#!/usr/bin/python
# NB: Before sending a PR to change the above line to '#!/usr/bin/env python2', please read https://github.com/espressif/esptool/issues/21
#
# ESP8266 ROM Bootloader Utility
# https://github.com/espressif/esptool
#
# Copyright (C) 2014-2016 Fredrik Ahlberg, Angus Gratton, Espressif Systems, other contributors as noted.
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
# Street, Fifth Floor, Boston, MA 02110-1301 USA.

from __future__ import print_function, division

import argparse
import hashlib
import inspect
import json
import os
import serial
import struct
import subprocess
import sys
import tempfile
import time


__version__ = "1.3"

PYTHON2 = sys.version_info[0] < 3  # True if on pre-Python 3


class ESPROM(object):
    # These are the currently known commands supported by the ROM
    ESP_FLASH_BEGIN = 0x02
    ESP_FLASH_DATA  = 0x03
    ESP_FLASH_END   = 0x04
    ESP_MEM_BEGIN   = 0x05
    ESP_MEM_END     = 0x06
    ESP_MEM_DATA    = 0x07
    ESP_SYNC        = 0x08
    ESP_WRITE_REG   = 0x09
    ESP_READ_REG    = 0x0a

    # Maximum block sized for RAM and Flash writes, respectively.
    ESP_RAM_BLOCK   = 0x1800
    ESP_FLASH_BLOCK = 0x400

    # Default baudrate. The ROM auto-bauds, so we can use more or less whatever we want.
    ESP_ROM_BAUD    = 115200

    # First byte of the application image
    ESP_IMAGE_MAGIC = 0xe9

    # Initial state for the checksum routine
    ESP_CHECKSUM_MAGIC = 0xef

    # OTP ROM addresses
    ESP_OTP_MAC0    = 0x3ff00050
    ESP_OTP_MAC1    = 0x3ff00054
    ESP_OTP_MAC3    = 0x3ff0005c

    # Flash sector size, minimum unit of erase.
    ESP_FLASH_SECTOR = 0x1000

    def __init__(self, port=0, baud=ESP_ROM_BAUD):
        self._port = serial.serial_for_url(port)
        self._slip_reader = slip_reader(self._port)
        # setting baud rate in a separate step is a workaround for
        # CH341 driver on some Linux versions (this opens at 9600 then
        # sets), shouldn't matter for other platforms/drivers. See
        # https://github.com/espressif/esptool/issues/44#issuecomment-107094446
        self._port.baudrate = baud

    """ Read a SLIP packet from the serial port """
    def read(self):
        return next(self._slip_reader)

    """ Write bytes to the serial port while performing SLIP escaping """
    def write(self, packet):
        buf = b'\xc0' \
              + (packet.replace(b'\xdb',b'\xdb\xdd').replace(b'\xc0',b'\xdb\xdc')) \
              + b'\xc0'
        self._port.write(buf)

    """ Calculate checksum of a blob, as it is defined by the ROM """
    @staticmethod
    def checksum(data, state=ESP_CHECKSUM_MAGIC):
        for b in data:
            if type(b) is int:  # python 2/3 compat
                state ^= b
            else:
                state ^= ord(b)

        return state

    """ Send a request and read the response """
    def command(self, op=None, data=None, chk=0):
        if op is not None:
            pkt = struct.pack(b'<BBHI', 0x00, op, len(data), chk) + data
            self.write(pkt)

        # tries to get a response until that response has the
        # same operation as the request or a retries limit has
        # exceeded. This is needed for some esp8266s that
        # reply with more sync responses than expected.
        for retry in range(100):
            p = self.read()
            if len(p) < 8:
                continue
            (resp, op_ret, len_ret, val) = struct.unpack('<BBHI', p[:8])
            if resp != 1:
                continue
            body = p[8:]
            if op is None or op_ret == op:
                return val, body  # valid response received

        raise FatalError("Response doesn't match request")

    """ Perform a connection test """
    def sync(self):
        self.command(ESPROM.ESP_SYNC, b'\x07\x07\x12\x20' + 32 * b'\x55')
        for i in range(7):
            self.command()

    """ Try connecting repeatedly until successful, or giving up """
    def connect(self):
        print('Connecting...', end='')
        sys.stdout.flush()
        last_error = None

        try:
            for _ in range(4):
                # issue reset-to-bootloader:
                # RTS = either CH_PD or nRESET (both active low = chip in reset)
                # DTR = GPIO0 (active low = boot to flasher)
                self._port.setDTR(False)
                self._port.setRTS(True)
                time.sleep(0.05)
                self._port.setDTR(True)
                self._port.setRTS(False)
                time.sleep(0.05)
                self._port.setDTR(False)

                # worst-case latency timer should be 255ms (probably <20ms)
                self._port.timeout = 0.3
                for _ in range(4):
                    try:
                        self._port.flushInput()
                        self._slip_reader = slip_reader(self._port)
                        self._port.flushOutput()
                        self.sync()
                        self._port.timeout = 5
                        return
                    except Exception as e:
                        print('.', end='')
                        sys.stdout.flush()
                        time.sleep(0.05)
                        last_error = e
        finally:
            print('')  # end 'Connecting...' line
        raise FatalError('Failed to connect to ESP8266: %s' % last_error)

    """ Read memory address in target """
    def read_reg(self, addr):
        res = self.command(ESPROM.ESP_READ_REG, struct.pack(b'<I', addr))
        if res[1] != b"\0\0":
            raise FatalError('Failed to read target memory')
        return res[0]

    """ Write to memory address in target """
    def write_reg(self, addr, value, mask, delay_us=0):
        if self.command(ESPROM.ESP_WRITE_REG,
                        struct.pack(b'<IIII', addr, value, mask, delay_us))[1] != b"\0\0":
            raise FatalError('Failed to write target memory')

    """ Start downloading an application image to RAM """
    def mem_begin(self, size, blocks, blocksize, offset):
        if self.command(ESPROM.ESP_MEM_BEGIN,
                        struct.pack(b'<IIII', size, blocks, blocksize, offset))[1] != b"\0\0":
            raise FatalError('Failed to enter RAM download mode')

    """ Send a block of an image to RAM """
    def mem_block(self, data, seq):
        if self.command(ESPROM.ESP_MEM_DATA,
                        struct.pack(b'<IIII', len(data), seq, 0, 0) + data,
                        ESPROM.checksum(data))[1] != b"\0\0":
            raise FatalError('Failed to write to target RAM')

    """ Leave download mode and run the application """
    def mem_finish(self, entrypoint=0):
        if self.command(ESPROM.ESP_MEM_END,
                        struct.pack(b'<II', int(entrypoint == 0), entrypoint))[1] != b"\0\0":
            raise FatalError('Failed to leave RAM download mode')

    """ Start downloading to Flash (performs an erase) """
    def flash_begin(self, size, offset):
        old_tmo = self._port.timeout
        num_blocks = (size + ESPROM.ESP_FLASH_BLOCK - 1) // ESPROM.ESP_FLASH_BLOCK

        sectors_per_block = 16
        sector_size = self.ESP_FLASH_SECTOR
        num_sectors = (size + sector_size - 1) // sector_size
        start_sector = offset // sector_size

        head_sectors = sectors_per_block - (start_sector % sectors_per_block)
        if num_sectors < head_sectors:
            head_sectors = num_sectors

        if num_sectors < 2 * head_sectors:
            erase_size = (num_sectors + 1) // 2 * sector_size
        else:
            erase_size = (num_sectors - head_sectors) * sector_size

        self._port.timeout = 20
        t = time.time()
        result = self.command(ESPROM.ESP_FLASH_BEGIN,
                              struct.pack(b'<IIII', erase_size, num_blocks, ESPROM.ESP_FLASH_BLOCK, offset))[1]
        if size != 0:
            print("Took %.2fs to erase flash block" % (time.time() - t))
        if result != b"\0\0":
            raise FatalError.WithResult('Failed to enter Flash download mode (result "%s")', result)
        self._port.timeout = old_tmo

    """ Write block to flash """
    def flash_block(self, data, seq):
        result = self.command(ESPROM.ESP_FLASH_DATA,
                              struct.pack(b'<IIII', len(data), seq, 0, 0) + data,
                              ESPROM.checksum(data))[1]
        if result != b"\0\0":
            raise FatalError.WithResult('Failed to write to target Flash after seq %d (got result %%s)' % seq, result)

    """ Leave flash mode and run/reboot """
    def flash_finish(self, reboot=False):
        pkt = struct.pack(b'<I', int(not reboot))
        if self.command(ESPROM.ESP_FLASH_END, pkt)[1] != b"\0\0":
            raise FatalError('Failed to leave Flash mode')

    """ Run application code in flash """
    def run(self, reboot=False):
        # Fake flash begin immediately followed by flash end
        self.flash_begin(0, 0)
        self.flash_finish(reboot)

    """ Read MAC from OTP ROM """
    def read_mac(self):
        mac0 = self.read_reg(self.ESP_OTP_MAC0)
        mac1 = self.read_reg(self.ESP_OTP_MAC1)
        mac3 = self.read_reg(self.ESP_OTP_MAC3)
        if (mac3 != 0):
            oui = ((mac3 >> 16) & 0xff, (mac3 >> 8) & 0xff, mac3 & 0xff)
        elif ((mac1 >> 16) & 0xff) == 0:
            oui = (0x18, 0xfe, 0x34)
        elif ((mac1 >> 16) & 0xff) == 1:
            oui = (0xac, 0xd0, 0x74)
        else:
            raise FatalError("Unknown OUI")
        return oui + ((mac1 >> 8) & 0xff, mac1 & 0xff, (mac0 >> 24) & 0xff)

    """ Read Chip ID from OTP ROM - see http://esp8266-re.foogod.com/wiki/System_get_chip_id_%28IoT_RTOS_SDK_0.9.9%29 """
    def chip_id(self):
        id0 = self.read_reg(self.ESP_OTP_MAC0)
        id1 = self.read_reg(self.ESP_OTP_MAC1)
        return (id0 >> 24) | ((id1 & 0xffffff) << 8)

    """ Read SPI flash manufacturer and device id """
    def flash_id(self):
        self.flash_begin(0, 0)
        self.write_reg(0x60000240, 0x0, 0xffffffff)
        self.write_reg(0x60000200, 0x10000000, 0xffffffff)
        flash_id = self.read_reg(0x60000240)
        return flash_id

    """ Abuse the loader protocol to force flash to be left in write mode """
    def flash_unlock_dio(self):
        # Enable flash write mode
        self.flash_begin(0, 0)
        # Reset the chip rather than call flash_finish(), which would have
        # write protected the chip again (why oh why does it do that?!)
        self.mem_begin(0,0,0,0x40100000)
        self.mem_finish(0x40000080)

    """ Perform a chip erase of SPI flash """
    def flash_erase(self):
        # Trick ROM to initialize SFlash
        self.flash_begin(0, 0)

        # This is hacky: we don't have a custom stub, instead we trick
        # the bootloader to jump to the SPIEraseChip() routine and then halt/crash
        # when it tries to boot an unconfigured system.
        self.mem_begin(0,0,0,0x40100000)
        self.mem_finish(0x40004984)

        # Yup - there's no good way to detect if we succeeded.
        # It it on the other hand unlikely to fail.

    def run_stub(self, stub, params, read_output=True):
        stub = dict(stub)
        stub['code'] = unhexify(stub['code'])
        if 'data' in stub:
            stub['data'] = unhexify(stub['data'])

        if stub['num_params'] != len(params):
            raise FatalError('Stub requires %d params, %d provided'
                             % (stub['num_params'], len(params)))

        params = struct.pack(b'<' + (b'I' * stub['num_params']), *params)

        pc = params + stub['code']

        # Upload
        self.mem_begin(len(pc), 1, len(pc), stub['params_start'])
        self.mem_block(pc, 0)
        if 'data' in stub:
            self.mem_begin(len(stub['data']), 1, len(stub['data']), stub['data_start'])
            self.mem_block(stub['data'], 0)
        self.mem_finish(stub['entry'])

        if read_output:
            print('Stub executed, reading response:')
            while True:
                p = self.read()
                print(hexify(p))
                if p == '':
                    return


class ESPBOOTLOADER(object):
    """ These are constants related to software ESP bootloader, working with 'v2' image files """

    # First byte of the "v2" application image
    IMAGE_V2_MAGIC = 0xea

    # First 'segment' value in a "v2" application image, appears to be a constant version value?
    IMAGE_V2_SEGMENT = 4


def LoadFirmwareImage(filename):
    """ Load a firmware image, without knowing what kind of file (v1 or v2) it is.

        Returns a BaseFirmwareImage subclass, either ESPFirmwareImage (v1) or OTAFirmwareImage (v2).
    """
    with open(filename, 'rb') as f:
        magic = ord(f.read(1))
        f.seek(0)
        if magic == ESPROM.ESP_IMAGE_MAGIC:
            return ESPFirmwareImage(f)
        elif magic == ESPBOOTLOADER.IMAGE_V2_MAGIC:
            return OTAFirmwareImage(f)
        else:
            raise FatalError("Invalid image magic number: %d" % magic)


class BaseFirmwareImage(object):
    """ Base class with common firmware image functions """
    def __init__(self):
        self.segments = []
        self.entrypoint = 0

    def add_segment(self, addr, data, pad_to=4):
        """ Add a segment to the image, with specified address & data
        (padded to a boundary of pad_to size) """
        # Data should be aligned on word boundary
        l = len(data)
        if l % pad_to:
            data += b"\x00" * (pad_to - l % pad_to)
        if l > 0:
            self.segments.append((addr, len(data), data))

    def load_segment(self, f, is_irom_segment=False):
        """ Load the next segment from the image file """
        (offset, size) = struct.unpack('<II', f.read(8))
        if not is_irom_segment:
            if offset > 0x40200000 or offset < 0x3ffe0000 or size > 65536:
                raise FatalError('Suspicious segment 0x%x, length %d' % (offset, size))
        segment_data = f.read(size)
        if len(segment_data) < size:
            raise FatalError('End of file reading segment 0x%x, length %d (actual length %d)' % (offset, size, len(segment_data)))
        segment = (offset, size, segment_data)
        self.segments.append(segment)
        return segment

    def save_segment(self, f, segment, checksum=None):
        """ Save the next segment to the image file, return next checksum value if provided """
        (offset, size, data) = segment
        f.write(struct.pack(b'<II', offset, size))
        f.write(data)
        if checksum is not None:
            return ESPROM.checksum(data, checksum)

    def read_checksum(self, f):
        """ Return ESPROM checksum from end of just-read image """
        # Skip the padding. The checksum is stored in the last byte so that the
        # file is a multiple of 16 bytes.
        align_file_position(f, 16)
        return ord(f.read(1))

    def append_checksum(self, f, checksum):
        """ Append ESPROM checksum to the just-written image """
        align_file_position(f, 16)
        f.write(struct.pack(b'B', checksum))

    def write_v1_header(self, f, segments):
        f.write(struct.pack(b'<BBBBI', ESPROM.ESP_IMAGE_MAGIC, len(segments),
                            self.flash_mode, self.flash_size_freq, self.entrypoint))


class ESPFirmwareImage(BaseFirmwareImage):
    """ 'Version 1' firmware image, segments loaded directly by the ROM bootloader. """
    def __init__(self, load_file=None):
        super(ESPFirmwareImage, self).__init__()
        self.flash_mode = 0
        self.flash_size_freq = 0
        self.version = 1

        if load_file is not None:
            (magic, segments, self.flash_mode, self.flash_size_freq, self.entrypoint) = struct.unpack('<BBBBI', load_file.read(8))

            # some sanity check
            if magic != ESPROM.ESP_IMAGE_MAGIC or segments > 16:
                raise FatalError('Invalid firmware image magic=%d segments=%d' % (magic, segments))

            for i in range(segments):
                self.load_segment(load_file)
            self.checksum = self.read_checksum(load_file)

    def save(self, filename):
        with open(filename, 'wb') as f:
            self.write_v1_header(f, self.segments)
            checksum = ESPROM.ESP_CHECKSUM_MAGIC
            for segment in self.segments:
                checksum = self.save_segment(f, segment, checksum)
            self.append_checksum(f, checksum)


class OTAFirmwareImage(BaseFirmwareImage):
    """ 'Version 2' firmware image, segments loaded by software bootloader stub
        (ie Espressif bootloader or rboot)
    """
    def __init__(self, load_file=None):
        super(OTAFirmwareImage, self).__init__()
        self.version = 2
        if load_file is not None:
            (magic, segments, first_flash_mode, first_flash_size_freq, first_entrypoint) = struct.unpack('<BBBBI', load_file.read(8))

            # some sanity check
            if magic != ESPBOOTLOADER.IMAGE_V2_MAGIC:
                raise FatalError('Invalid V2 image magic=%d' % (magic))
            if segments != 4:
                # segment count is not really segment count here, but we expect to see '4'
                print('Warning: V2 header has unexpected "segment" count %d (usually 4)' % segments)

            # irom segment comes before the second header
            self.load_segment(load_file, True)

            (magic, segments, self.flash_mode, self.flash_size_freq, self.entrypoint) = struct.unpack('<BBBBI', load_file.read(8))

            if first_flash_mode != self.flash_mode:
                print('WARNING: Flash mode value in first header (0x%02x) disagrees with second (0x%02x). Using second value.'
                      % (first_flash_mode, self.flash_mode))
            if first_flash_size_freq != self.flash_size_freq:
                print('WARNING: Flash size/freq value in first header (0x%02x) disagrees with second (0x%02x). Using second value.'
                      % (first_flash_size_freq, self.flash_size_freq))
            if first_entrypoint != self.entrypoint:
                print('WARNING: Enterypoint address in first header (0x%08x) disagrees with second header (0x%08x). Using second value.'
                      % (first_entrypoint, self.entrypoint))

            if magic != ESPROM.ESP_IMAGE_MAGIC or segments > 16:
                raise FatalError('Invalid V2 second header magic=%d segments=%d' % (magic, segments))

            # load all the usual segments
            for _ in range(segments):
                self.load_segment(load_file)
            self.checksum = self.read_checksum(load_file)

    def save(self, filename):
        with open(filename, 'wb') as f:
            # Save first header for irom0 segment
            f.write(struct.pack(b'<BBBBI', ESPBOOTLOADER.IMAGE_V2_MAGIC, ESPBOOTLOADER.IMAGE_V2_SEGMENT,
                                self.flash_mode, self.flash_size_freq, self.entrypoint))

            # irom0 segment identified by load address zero
            irom_segments = [segment for segment in self.segments if segment[0] == 0]
            if len(irom_segments) != 1:
                raise FatalError('Found %d segments that could be irom0. Bad ELF file?' % len(irom_segments))
            # save irom0 segment
            irom_segment = irom_segments[0]
            self.save_segment(f, irom_segment)

            # second header, matches V1 header and contains loadable segments
            normal_segments = [s for s in self.segments if s != irom_segment]
            self.write_v1_header(f, normal_segments)
            checksum = ESPROM.ESP_CHECKSUM_MAGIC
            for segment in normal_segments:
                checksum = self.save_segment(f, segment, checksum)
            self.append_checksum(f, checksum)


class ELFFile(object):
    def __init__(self, name):
        self.name = binutils_safe_path(name)
        self.symbols = None

    def _fetch_symbols(self):
        if self.symbols is not None:
            return
        self.symbols = {}
        try:
            tool_nm = "xtensa-lx106-elf-nm"
            if os.getenv('XTENSA_CORE') == 'lx106':
                tool_nm = "xt-nm"
            proc = subprocess.Popen([tool_nm, self.name], stdout=subprocess.PIPE)
        except OSError:
            print("Error calling %s, do you have Xtensa toolchain in PATH?" % tool_nm)
            sys.exit(1)
        for l in proc.stdout:
            fields = l.strip().decode("utf-8", "strict").split()
            try:
                if fields[0] == "U":
                    print("Warning: ELF binary has undefined symbol %s" % fields[1])
                    continue
                if fields[0] == "w":
                    continue  # can skip weak symbols
                self.symbols[fields[2]] = int(fields[0], 16)
            except ValueError:
                raise FatalError("Failed to strip symbol output from nm: %s" % fields)

    def get_symbol_addr(self, sym):
        self._fetch_symbols()
        return self.symbols[sym]

    def get_entry_point(self):
        tool_readelf = "xtensa-lx106-elf-readelf"
        if os.getenv('XTENSA_CORE') == 'lx106':
            tool_readelf = "xt-readelf"
        try:
            proc = subprocess.Popen([tool_readelf, "-h", self.name], stdout=subprocess.PIPE)
        except OSError:
            print("Error calling %s, do you have Xtensa toolchain in PATH?" % tool_readelf)
            sys.exit(1)
        for l in proc.stdout:
            fields = l.strip().decode("utf-8", "strict").split()
            if fields[0] == "Entry":
                return int(fields[3], 0)

    def load_section(self, section):
        tool_objcopy = "xtensa-lx106-elf-objcopy"
        if os.getenv('XTENSA_CORE') == 'lx106':
            tool_objcopy = "xt-objcopy"
        tmpsection = binutils_safe_path(tempfile.mktemp(suffix=".section"))
        try:
            subprocess.check_call([tool_objcopy, "--only-section", section, "-Obinary", self.name, tmpsection])
            with open(tmpsection, "rb") as f:
                data = f.read()
        finally:
            os.remove(tmpsection)
        return data


class CesantaFlasher(object):

    # From stub_flasher.h
    CMD_FLASH_WRITE = 1
    CMD_FLASH_READ = 2
    CMD_FLASH_DIGEST = 3
    CMD_FLASH_ERASE_CHIP = 5
    CMD_BOOT_FW = 6

    def __init__(self, esp, baud_rate=0):
        print('Running Cesanta flasher stub...')
        if baud_rate <= ESPROM.ESP_ROM_BAUD:  # don't change baud rates if we already synced at that rate
            baud_rate = 0
        self._esp = esp

        esp.run_stub(json.loads(_CESANTA_FLASHER_STUB), [baud_rate], read_output=False)
        if baud_rate > 0:
            esp._port.baudrate = baud_rate
        # Read the greeting.
        p = esp.read()
        if p != b'OHAI':
            raise FatalError('Failed to connect to the flasher (got %s)' % hexify(p))

    def flash_write(self, addr, data, show_progress=False):
        assert addr % self._esp.ESP_FLASH_SECTOR == 0, 'Address must be sector-aligned'
        assert len(data) % self._esp.ESP_FLASH_SECTOR == 0, 'Length must be sector-aligned'
        sys.stdout.write('Writing %d @ 0x%x... ' % (len(data), addr))
        sys.stdout.flush()
        self._esp.write(struct.pack(b'<B', self.CMD_FLASH_WRITE))
        self._esp.write(struct.pack(b'<III', addr, len(data), 1))
        num_sent, num_written = 0, 0
        while num_written < len(data):
            p = self._esp.read()
            if len(p) == 4:
                num_written = struct.unpack('<I', p)[0]
            elif len(p) == 1:
                status_code = struct.unpack('<B', p)[0]
                raise FatalError('Write failure, status: %x' % status_code)
            else:
                raise FatalError('Unexpected packet while writing: %s' % hexify(p))
            if show_progress:
                progress = '%d (%d %%)' % (num_written, num_written * 100.0 / len(data))
                sys.stdout.write(progress + '\b' * len(progress))
                sys.stdout.flush()
            while num_sent - num_written < 5120:
                self._esp._port.write(data[num_sent:num_sent + 1024])
                num_sent += 1024
        p = self._esp.read()
        if len(p) != 16:
            raise FatalError('Expected digest, got: %s' % hexify(p))
        digest = hexify(p).upper()
        expected_digest = hashlib.md5(data).hexdigest().upper()
        print
        if digest != expected_digest:
            raise FatalError('Digest mismatch: expected %s, got %s' % (expected_digest, digest))
        p = self._esp.read()
        if len(p) != 1:
            raise FatalError('Expected status, got: %s' % hexify(p))
        status_code = struct.unpack('<B', p)[0]
        if status_code != 0:
            raise FatalError('Write failure, status: %x' % status_code)

    def flash_read(self, addr, length, show_progress=False):
        sys.stdout.write('Reading %d @ 0x%x... ' % (length, addr))
        sys.stdout.flush()
        self._esp.write(struct.pack(b'<B', self.CMD_FLASH_READ))
        # USB may not be able to keep up with the read rate, especially at
        # higher speeds. Since we don't have flow control, this will result in
        # data loss. Hence, we use small packet size and only allow small
        # number of bytes in flight, which we can reasonably expect to fit in
        # the on-chip FIFO. max_in_flight = 64 works for CH340G, other chips may
        # have longer FIFOs and could benefit from increasing max_in_flight.
        self._esp.write(struct.pack(b'<IIII', addr, length, 32, 64))
        data = b''
        while True:
            p = self._esp.read()
            data += p
            self._esp.write(struct.pack(b'<I', len(data)))
            if show_progress and (len(data) % 1024 == 0 or len(data) == length):
                progress = '%d (%d %%)' % (len(data), len(data) * 100.0 / length)
                sys.stdout.write(progress + '\b' * len(progress))
                sys.stdout.flush()
            if len(data) == length:
                break
            if len(data) > length:
                raise FatalError('Read more than expected')
        p = self._esp.read()
        if len(p) != 16:
            raise FatalError('Expected digest, got: %s' % hexify(p))
        expected_digest = hexify(p).upper()
        digest = hashlib.md5(data).hexdigest().upper()
        print
        if digest != expected_digest:
            raise FatalError('Digest mismatch: expected %s, got %s' % (expected_digest, digest))
        p = self._esp.read()
        if len(p) != 1:
            raise FatalError('Expected status, got: %s' % hexify(p))
        status_code = struct.unpack('<B', p)[0]
        if status_code != 0:
            raise FatalError('Write failure, status: %x' % status_code)
        return data

    def flash_digest(self, addr, length, digest_block_size=0):
        self._esp.write(struct.pack(b'<B', self.CMD_FLASH_DIGEST))
        self._esp.write(struct.pack(b'<III', addr, length, digest_block_size))
        digests = []
        while True:
            p = self._esp.read()
            if len(p) == 16:
                digests.append(p)
            elif len(p) == 1:
                status_code = struct.unpack('<B', p)[0]
                if status_code != 0:
                    raise FatalError('Write failure, status: %x' % status_code)
                break
            else:
                raise FatalError('Unexpected packet: %s' % hexify(p))
        return digests[-1], digests[:-1]

    def boot_fw(self):
        self._esp.write(struct.pack(b'<B', self.CMD_BOOT_FW))
        p = self._esp.read()
        if len(p) != 1:
            raise FatalError('Expected status, got: %s' % hexify(p))
        status_code = struct.unpack('<B', p)[0]
        if status_code != 0:
            raise FatalError('Boot failure, status: %x' % status_code)

    def flash_erase_chip(self):
        self._esp.write(struct.pack('<B', self.CMD_FLASH_ERASE_CHIP))
        otimeout = self._esp._port.timeout
        self._esp._port.timeout = 60
        p = self._esp.read()
        self._esp._port.timeout = otimeout
        if len(p) != 1:
            raise FatalError('Expected status, got: %s' % hexify(p))
        status_code = struct.unpack('<B', p)[0]
        if status_code != 0:
            raise FatalError('Erase chip failure, status: %x' % status_code)


def slip_reader(port):
    """Generator to read SLIP packets from a serial port.
    Yields one full SLIP packet at a time, raises exception on timeout or invalid data.

    Designed to avoid too many calls to serial.read(1), which can bog
    down on slow systems.
    """
    partial_packet = None
    in_escape = False
    while True:
        waiting = port.inWaiting()
        read_bytes = port.read(1 if waiting == 0 else waiting)
        if read_bytes == b'':
            raise FatalError("Timed out waiting for packet %s" % ("header" if partial_packet is None else "content"))

        for b in read_bytes:

            if type(b) is int:
                b = bytes([b])  # python 2/3 compat

            if partial_packet is None:  # waiting for packet header
                if b == b'\xc0':
                    partial_packet = b""
                else:
                    raise FatalError('Invalid head of packet (%r)' % b)
            elif in_escape:  # part-way through escape sequence
                in_escape = False
                if b == b'\xdc':
                    partial_packet += b'\xc0'
                elif b == b'\xdd':
                    partial_packet += b'\xdb'
                else:
                    raise FatalError('Invalid SLIP escape (%r%r)' % (b'\xdb', b))
            elif b == b'\xdb':  # start of escape sequence
                in_escape = True
            elif b == b'\xc0':  # end of packet
                yield partial_packet
                partial_packet = None
            else:  # normal byte in packet
                partial_packet += b


def arg_auto_int(x):
    return int(x, 0)


def div_roundup(a, b):
    """ Return a/b rounded up to nearest integer,
    equivalent result to int(math.ceil(float(int(a)) / float(int(b))), only
    without possible floating point accuracy errors.
    """
    return (int(a) + int(b) - 1) / int(b)


def binutils_safe_path(p):
    """Returns a 'safe' version of path 'p' to pass to binutils

    Only does anything under Cygwin Python, where cygwin paths need to
    be translated to Windows paths if the binutils wasn't compiled
    using Cygwin (should also work with binutils compiled using
    Cygwin, see #73.)
    """
    if sys.platform == "cygwin":
        try:
            return subprocess.check_output(["cygpath", "-w", p]).rstrip('\n')
        except subprocess.CalledProcessError:
            print("WARNING: Failed to call cygpath to sanitise Cygwin path.")
    return p


def align_file_position(f, size):
    """ Align the position in the file to the next block of specified size """
    align = (size - 1) - (f.tell() % size)
    f.seek(align, 1)


def hexify(s):
    if not PYTHON2:
        return ''.join('%02X' % c for c in s)
    else:
        return ''.join('%02X' % ord(c) for c in s)


def unhexify(hs):
    s = bytes()

    for i in range(0, len(hs) - 1, 2):
        hex_string = hs[i:i + 2]

        if not PYTHON2:
            s += bytes([int(hex_string, 16)])
        else:
            s += chr(int(hex_string, 16))

    return s


class FatalError(RuntimeError):
    """
    Wrapper class for runtime errors that aren't caused by internal bugs, but by
    ESP8266 responses or input content.
    """
    def __init__(self, message):
        RuntimeError.__init__(self, message)

    @staticmethod
    def WithResult(message, result):
        """
        Return a fatal error object that includes the hex values of
        'result' as a string formatted argument.
        """
        return FatalError(message % ", ".join(hex(ord(x)) for x in result))


# "Operation" commands, executable at command line. One function each
#
# Each function takes either two args (<ESPROM instance>, <args>) or a single <args>
# argument.

def load_ram(esp, args):
    image = LoadFirmwareImage(args.filename)

    print('RAM boot...')
    for (offset, size, data) in image.segments:
        print('Downloading %d bytes at %08x...' % (size, offset), end=' ')
        sys.stdout.flush()
        esp.mem_begin(size, div_roundup(size, esp.ESP_RAM_BLOCK), esp.ESP_RAM_BLOCK, offset)

        seq = 0
        while len(data) > 0:
            esp.mem_block(data[0:esp.ESP_RAM_BLOCK], seq)
            data = data[esp.ESP_RAM_BLOCK:]
            seq += 1
        print('done!')

    print('All segments done, executing at %08x' % image.entrypoint)
    esp.mem_finish(image.entrypoint)


def read_mem(esp, args):
    print('0x%08x = 0x%08x' % (args.address, esp.read_reg(args.address)))


def write_mem(esp, args):
    esp.write_reg(args.address, args.value, args.mask, 0)
    print('Wrote %08x, mask %08x to %08x' % (args.value, args.mask, args.address))


def dump_mem(esp, args):
    f = open(args.filename, 'wb')
    for i in range(args.size / 4):
        d = esp.read_reg(args.address + (i * 4))
        f.write(struct.pack(b'<I', d))
        if f.tell() % 1024 == 0:
            print('\r%d bytes read... (%d %%)' % (f.tell(),
                                                  f.tell() * 100 / args.size),
                  end=' ')
        sys.stdout.flush()
    print('Done!')


def detect_flash_size(esp, args):
    if args.flash_size == 'detect':
        flash_id = esp.flash_id()
        size_id = flash_id >> 16
        args.flash_size = {18: '2m', 19: '4m', 20: '8m', 21: '16m', 22: '32m'}.get(size_id)
        if args.flash_size is None:
            print('Warning: Could not auto-detect Flash size (FlashID=0x%x, SizeID=0x%x), defaulting to 4m' % (flash_id, size_id))
            args.flash_size = '4m'
        else:
            print('Auto-detected Flash size:', args.flash_size)


def _get_flash_params(esp, args):
    """ Return binary flash parameters (bitstring length 2) for args """
    detect_flash_size(esp, args)
    flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode]
    flash_size_freq = {'4m':0x00, '2m':0x10, '8m':0x20, '16m':0x30, '32m':0x40, '16m-c1': 0x50, '32m-c1':0x60, '32m-c2':0x70}[args.flash_size]
    flash_size_freq += {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq]
    return struct.pack(b'BB', flash_mode, flash_size_freq)


def _update_image_flash_params(address, flash_params, image):
    """ Modify the flash mode & size bytes if this looks like an executable image """
    if address == 0 and (image[0] == b'\xe9' or image[0] == 0xE9):  # python 2/3 compat
        print('Flash params set to 0x%04x' % struct.unpack(">H", flash_params))
        image = image[0:2] + flash_params + image[4:]
    return image


def write_flash(esp, args):
    flash_params = _get_flash_params(esp, args)
    flasher = CesantaFlasher(esp, args.baud)

    for address, argfile in args.addr_filename:
        image = argfile.read()
        argfile.seek(0)  # rewind in case we need it again
        if address + len(image) > int(args.flash_size.split('m')[0]) * (1 << 17):
            print('WARNING: Unlikely to work as data goes beyond end of flash. Hint: Use --flash_size')
        image = _update_image_flash_params(address, flash_params, image)
        # Pad to sector size, which is the minimum unit of writing (erasing really).
        if len(image) % esp.ESP_FLASH_SECTOR != 0:
            image += b'\xff' * (esp.ESP_FLASH_SECTOR - (len(image) % esp.ESP_FLASH_SECTOR))
        t = time.time()
        flasher.flash_write(address, image, not args.no_progress)
        t = time.time() - t
        print('\rWrote %d bytes at 0x%x in %.1f seconds (%.1f kbit/s)...'
              % (len(image), address, t, len(image) / t * 8 / 1000))
    print('Leaving...')
    if args.verify:
        print('Verifying just-written flash...')
        _verify_flash(esp, args, flasher)
    flasher.boot_fw()


def image_info(args):
    image = LoadFirmwareImage(args.filename)
    print('Image version: %d' % image.version)
    print('Entry point: %08x' % image.entrypoint if image.entrypoint != 0 else 'Entry point not set')
    print('%d segments' % len(image.segments))
    print
    checksum = ESPROM.ESP_CHECKSUM_MAGIC
    for (idx, (offset, size, data)) in enumerate(image.segments):
        if image.version == 2 and idx == 0:
            print('Segment 1: %d bytes IROM0 (no load address)' % size)
        else:
            print('Segment %d: %5d bytes at %08x' % (idx + 1, size, offset))
            checksum = ESPROM.checksum(data, checksum)
    print
    print('Checksum: %02x (%s)' % (image.checksum, 'valid' if image.checksum == checksum else 'invalid!'))


def make_image(args):
    image = ESPFirmwareImage()
    if len(args.segfile) == 0:
        raise FatalError('No segments specified')
    if len(args.segfile) != len(args.segaddr):
        raise FatalError('Number of specified files does not match number of specified addresses')
    for (seg, addr) in zip(args.segfile, args.segaddr):
        data = open(seg, 'rb').read()
        image.add_segment(addr, data)
    image.entrypoint = args.entrypoint
    image.save(args.output)


def elf2image(args):
    e = ELFFile(args.input)
    if args.version == '1':
        image = ESPFirmwareImage()
    else:
        image = OTAFirmwareImage()
        irom_data = e.load_section('.irom0.text')
        if len(irom_data) == 0:
            raise FatalError(".irom0.text section not found in ELF file - can't create V2 image.")
        image.add_segment(0, irom_data, 16)
    image.entrypoint = e.get_entry_point()
    for section, start in ((".text", "_text_start"), (".data", "_data_start"), (".rodata", "_rodata_start")):
        data = e.load_section(section)
        image.add_segment(e.get_symbol_addr(start), data)

    image.flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode]
    image.flash_size_freq = {'4m':0x00, '2m':0x10, '8m':0x20, '16m':0x30, '32m':0x40, '16m-c1': 0x50, '32m-c1':0x60, '32m-c2':0x70}[args.flash_size]
    image.flash_size_freq += {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq]

    irom_offs = e.get_symbol_addr("_irom0_text_start") - 0x40200000

    if args.version == '1':
        if args.output is None:
            args.output = args.input + '-'
        image.save(args.output + "0x00000.bin")
        data = e.load_section(".irom0.text")
        if irom_offs < 0:
            raise FatalError('Address of symbol _irom0_text_start in ELF is located before flash mapping address. Bad linker script?')
        if (irom_offs & 0xFFF) != 0:  # irom0 isn't flash sector aligned
            print("WARNING: irom0 section offset is 0x%08x. ELF is probably linked for 'elf2image --version=2'" % irom_offs)
        with open(args.output + "0x%05x.bin" % irom_offs, "wb") as f:
            f.write(data)
            f.close()
    else:  # V2 OTA image
        if args.output is None:
            args.output = "%s-0x%05x.bin" % (os.path.splitext(args.input)[0], irom_offs & ~(ESPROM.ESP_FLASH_SECTOR - 1))
        image.save(args.output)


def read_mac(esp, args):
    mac = esp.read_mac()
    print('MAC: %s' % ':'.join(map(lambda x: '%02x' % x, mac)))


def chip_id(esp, args):
    chipid = esp.chip_id()
    print('Chip ID: 0x%08x' % chipid)


def erase_flash(esp, args):
    flasher = CesantaFlasher(esp, args.baud)
    print('Erasing flash (this may take a while)...')
    t = time.time()
    flasher.flash_erase_chip()
    t = time.time() - t
    print('Erase took %.1f seconds' % t)


def run(esp, args):
    esp.run()


def flash_id(esp, args):
    flash_id = esp.flash_id()
    esp.flash_finish(False)
    print('Manufacturer: %02x' % (flash_id & 0xff))
    print('Device: %02x%02x' % ((flash_id >> 8) & 0xff, (flash_id >> 16) & 0xff))


def read_flash(esp, args):
    flasher = CesantaFlasher(esp, args.baud)
    t = time.time()
    data = flasher.flash_read(args.address, args.size, not args.no_progress)
    t = time.time() - t
    print('\rRead %d bytes at 0x%x in %.1f seconds (%.1f kbit/s)...'
          % (len(data), args.address, t, len(data) / t * 8 / 1000))
    open(args.filename, 'wb').write(data)


def _verify_flash(esp, args, flasher=None):
    differences = False
    flash_params = _get_flash_params(esp, args)
    if flasher is None:  # get flash params before launching flasher
        flasher = CesantaFlasher(esp)

    for address, argfile in args.addr_filename:
        image = argfile.read()
        argfile.seek(0)  # rewind in case we need it again

        image = _update_image_flash_params(address, flash_params, image)

        image_size = len(image)
        print('Verifying 0x%x (%d) bytes @ 0x%08x in flash against %s...' % (image_size, image_size, address, argfile.name))
        # Try digest first, only read if there are differences.
        digest, _ = flasher.flash_digest(address, image_size)
        digest = hexify(digest).upper()
        expected_digest = hashlib.md5(image).hexdigest().upper()

        if digest == expected_digest:
            print('-- verify OK (digest matched)')
            continue
        else:
            differences = True
            if getattr(args, 'diff', 'no') != 'yes':
                print('-- verify FAILED (digest mismatch)')
                continue

        flash = flasher.flash_read(address, image_size)
        assert flash != image
        diff = [i for i in range(image_size) if flash[i] != image[i]]
        print('-- verify FAILED: %d differences, first @ 0x%08x' % (len(diff), address + diff[0]))
        for d in diff:
            flash_byte = flash[d]
            image_byte = image[d]
            if PYTHON2:
                flash_byte = ord(flash_byte)
                image_byte = ord(image_byte)
            print('   %08x %02x %02x' % (address + d, flash_byte, image_byte))
    if differences:
        raise FatalError("Verify failed.")


def verify_flash(esp, args, flash_params=None):
    _verify_flash(esp, args)


def version(args):
    print(__version__)

#
# End of operations functions
#


def main():
    parser = argparse.ArgumentParser(description='esptool.py v%s - ESP8266 ROM Bootloader Utility' % __version__, prog='esptool')

    parser.add_argument(
        '--port', '-p',
        help='Serial port device',
        default=os.environ.get('ESPTOOL_PORT', '/dev/ttyUSB0'))

    parser.add_argument(
        '--baud', '-b',
        help='Serial port baud rate used when flashing/reading',
        type=arg_auto_int,
        default=os.environ.get('ESPTOOL_BAUD', ESPROM.ESP_ROM_BAUD))

    subparsers = parser.add_subparsers(
        dest='operation',
        help='Run esptool {command} -h for additional help')

    parser_load_ram = subparsers.add_parser(
        'load_ram',
        help='Download an image to RAM and execute')
    parser_load_ram.add_argument('filename', help='Firmware image')

    parser_dump_mem = subparsers.add_parser(
        'dump_mem',
        help='Dump arbitrary memory to disk')
    parser_dump_mem.add_argument('address', help='Base address', type=arg_auto_int)
    parser_dump_mem.add_argument('size', help='Size of region to dump', type=arg_auto_int)
    parser_dump_mem.add_argument('filename', help='Name of binary dump')

    parser_read_mem = subparsers.add_parser(
        'read_mem',
        help='Read arbitrary memory location')
    parser_read_mem.add_argument('address', help='Address to read', type=arg_auto_int)

    parser_write_mem = subparsers.add_parser(
        'write_mem',
        help='Read-modify-write to arbitrary memory location')
    parser_write_mem.add_argument('address', help='Address to write', type=arg_auto_int)
    parser_write_mem.add_argument('value', help='Value', type=arg_auto_int)
    parser_write_mem.add_argument('mask', help='Mask of bits to write', type=arg_auto_int)

    def add_spi_flash_subparsers(parent, auto_detect=False):
        """ Add common parser arguments for SPI flash properties """
        parent.add_argument('--flash_freq', '-ff', help='SPI Flash frequency',
                            choices=['40m', '26m', '20m', '80m'],
                            default=os.environ.get('ESPTOOL_FF', '40m'))
        parent.add_argument('--flash_mode', '-fm', help='SPI Flash mode',
                            choices=['qio', 'qout', 'dio', 'dout'],
                            default=os.environ.get('ESPTOOL_FM', 'qio'))
        choices = ['4m', '2m', '8m', '16m', '32m', '16m-c1', '32m-c1', '32m-c2']
        default = '4m'
        if auto_detect:
            default = 'detect'
            choices.insert(0, 'detect')
        parent.add_argument('--flash_size', '-fs', help='SPI Flash size in Mbit', type=lambda s: s.lower(),
                            choices=choices,
                            default=os.environ.get('ESPTOOL_FS', default))

    parser_write_flash = subparsers.add_parser(
        'write_flash',
        help='Write a binary blob to flash')
    parser_write_flash.add_argument('addr_filename', metavar='<address> <filename>', help='Address followed by binary filename, separated by space',
                                    action=AddrFilenamePairAction)
    add_spi_flash_subparsers(parser_write_flash, auto_detect=True)
    parser_write_flash.add_argument('--no-progress', '-p', help='Suppress progress output', action="store_true")
    parser_write_flash.add_argument('--verify', help='Verify just-written data on flash (recommended if concerned about flash integrity)', action='store_true')

    subparsers.add_parser(
        'run',
        help='Run application code in flash')

    parser_image_info = subparsers.add_parser(
        'image_info',
        help='Dump headers from an application image')
    parser_image_info.add_argument('filename', help='Image file to parse')

    parser_make_image = subparsers.add_parser(
        'make_image',
        help='Create an application image from binary files')
    parser_make_image.add_argument('output', help='Output image file')
    parser_make_image.add_argument('--segfile', '-f', action='append', help='Segment input file')
    parser_make_image.add_argument('--segaddr', '-a', action='append', help='Segment base address', type=arg_auto_int)
    parser_make_image.add_argument('--entrypoint', '-e', help='Address of entry point', type=arg_auto_int, default=0)

    parser_elf2image = subparsers.add_parser(
        'elf2image',
        help='Create an application image from ELF file')
    parser_elf2image.add_argument('input', help='Input ELF file')
    parser_elf2image.add_argument('--output', '-o', help='Output filename prefix (for version 1 image), or filename (for version 2 single image)', type=str)
    parser_elf2image.add_argument('--version', '-e', help='Output image version', choices=['1','2'], default='1')
    add_spi_flash_subparsers(parser_elf2image)

    subparsers.add_parser(
        'read_mac',
        help='Read MAC address from OTP ROM')

    subparsers.add_parser(
        'chip_id',
        help='Read Chip ID from OTP ROM')

    subparsers.add_parser(
        'flash_id',
        help='Read SPI flash manufacturer and device ID')

    parser_read_flash = subparsers.add_parser(
        'read_flash',
        help='Read SPI flash content')
    parser_read_flash.add_argument('address', help='Start address', type=arg_auto_int)
    parser_read_flash.add_argument('size', help='Size of region to dump', type=arg_auto_int)
    parser_read_flash.add_argument('filename', help='Name of binary dump')
    parser_read_flash.add_argument('--no-progress', '-p', help='Suppress progress output', action="store_true")

    parser_verify_flash = subparsers.add_parser(
        'verify_flash',
        help='Verify a binary blob against flash')
    parser_verify_flash.add_argument('addr_filename', help='Address and binary file to verify there, separated by space',
                                     action=AddrFilenamePairAction)
    parser_verify_flash.add_argument('--diff', '-d', help='Show differences',
                                     choices=['no', 'yes'], default='no')
    add_spi_flash_subparsers(parser_verify_flash, auto_detect=True)

    subparsers.add_parser(
        'erase_flash',
        help='Perform Chip Erase on SPI flash')

    subparsers.add_parser(
        'version', help='Print esptool version')

    # internal sanity check - every operation matches a module function of the same name
    for operation in subparsers.choices.keys():
        assert operation in globals(), "%s should be a module function" % operation

    args = parser.parse_args()

    print('esptool.py v%s' % __version__)

    # operation function can take 1 arg (args), 2 args (esp, arg)
    # or be a member function of the ESPROM class.

    if args.operation is None:
        parser.print_help()
        sys.exit(1)

    operation_func = globals()[args.operation]
    operation_args,_,_,_ = inspect.getargspec(operation_func)
    if operation_args[0] == 'esp':  # operation function takes an ESPROM connection object
        initial_baud = min(ESPROM.ESP_ROM_BAUD, args.baud)  # don't sync faster than the default baud rate
        esp = ESPROM(args.port, initial_baud)
        esp.connect()
        operation_func(esp, args)
    else:
        operation_func(args)


class AddrFilenamePairAction(argparse.Action):
    """ Custom parser class for the address/filename pairs passed as arguments """
    def __init__(self, option_strings, dest, nargs='+', **kwargs):
        super(AddrFilenamePairAction, self).__init__(option_strings, dest, nargs, **kwargs)

    def __call__(self, parser, namespace, values, option_string=None):
        # validate pair arguments
        pairs = []
        for i in range(0,len(values),2):
            try:
                address = int(values[i],0)
            except ValueError as e:
                raise argparse.ArgumentError(self,'Address "%s" must be a number' % values[i])
            try:
                argfile = open(values[i + 1], 'rb')
            except IOError as e:
                raise argparse.ArgumentError(self, e)
            except IndexError:
                raise argparse.ArgumentError(self,'Must be pairs of an address and the binary filename to write there')
            pairs.append((address, argfile))
        setattr(namespace, self.dest, pairs)


# This is "wrapped" stub_flasher.c, to  be loaded using run_stub.
_CESANTA_FLASHER_STUB = """\
{"code_start": 1074790404, "code": "080000601C000060000000601000006031FCFF71FCFF\
81FCFFC02000680332D218C020004807404074DCC48608005823C0200098081BA5A9239245005803\
1B555903582337350129230B446604DFC6F3FF21EEFFC0200069020DF0000000010078480040004A\
0040B449004012C1F0C921D911E901DD0209312020B4ED033C2C56C2073020B43C3C56420701F5FF\
C000003C4C569206CD0EEADD860300202C4101F1FFC0000056A204C2DCF0C02DC0CC6CCAE2D1EAFF\
0606002030F456D3FD86FBFF00002020F501E8FFC00000EC82D0CCC0C02EC0C73DEB2ADC46030020\
2C4101E1FFC00000DC42C2DCF0C02DC056BCFEC602003C5C8601003C6C4600003C7C08312D0CD811\
C821E80112C1100DF0000C180000140010400C0000607418000064180000801800008C1800008418\
0000881800009018000018980040880F0040A80F0040349800404C4A0040740F0040800F0040980F\
00400099004012C1E091F5FFC961CD0221EFFFE941F9310971D9519011C01A223902E2D1180C0222\
6E1D21E4FF31E9FF2AF11A332D0F42630001EAFFC00000C030B43C2256A31621E1FF1A2228022030\
B43C3256B31501ADFFC00000DD023C4256ED1431D6FF4D010C52D90E192E126E0101DDFFC0000021\
D2FF32A101C020004802303420C0200039022C0201D7FFC00000463300000031CDFF1A333803D023\
C03199FF27B31ADC7F31CBFF1A3328030198FFC0000056C20E2193FF2ADD060E000031C6FF1A3328\
030191FFC0000056820DD2DD10460800000021BEFF1A2228029CE231BCFFC020F51A33290331BBFF\
C02C411A332903C0F0F4222E1D22D204273D9332A3FFC02000280E27B3F721ABFF381E1A2242A400\
01B5FFC00000381E2D0C42A40001B3FFC0000056120801B2FFC00000C02000280EC2DC0422D2FCC0\
2000290E01ADFFC00000222E1D22D204226E1D281E22D204E7B204291E860000126E012198FF32A0\
042A21C54C003198FF222E1D1A33380337B202C6D6FF2C02019FFFC000002191FF318CFF1A223A31\
019CFFC00000218DFF1C031A22C549000C02060300003C528601003C624600003C72918BFF9A1108\
71C861D851E841F83112C1200DF00010000068100000581000007010000074100000781000007C10\
0000801000001C4B0040803C004091FDFF12C1E061F7FFC961E941F9310971D9519011C01A662906\
21F3FFC2D1101A22390231F2FF0C0F1A33590331EAFFF26C1AED045C2247B3028636002D0C016DFF\
C0000021E5FF41EAFF2A611A4469040622000021E4FF1A222802F0D2C0D7BE01DD0E31E0FF4D0D1A\
3328033D0101E2FFC00000561209D03D2010212001DFFFC000004D0D2D0C3D01015DFFC0000041D5\
FFDAFF1A444804D0648041D2FF1A4462640061D1FF106680622600673F1331D0FF10338028030C43\
853A002642164613000041CAFF222C1A1A444804202FC047328006F6FF222C1A273F3861C2FF222C\
1A1A6668066732B921BDFF3D0C1022800148FFC0000021BAFF1C031A2201BFFFC000000C02460300\
5C3206020000005C424600005C5291B7FF9A110871C861D851E841F83112C1200DF0B0100000C010\
0000D010000012C1E091FEFFC961D951E9410971F931CD039011C0ED02DD0431A1FF9C1422A06247\
B302062D0021F4FF1A22490286010021F1FF1A223902219CFF2AF12D0F011FFFC00000461C0022D1\
10011CFFC0000021E9FFFD0C1A222802C7B20621E6FF1A22F8022D0E3D014D0F0195FFC000008C52\
22A063C6180000218BFF3D01102280F04F200111FFC00000AC7D22D1103D014D0F010DFFC0000021\
D6FF32D110102280010EFFC0000021D3FF1C031A220185FFC00000FAEEF0CCC056ACF821CDFF317A\
FF1A223A310105FFC0000021C9FF1C031A22017CFFC000002D0C91C8FF9A110871C861D851E841F8\
3112C1200DF0000200600000001040020060FFFFFF0012C1E00C02290131FAFF21FAFF026107C961\
C02000226300C02000C80320CC10564CFF21F5FFC02000380221F4FF20231029010C432D010163FF\
C0000008712D0CC86112C1200DF00080FE3F8449004012C1D0C9A109B17CFC22C1110C13C51C0026\
1202463000220111C24110B68202462B0031F5FF3022A02802A002002D011C03851A0066820A2801\
32210105A6FF0607003C12C60500000010212032A01085180066A20F2221003811482105B3FF2241\
10861A004C1206FDFF2D011C03C5160066B20E280138114821583185CFFF06F7FF005C1286F5FF00\
10212032A01085140066A20D2221003811482105E1FF06EFFF0022A06146EDFF45F0FFC6EBFF0000\
01D2FFC0000006E9FF000C022241100C1322C110C50F00220111060600000022C1100C13C50E0022\
011132C2FA303074B6230206C8FF08B1C8A112C1300DF0000000000010404F484149007519031027\
000000110040A8100040BC0F0040583F0040CC2E00401CE20040D83900408000004021F4FF12C1E0\
C961C80221F2FF097129010C02D951C91101F4FFC0000001F3FFC00000AC2C22A3E801F2FFC00000\
21EAFFC031412A233D0C01EFFFC000003D0222A00001EDFFC00000C1E4FF2D0C01E8FFC000002D01\
32A004450400C5E7FFDD022D0C01E3FFC00000666D1F4B2131DCFF4600004B22C0200048023794F5\
31D9FFC0200039023DF08601000001DCFFC000000871C861D85112C1200DF000000012C1F0026103\
01EAFEC00000083112C1100DF000643B004012C1D0E98109B1C9A1D991F97129013911E2A0C001FA\
FFC00000CD02E792F40C0DE2A0C0F2A0DB860D00000001F4FFC00000204220E71240F7921C226102\
01EFFFC0000052A0DC482157120952A0DD571205460500004D0C3801DA234242001BDD3811379DC5\
C6000000000C0DC2A0C001E3FFC00000C792F608B12D0DC8A1D891E881F87112C1300DF00000", "\
entry": 1074792180, "num_params": 1, "params_start": 1074790400, "data": "FE0510\
401A0610403B0610405A0610407A061040820610408C0610408C061040", "data_start": 10736\
43520}
"""

if __name__ == '__main__':
    try:
        main()
    except FatalError as e:
        print('\nA fatal error occurred: %s' % e)
        sys.exit(2)