor matrix multiply shape * @param aShape the shape of the first array * @param bShape the shape of the second array * @param axes the axes to do the multiply * @return the shape for tensor matrix multiply */ public static long[] getTensorMmulShape(long[] aShape, long[] bShape, int[][] axes) { // FIXME: int cast int validationLength = Math.min(axes[0].length, axes[1].length); for (int i = 0; i < validationLength; i++) { if (aShape[axes[0][i]] != bShape[axes[1][i]]) throw new IllegalArgumentException( "Size of the given axes a" + " t each dimension must be the same size."); if (axes[0][i] < 0) axes[0][i] += aShape.length; if (axes[1][i] < 0) axes[1][i] += bShape.length; } List<Integer> listA = new ArrayList<>(); for (int i = 0; i < aShape.length; i++) { if (!Ints.contains(axes[0], i)) listA.add(i); } List<Integer> listB = new ArrayList<>(); for (int i = 0; i < bShape.length; i++) { if (!Ints.contains(axes[1], i)) listB.add(i); } int n2 = 1; int aLength = Math.min(aShape.length, axes[0].length); for (int i = 0; i < aLength; i++) { n2 *= aShape[axes[0][i]]; } //if listA and listB are empty these donot initialize. //so initializing with {1} which will then get overriden if not empty long[] oldShapeA; if (listA.size() == 0) { oldShapeA = new long[] {1}; } else { oldShapeA = Longs.toArray(listA); for (int i = 0; i < oldShapeA.length; i++) oldShapeA[i] = aShape[(int) oldShapeA[i]]; } int n3 = 1; int bNax = Math.min(bShape.length, axes[1].length); for (int i = 0; i < bNax; i++) { n3 *= bShape[axes[1][i]]; } long[] oldShapeB; if (listB.size() == 0) { oldShapeB = new long[] {1}; } else { oldShapeB = Longs.toArray(listB); for (int i = 0; i < oldShapeB.length; i++) oldShapeB[i] = bShape[(int) oldShapeB[i]]; } long[] aPlusB = Longs.concat(oldShapeA, oldShapeB); return aPlusB; }
Example 6
Source File: TensorMmul.java From nd4j with Apache License 2.0 | 4 votes |
private SDVariable doTensorMmul(SDVariable a, SDVariable b, int[][] axes) { int validationLength = Math.min(axes[0].length, axes[1].length); for (int i = 0; i < validationLength; i++) { if (a.getShape()[axes[0][i]] != b.getShape()[axes[1][i]]) throw new IllegalArgumentException("Size of the given axes at each dimension must be the same size."); if (axes[0][i] < 0) axes[0][i] += a.getShape().length; if (axes[1][i] < 0) axes[1][i] += b.getShape().length; } List<Integer> listA = new ArrayList<>(); for (int i = 0; i < a.getShape().length; i++) { if (!Ints.contains(axes[0], i)) listA.add(i); } int[] newAxesA = Ints.concat(Ints.toArray(listA), axes[0]); List<Integer> listB = new ArrayList<>(); for (int i = 0; i < b.getShape().length; i++) { if (!Ints.contains(axes[1], i)) listB.add(i); } int[] newAxesB = Ints.concat(axes[1], Ints.toArray(listB)); int n2 = 1; int aLength = Math.min(a.getShape().length, axes[0].length); for (int i = 0; i < aLength; i++) { n2 *= a.getShape()[axes[0][i]]; } //if listA and listB are empty these do not initialize. //so initializing with {1} which will then get overridden if not empty long[] newShapeA = {-1, n2}; long[] oldShapeA; if (listA.size() == 0) { oldShapeA = new long[] {1}; } else { oldShapeA = Longs.toArray(listA); for (int i = 0; i < oldShapeA.length; i++) oldShapeA[i] = a.getShape()[(int) oldShapeA[i]]; } int n3 = 1; int bNax = Math.min(b.getShape().length, axes[1].length); for (int i = 0; i < bNax; i++) { n3 *= b.getShape()[axes[1][i]]; } int[] newShapeB = {n3, -1}; long[] oldShapeB; if (listB.size() == 0) { oldShapeB = new long[] {1}; } else { oldShapeB = Longs.toArray(listB); for (int i = 0; i < oldShapeB.length; i++) oldShapeB[i] = b.getShape()[(int) oldShapeB[i]]; } SDVariable at = f() .reshape(f().permute (a,newAxesA),newShapeA); SDVariable bt = f() .reshape(f() .permute(b,newAxesB),newShapeB); SDVariable ret = f().mmul(at,bt); long[] aPlusB = Longs.concat(oldShapeA, oldShapeB); return f().reshape(ret, aPlusB); }