import numpy as np
import torch
import torch.nn as nn


def calc_iou(a, b):
    area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])

    iw = torch.min(torch.unsqueeze(
        a[:, 2], dim=1), b[:, 2]) - torch.max(torch.unsqueeze(a[:, 0], 1), b[:, 0])
    ih = torch.min(torch.unsqueeze(
        a[:, 3], dim=1), b[:, 3]) - torch.max(torch.unsqueeze(a[:, 1], 1), b[:, 1])

    iw = torch.clamp(iw, min=0)
    ih = torch.clamp(ih, min=0)

    ua = torch.unsqueeze((a[:, 2] - a[:, 0]) *
                         (a[:, 3] - a[:, 1]), dim=1) + area - iw * ih

    ua = torch.clamp(ua, min=1e-8)

    intersection = iw * ih

    IoU = intersection / ua

    return IoU


class FocalLoss(nn.Module):
    # def __init__(self):

    def forward(self, classifications, regressions, anchors, annotations):
        alpha = 0.25
        gamma = 2.0
        batch_size = classifications.shape[0]
        classification_losses = []
        regression_losses = []

        anchor = anchors[0, :, :]

        anchor_widths = anchor[:, 2] - anchor[:, 0]
        anchor_heights = anchor[:, 3] - anchor[:, 1]
        anchor_ctr_x = anchor[:, 0] + 0.5 * anchor_widths
        anchor_ctr_y = anchor[:, 1] + 0.5 * anchor_heights

        for j in range(batch_size):

            classification = classifications[j, :, :]
            regression = regressions[j, :, :]

            bbox_annotation = annotations[j, :, :]
            bbox_annotation = bbox_annotation[bbox_annotation[:, 4] != -1]

            if bbox_annotation.shape[0] == 0:
                regression_losses.append(torch.tensor(0).float().cuda())
                classification_losses.append(torch.tensor(0).float().cuda())

                continue

            classification = torch.clamp(classification, 1e-4, 1.0 - 1e-4)

            # num_anchors x num_annotations
            IoU = calc_iou(anchors[0, :, :], bbox_annotation[:, :4])

            IoU_max, IoU_argmax = torch.max(IoU, dim=1)  # num_anchors x 1

            #import pdb
            # pdb.set_trace()

            # compute the loss for classification
            targets = torch.ones(classification.shape) * -1
            targets = targets.cuda()

            targets[torch.lt(IoU_max, 0.4), :] = 0

            positive_indices = torch.ge(IoU_max, 0.5)

            num_positive_anchors = positive_indices.sum()

            assigned_annotations = bbox_annotation[IoU_argmax, :]

            targets[positive_indices, :] = 0
            targets[positive_indices,
                    assigned_annotations[positive_indices, 4].long()] = 1

            alpha_factor = torch.ones(targets.shape).cuda() * alpha

            alpha_factor = torch.where(
                torch.eq(targets, 1.), alpha_factor, 1. - alpha_factor)
            focal_weight = torch.where(
                torch.eq(targets, 1.), 1. - classification, classification)
            focal_weight = alpha_factor * torch.pow(focal_weight, gamma)

            bce = -(targets * torch.log(classification) +
                    (1.0 - targets) * torch.log(1.0 - classification))

            # cls_loss = focal_weight * torch.pow(bce, gamma)
            cls_loss = focal_weight * bce

            cls_loss = torch.where(
                torch.ne(targets, -1.0), cls_loss, torch.zeros(cls_loss.shape).cuda())

            classification_losses.append(
                cls_loss.sum()/torch.clamp(num_positive_anchors.float(), min=1.0))

            # compute the loss for regression

            if positive_indices.sum() > 0:
                assigned_annotations = assigned_annotations[positive_indices, :]

                anchor_widths_pi = anchor_widths[positive_indices]
                anchor_heights_pi = anchor_heights[positive_indices]
                anchor_ctr_x_pi = anchor_ctr_x[positive_indices]
                anchor_ctr_y_pi = anchor_ctr_y[positive_indices]

                gt_widths = assigned_annotations[:,
                                                 2] - assigned_annotations[:, 0]
                gt_heights = assigned_annotations[:,
                                                  3] - assigned_annotations[:, 1]
                gt_ctr_x = assigned_annotations[:, 0] + 0.5 * gt_widths
                gt_ctr_y = assigned_annotations[:, 1] + 0.5 * gt_heights

                # clip widths to 1
                gt_widths = torch.clamp(gt_widths, min=1)
                gt_heights = torch.clamp(gt_heights, min=1)

                targets_dx = (gt_ctr_x - anchor_ctr_x_pi) / anchor_widths_pi
                targets_dy = (gt_ctr_y - anchor_ctr_y_pi) / anchor_heights_pi
                targets_dw = torch.log(gt_widths / anchor_widths_pi)
                targets_dh = torch.log(gt_heights / anchor_heights_pi)

                targets = torch.stack(
                    (targets_dx, targets_dy, targets_dw, targets_dh))
                targets = targets.t()

                targets = targets/torch.Tensor([[0.1, 0.1, 0.2, 0.2]]).cuda()

                negative_indices = 1 + (~positive_indices)

                regression_diff = torch.abs(
                    targets - regression[positive_indices, :])

                regression_loss = torch.where(
                    torch.le(regression_diff, 1.0 / 9.0),
                    0.5 * 9.0 * torch.pow(regression_diff, 2),
                    regression_diff - 0.5 / 9.0
                )
                regression_losses.append(regression_loss.mean())
            else:
                regression_losses.append(torch.tensor(0).float().cuda())

        return torch.stack(classification_losses).mean(dim=0, keepdim=True), torch.stack(regression_losses).mean(dim=0, keepdim=True)