TF-OS-ELM

Overview

In this repository, we provide a tensorflow implementation of Online Sequential Extreme Learning Machine (OS-ELM) introduced by Liang et al. in this paper. You can execute our OS-ELM module either on CPUs or GPUs.

OS-ELM is able to learn faster and training will always converge to the global optimal solution, while ordinary backpropagation-based neural networks have to deal with the local minima problem.

Dependencies

We tested our codes by using the following libraries.

We used Keras only for downloading the MNIST dataset.

You don't have to use exactly the same version of the each library, but we can not guarantee the codes work well in the case.

All the above libraries can be installed in the following command.

$ pip install -U numpy Keras scikit-learn tensorflow

If you want to run our OS-ELM module on GPUs, please install tensorflow-gpu in addition to the above command.

Usage

Here, we show how to train a OS-ELM module and predict on it. For the sake of simplicity, we assume to train the model on MNIST, a hand-written digits dataset.

from keras.datasets import mnist
from keras.utils import to_categorical
from os_elm import OS_ELM
import numpy as np
import tensorflow as tf
import tqdm

def softmax(a):
    c = np.max(a, axis=-1).reshape(-1, 1)
    exp_a = np.exp(a - c)
    sum_exp_a = np.sum(exp_a, axis=-1).reshape(-1, 1)
    return exp_a / sum_exp_a

def main():

    # ===========================================
    # Instantiate os-elm
    # ===========================================
    n_input_nodes = 784
    n_hidden_nodes = 1024
    n_output_nodes = 10

    os_elm = OS_ELM(
        # the number of input nodes.
        n_input_nodes=n_input_nodes,
        # the number of hidden nodes.
        n_hidden_nodes=n_hidden_nodes,
        # the number of output nodes.
        n_output_nodes=n_output_nodes,
        # loss function.
        # the default value is 'mean_squared_error'.
        # for the other functions, we support
        # 'mean_absolute_error', 'categorical_crossentropy', and 'binary_crossentropy'.
        loss='mean_squared_error',
        # activation function applied to the hidden nodes.
        # the default value is 'sigmoid'.
        # for the other functions, we support 'linear' and 'tanh'.
        # NOTE: OS-ELM can apply an activation function only to the hidden nodes.
        activation='sigmoid',
    )

    # ===========================================
    # Prepare dataset
    # ===========================================
    n_classes = n_output_nodes

    # load MNIST
    (x_train, t_train), (x_test, t_test) = mnist.load_data()
    # normalize images' values within [0, 1]
    x_train = x_train.reshape(-1, n_input_nodes) / 255.
    x_test = x_test.reshape(-1, n_input_nodes) / 255.
    x_train = x_train.astype(np.float32)
    x_test = x_test.astype(np.float32)

    # convert label data into one-hot-vector format data.
    t_train = to_categorical(t_train, num_classes=n_classes)
    t_test = to_categorical(t_test, num_classes=n_classes)
    t_train = t_train.astype(np.float32)
    t_test = t_test.astype(np.float32)

    # divide the training dataset into two datasets:
    # (1) for the initial training phase
    # (2) for the sequential training phase
    # NOTE: the number of training samples for the initial training phase
    # must be much greater than the number of the model's hidden nodes.
    # here, we assign int(1.5 * n_hidden_nodes) training samples
    # for the initial training phase.
    border = int(1.5 * n_hidden_nodes)
    x_train_init = x_train[:border]
    x_train_seq = x_train[border:]
    t_train_init = t_train[:border]
    t_train_seq = t_train[border:]

    # ===========================================
    # Training
    # ===========================================
    # the initial training phase
    pbar = tqdm.tqdm(total=len(x_train), desc='initial training phase')
    os_elm.init_train(x_train_init, t_train_init)
    pbar.update(n=len(x_train_init))

    # the sequential training phase
    pbar.set_description('sequential training phase')
    batch_size = 64
    for i in range(0, len(x_train_seq), batch_size):
        x_batch = x_train_seq[i:i+batch_size]
        t_batch = t_train_seq[i:i+batch_size]
        os_elm.seq_train(x_batch, t_batch)
        pbar.update(n=len(x_batch))
    pbar.close()

    # ===========================================
    # Prediction
    # ===========================================
    # sample 10 validation samples from x_test
    n = 10
    x = x_test[:n]
    t = t_test[:n]

    # 'predict' method returns raw values of output nodes.
    y = os_elm.predict(x)
    # apply softmax function to the output values.
    y = softmax(y)

    # check the answers.
    for i in range(n):
        max_ind = np.argmax(y[i])
        print('========== sample index %d ==========' % i)
        print('estimated answer: class %d' % max_ind)
        print('estimated probability: %.3f' % y[i,max_ind])
        print('true answer: class %d' % np.argmax(t[i]))

    # ===========================================
    # Evaluation
    # ===========================================
    # we currently support 'loss' and 'accuracy' for 'metrics'.
    # NOTE: 'accuracy' is valid only if the model assumes
    # to deal with a classification problem, while 'loss' is always valid.
    # loss = os_elm.evaluate(x_test, t_test, metrics=['loss']
    [loss, accuracy] = os_elm.evaluate(x_test, t_test, metrics=['loss', 'accuracy'])
    print('val_loss: %f, val_accuracy: %f' % (loss, accuracy))

    # ===========================================
    # Save model
    # ===========================================
    print('saving model parameters...')
    os_elm.save('./checkpoint/model.ckpt')

    # initialize weights of os_elm
    os_elm.initialize_variables()

    # ===========================================
    # Load model
    # ===========================================
    # If you want to load weights to a model,
    # the architecture of the model must be exactly the same
    # as the one when the weights were saved.
    print('restoring model parameters...')
    os_elm.restore('./checkpoint/model.ckpt')

    # ===========================================
    # ReEvaluation
    # ===========================================
    # loss = os_elm.evaluate(x_test, t_test, metrics=['loss']
    [loss, accuracy] = os_elm.evaluate(x_test, t_test, metrics=['loss', 'accuracy'])
    print('val_loss: %f, val_accuracy: %f' % (loss, accuracy))

if __name__ == '__main__':
    main()

Notes

The following figure shows OS-ELM training formula.

Demo

You can execute the above sample code with the following command.

$ python train_mnist.py

Todos