from keras import backend as K, regularizers, constraints, initializers
from keras.engine.topology import Layer


def dot_product(x, kernel):
    """
    Wrapper for dot product operation, in order to be compatible with both
    Theano and Tensorflow
    Args:
        x (): input
        kernel (): weights
    Returns:
    """
    if K.backend() == 'tensorflow':
        # todo: check that this is correct
        return K.squeeze(K.dot(x, K.expand_dims(kernel)), axis=-1)
    else:
        return K.dot(x, kernel)


class MeanOverTime(Layer):
    """
    Layer that computes the mean of timesteps returned from an RNN and supports masking
    Example:
        activations = LSTM(64, return_sequences=True)(words)
        mean = MeanOverTime()(activations)
    """

    def __init__(self, **kwargs):
        self.supports_masking = True
        super(MeanOverTime, self).__init__(**kwargs)

    def call(self, x, mask=None):
        if mask is not None:
            mask = K.cast(mask, 'float32')
            return K.cast(K.sum(x, axis=1) / K.sum(mask, axis=1, keepdims=True),
                          K.floatx())
        else:
            return K.mean(x, axis=1)

    def compute_output_shape(self, input_shape):
        return input_shape[0], input_shape[-1]

    def compute_mask(self, input, input_mask=None):
        return None


class Attention(Layer):
    def __init__(self,
                 W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True,
                 return_attention=False,
                 **kwargs):
        """
        Keras Layer that implements an Attention mechanism for temporal data.
        Supports Masking.
        Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
        # Input shape
            3D tensor with shape: `(samples, steps, features)`.
        # Output shape
            2D tensor with shape: `(samples, features)`.
        :param kwargs:
        Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
        The dimensions are inferred based on the output shape of the RNN.
        Note: The layer has been tested with Keras 1.x
        Example:

            # 1
            model.add(LSTM(64, return_sequences=True))
            model.add(Attention())
            # next add a Dense layer (for classification/regression) or whatever...
            # 2 - Get the attention scores
            hidden = LSTM(64, return_sequences=True)(words)
            sentence, word_scores = Attention(return_attention=True)(hidden)
        """
        self.supports_masking = True
        self.return_attention = return_attention
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(Attention, self).__init__(**kwargs)

    def build(self, input_shape):
        assert len(input_shape) == 3

        self.W = self.add_weight((input_shape[-1],),
                                 initializer=self.init,
                                 name='{}_W'.format(self.name),
                                 regularizer=self.W_regularizer,
                                 constraint=self.W_constraint)
        if self.bias:
            self.b = self.add_weight((input_shape[1],),
                                     initializer='zero',
                                     name='{}_b'.format(self.name),
                                     regularizer=self.b_regularizer,
                                     constraint=self.b_constraint)
        else:
            self.b = None

        self.built = True

    def compute_mask(self, input, input_mask=None):
        # do not pass the mask to the next layers
        return None

    def call(self, x, mask=None):
        eij = dot_product(x, self.W)

        if self.bias:
            eij += self.b

        eij = K.tanh(eij)

        a = K.exp(eij)

        # apply mask after the exp. will be re-normalized next
        if mask is not None:
            # Cast the mask to floatX to avoid float64 upcasting in theano
            a *= K.cast(mask, K.floatx())

        # in some cases especially in the early stages of training the sum may be almost zero
        # and this results in NaN's. A workaround is to add a very small positive number ε to the sum.
        # a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx())
        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

        weighted_input = x * K.expand_dims(a)

        result = K.sum(weighted_input, axis=1)

        if self.return_attention:
            return [result, a]
        return result

    def compute_output_shape(self, input_shape):
        if self.return_attention:
            return [(input_shape[0], input_shape[-1]),
                    (input_shape[0], input_shape[1])]
        else:
            return input_shape[0], input_shape[-1]


class AttentionWithContext(Layer):
    """
        Attention operation, with a context/query vector, for temporal data.
        Supports Masking.
        Follows the work of Yang et al. [https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf]
        "Hierarchical Attention Networks for Document Classification"
        by using a context vector to assist the attention
        # Input shape
            3D tensor with shape: `(samples, steps, features)`.
        # Output shape
            2D tensor with shape: `(samples, features)`.
        :param kwargs:
        Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
        The dimensions are inferred based on the output shape of the RNN.
        Example:
            model.add(LSTM(64, return_sequences=True))
            model.add(AttentionWithContext())
        """

    def __init__(self,
                 W_regularizer=None, u_regularizer=None, b_regularizer=None,
                 W_constraint=None, u_constraint=None, b_constraint=None,
                 bias=True,
                 return_attention=False, **kwargs):

        self.supports_masking = True
        self.return_attention = return_attention
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.u_regularizer = regularizers.get(u_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.u_constraint = constraints.get(u_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(AttentionWithContext, self).__init__(**kwargs)

    def build(self, input_shape):
        assert len(input_shape) == 3

        self.W = self.add_weight((input_shape[-1], input_shape[-1],),
                                 initializer=self.init,
                                 name='{}_W'.format(self.name),
                                 regularizer=self.W_regularizer,
                                 constraint=self.W_constraint)
        if self.bias:
            self.b = self.add_weight((input_shape[-1],),
                                     initializer='zero',
                                     name='{}_b'.format(self.name),
                                     regularizer=self.b_regularizer,
                                     constraint=self.b_constraint)

        self.u = self.add_weight((input_shape[-1],),
                                 initializer=self.init,
                                 name='{}_u'.format(self.name),
                                 regularizer=self.u_regularizer,
                                 constraint=self.u_constraint)

        super(AttentionWithContext, self).build(input_shape)

    def compute_mask(self, input, input_mask=None):
        # do not pass the mask to the next layers
        return None

    def call(self, x, mask=None):
        uit = dot_product(x, self.W)

        if self.bias:
            uit += self.b

        uit = K.tanh(uit)
        # ait = K.dot(uit, self.u)
        ait = dot_product(uit, self.u)

        a = K.exp(ait)

        # apply mask after the exp. will be re-normalized next
        if mask is not None:
            # Cast the mask to floatX to avoid float64 upcasting in theano
            a *= K.cast(mask, K.floatx())

        # in some cases especially in the early stages of training the sum may be almost zero
        # and this results in NaN's. A workaround is to add a very small positive number ε to the sum.
        # a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx())
        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

        a = K.expand_dims(a)
        weighted_input = x * a
        result = K.sum(weighted_input, axis=1)

        if self.return_attention:
            return [result, a]
        return result

    def compute_output_shape(self, input_shape):
        if self.return_attention:
            return [(input_shape[0], input_shape[-1]),
                    (input_shape[0], input_shape[1])]
        else:
            return input_shape[0], input_shape[-1]