"""
Indicators as shown by Peter Bakker at:
https://www.quantopian.com/posts/technical-analysis-indicators-without-talib-code
"""

"""
25-Mar-2018: Fixed syntax to support the newest version of Pandas. Warnings should no longer appear.
             Fixed some bugs regarding min_periods and NaN.

			 If you find any bugs, please report to github.com/palmbook
"""

# Import Built-Ins
import logging

# Import Third-Party
import pandas as pd
import numpy as np

# Import Homebrew

# Init Logging Facilities
log = logging.getLogger(__name__)


def moving_average(df, n):
    """Calculate the moving average for the given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    MA = pd.Series(df['Close'].rolling(n, min_periods=n).mean(), name='MA_' + str(n))
    df = df.join(MA)
    return df


def exponential_moving_average(df, n):
    """
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    EMA = pd.Series(df['Close'].ewm(span=n, min_periods=n).mean(), name='EMA_' + str(n))
    df = df.join(EMA)
    return df


def momentum(df, n):
    """
    
    :param df: pandas.DataFrame 
    :param n: 
    :return: pandas.DataFrame
    """
    M = pd.Series(df['Close'].diff(n), name='Momentum_' + str(n))
    df = df.join(M)
    return df


def rate_of_change(df, n):
    """
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    M = df['Close'].diff(n - 1)
    N = df['Close'].shift(n - 1)
    ROC = pd.Series(M / N, name='ROC_' + str(n))
    df = df.join(ROC)
    return df


def average_true_range(df, n):
    """
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    i = 0
    TR_l = [0]
    while i < df.index[-1]:
        TR = max(df.loc[i + 1, 'High'], df.loc[i, 'Close']) - min(df.loc[i + 1, 'Low'], df.loc[i, 'Close'])
        TR_l.append(TR)
        i = i + 1
    TR_s = pd.Series(TR_l)
    ATR = pd.Series(TR_s.ewm(span=n, min_periods=n).mean(), name='ATR_' + str(n))
    df = df.join(ATR)
    return df


def bollinger_bands(df, n):
    """
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    MA = pd.Series(df['Close'].rolling(n, min_periods=n).mean())
    MSD = pd.Series(df['Close'].rolling(n, min_periods=n).std())
    b1 = 4 * MSD / MA
    B1 = pd.Series(b1, name='BollingerB_' + str(n))
    df = df.join(B1)
    b2 = (df['Close'] - MA + 2 * MSD) / (4 * MSD)
    B2 = pd.Series(b2, name='Bollinger%b_' + str(n))
    df = df.join(B2)
    return df


def ppsr(df):
    """Calculate Pivot Points, Supports and Resistances for given data
    
    :param df: pandas.DataFrame
    :return: pandas.DataFrame
    """
    PP = pd.Series((df['High'] + df['Low'] + df['Close']) / 3)
    R1 = pd.Series(2 * PP - df['Low'])
    S1 = pd.Series(2 * PP - df['High'])
    R2 = pd.Series(PP + df['High'] - df['Low'])
    S2 = pd.Series(PP - df['High'] + df['Low'])
    R3 = pd.Series(df['High'] + 2 * (PP - df['Low']))
    S3 = pd.Series(df['Low'] - 2 * (df['High'] - PP))
    psr = {'PP': PP, 'R1': R1, 'S1': S1, 'R2': R2, 'S2': S2, 'R3': R3, 'S3': S3}
    PSR = pd.DataFrame(psr)
    df = df.join(PSR)
    return df


def stochastic_oscillator_k(df):
    """Calculate stochastic oscillator %K for given data.
    
    :param df: pandas.DataFrame
    :return: pandas.DataFrame
    """
    SOk = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name='SO%k')
    df = df.join(SOk)
    return df


def stochastic_oscillator_d(df, n):
    """Calculate stochastic oscillator %D for given data.
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    SOk = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name='SO%k')
    SOd = pd.Series(SOk.ewm(span=n, min_periods=n).mean(), name='SO%d_' + str(n))
    df = df.join(SOd)
    return df


def trix(df, n):
    """Calculate TRIX for given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    EX1 = df['Close'].ewm(span=n, min_periods=n).mean()
    EX2 = EX1.ewm(span=n, min_periods=n).mean()
    EX3 = EX2.ewm(span=n, min_periods=n).mean()
    i = 0
    ROC_l = [np.nan]
    while i + 1 <= df.index[-1]:
        ROC = (EX3[i + 1] - EX3[i]) / EX3[i]
        ROC_l.append(ROC)
        i = i + 1
    Trix = pd.Series(ROC_l, name='Trix_' + str(n))
    df = df.join(Trix)
    return df


def average_directional_movement_index(df, n, n_ADX):
    """Calculate the Average Directional Movement Index for given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :param n_ADX: 
    :return: pandas.DataFrame
    """
    i = 0
    UpI = []
    DoI = []
    while i + 1 <= df.index[-1]:
        UpMove = df.loc[i + 1, 'High'] - df.loc[i, 'High']
        DoMove = df.loc[i, 'Low'] - df.loc[i + 1, 'Low']
        if UpMove > DoMove and UpMove > 0:
            UpD = UpMove
        else:
            UpD = 0
        UpI.append(UpD)
        if DoMove > UpMove and DoMove > 0:
            DoD = DoMove
        else:
            DoD = 0
        DoI.append(DoD)
        i = i + 1
    i = 0
    TR_l = [0]
    while i < df.index[-1]:
        TR = max(df.loc[i + 1, 'High'], df.loc[i, 'Close']) - min(df.loc[i + 1, 'Low'], df.loc[i, 'Close'])
        TR_l.append(TR)
        i = i + 1
    TR_s = pd.Series(TR_l)
    ATR = pd.Series(TR_s.ewm(span=n, min_periods=n).mean())
    UpI = pd.Series(UpI)
    DoI = pd.Series(DoI)
    PosDI = pd.Series(UpI.ewm(span=n, min_periods=n).mean() / ATR)
    NegDI = pd.Series(DoI.ewm(span=n, min_periods=n).mean() / ATR)
    ADX = pd.Series((abs(PosDI - NegDI) / (PosDI + NegDI)).ewm(span=n_ADX, min_periods=n_ADX).mean(),
                    name='ADX_' + str(n) + '_' + str(n_ADX))
    df = df.join(ADX)
    return df


def macd(df, n_fast, n_slow):
    """Calculate MACD, MACD Signal and MACD difference
    
    :param df: pandas.DataFrame
    :param n_fast: 
    :param n_slow: 
    :return: pandas.DataFrame
    """
    EMAfast = pd.Series(df['Close'].ewm(span=n_fast, min_periods=n_slow).mean())
    EMAslow = pd.Series(df['Close'].ewm(span=n_slow, min_periods=n_slow).mean())
    MACD = pd.Series(EMAfast - EMAslow, name='MACD_' + str(n_fast) + '_' + str(n_slow))
    MACDsign = pd.Series(MACD.ewm(span=9, min_periods=9).mean(), name='MACDsign_' + str(n_fast) + '_' + str(n_slow))
    MACDdiff = pd.Series(MACD - MACDsign, name='MACDdiff_' + str(n_fast) + '_' + str(n_slow))
    df = df.join(MACD)
    df = df.join(MACDsign)
    df = df.join(MACDdiff)
    return df


def mass_index(df):
    """Calculate the Mass Index for given data.
    
    :param df: pandas.DataFrame
    :return: pandas.DataFrame
    """
    Range = df['High'] - df['Low']
    EX1 = Range.ewm(span=9, min_periods=9).mean()
    EX2 = EX1.ewm(span=9, min_periods=9).mean()
    Mass = EX1 / EX2
    MassI = pd.Series(Mass.rolling(25).sum(), name='Mass Index')
    df = df.join(MassI)
    return df


def vortex_indicator(df, n):
    """Calculate the Vortex Indicator for given data.
    
    Vortex Indicator described here:
        http://www.vortexindicator.com/VFX_VORTEX.PDF
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    i = 0
    TR = [0]
    while i < df.index[-1]:
        Range = max(df.loc[i + 1, 'High'], df.loc[i, 'Close']) - min(df.loc[i + 1, 'Low'], df.loc[i, 'Close'])
        TR.append(Range)
        i = i + 1
    i = 0
    VM = [0]
    while i < df.index[-1]:
        Range = abs(df.loc[i + 1, 'High'] - df.loc[i, 'Low']) - abs(df.loc[i + 1, 'Low'] - df.loc[i, 'High'])
        VM.append(Range)
        i = i + 1
    VI = pd.Series(pd.Series(VM).rolling(n).sum() / pd.Series(TR).rolling(n).sum(), name='Vortex_' + str(n))
    df = df.join(VI)
    return df


def kst_oscillator(df, r1, r2, r3, r4, n1, n2, n3, n4):
    """Calculate KST Oscillator for given data.
    
    :param df: pandas.DataFrame
    :param r1: 
    :param r2: 
    :param r3: 
    :param r4: 
    :param n1: 
    :param n2: 
    :param n3: 
    :param n4: 
    :return: pandas.DataFrame
    """
    M = df['Close'].diff(r1 - 1)
    N = df['Close'].shift(r1 - 1)
    ROC1 = M / N
    M = df['Close'].diff(r2 - 1)
    N = df['Close'].shift(r2 - 1)
    ROC2 = M / N
    M = df['Close'].diff(r3 - 1)
    N = df['Close'].shift(r3 - 1)
    ROC3 = M / N
    M = df['Close'].diff(r4 - 1)
    N = df['Close'].shift(r4 - 1)
    ROC4 = M / N
    KST = pd.Series(
        ROC1.rolling(n1).sum() + ROC2.rolling(n2).sum() * 2 + ROC3.rolling(n3).sum() * 3 + ROC4.rolling(n4).sum() * 4,
        name='KST_' + str(r1) + '_' + str(r2) + '_' + str(r3) + '_' + str(r4) + '_' + str(n1) + '_' + str(
            n2) + '_' + str(n3) + '_' + str(n4))
    df = df.join(KST)
    return df


def relative_strength_index(df, n):
    """Calculate Relative Strength Index(RSI) for given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    i = 0
    UpI = [0]
    DoI = [0]
    while i + 1 <= df.index[-1]:
        UpMove = df.loc[i + 1, 'High'] - df.loc[i, 'High']
        DoMove = df.loc[i, 'Low'] - df.loc[i + 1, 'Low']
        if UpMove > DoMove and UpMove > 0:
            UpD = UpMove
        else:
            UpD = 0
        UpI.append(UpD)
        if DoMove > UpMove and DoMove > 0:
            DoD = DoMove
        else:
            DoD = 0
        DoI.append(DoD)
        i = i + 1
    UpI = pd.Series(UpI)
    DoI = pd.Series(DoI)
    PosDI = pd.Series(UpI.ewm(span=n, min_periods=n).mean())
    NegDI = pd.Series(DoI.ewm(span=n, min_periods=n).mean())
    RSI = pd.Series(PosDI / (PosDI + NegDI), name='RSI_' + str(n))
    df = df.join(RSI)
    return df


def true_strength_index(df, r, s):
    """Calculate True Strength Index (TSI) for given data.
    
    :param df: pandas.DataFrame
    :param r: 
    :param s: 
    :return: pandas.DataFrame
    """
    M = pd.Series(df['Close'].diff(1))
    aM = abs(M)
    EMA1 = pd.Series(M.ewm(span=r, min_periods=r).mean())
    aEMA1 = pd.Series(aM.ewm(span=r, min_periods=r).mean())
    EMA2 = pd.Series(EMA1.ewm(span=s, min_periods=s).mean())
    aEMA2 = pd.Series(aEMA1.ewm(span=s, min_periods=s).mean())
    TSI = pd.Series(EMA2 / aEMA2, name='TSI_' + str(r) + '_' + str(s))
    df = df.join(TSI)
    return df


def accumulation_distribution(df, n):
    """Calculate Accumulation/Distribution for given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    ad = (2 * df['Close'] - df['High'] - df['Low']) / (df['High'] - df['Low']) * df['Volume']
    M = ad.diff(n - 1)
    N = ad.shift(n - 1)
    ROC = M / N
    AD = pd.Series(ROC, name='Acc/Dist_ROC_' + str(n))
    df = df.join(AD)
    return df


def chaikin_oscillator(df):
    """Calculate Chaikin Oscillator for given data.
    
    :param df: pandas.DataFrame
    :return: pandas.DataFrame
    """
    ad = (2 * df['Close'] - df['High'] - df['Low']) / (df['High'] - df['Low']) * df['Volume']
    Chaikin = pd.Series(ad.ewm(span=3, min_periods=3).mean() - ad.ewm(span=10, min_periods=10).mean(), name='Chaikin')
    df = df.join(Chaikin)
    return df


def money_flow_index(df, n):
    """Calculate Money Flow Index and Ratio for given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    PP = (df['High'] + df['Low'] + df['Close']) / 3
    i = 0
    PosMF = [0]
    while i < df.index[-1]:
        if PP[i + 1] > PP[i]:
            PosMF.append(PP[i + 1] * df.loc[i + 1, 'Volume'])
        else:
            PosMF.append(0)
        i = i + 1
    PosMF = pd.Series(PosMF)
    TotMF = PP * df['Volume']
    MFR = pd.Series(PosMF / TotMF)
    MFI = pd.Series(MFR.rolling(n, min_periods=n).mean(), name='MFI_' + str(n))
    df = df.join(MFI)
    return df


def on_balance_volume(df, n):
    """Calculate On-Balance Volume for given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    i = 0
    OBV = [0]
    while i < df.index[-1]:
        if df.loc[i + 1, 'Close'] - df.loc[i, 'Close'] > 0:
            OBV.append(df.loc[i + 1, 'Volume'])
        if df.loc[i + 1, 'Close'] - df.loc[i, 'Close'] == 0:
            OBV.append(0)
        if df.loc[i + 1, 'Close'] - df.loc[i, 'Close'] < 0:
            OBV.append(-df.loc[i + 1, 'Volume'])
        i = i + 1
    OBV = pd.Series(OBV)
    OBV_ma = pd.Series(OBV.rolling(n, min_periods=n).mean(), name='OBV_' + str(n))
    df = df.join(OBV_ma)
    return df


def force_index(df, n):
    """Calculate Force Index for given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    F = pd.Series(df['Close'].diff(n) * df['Volume'].diff(n), name='Force_' + str(n))
    df = df.join(F)
    return df


def ease_of_movement(df, n):
    """Calculate Ease of Movement for given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    EoM = (df['High'].diff(1) + df['Low'].diff(1)) * (df['High'] - df['Low']) / (2 * df['Volume'])
    Eom_ma = pd.Series(EoM.rolling(n, min_periods=n).mean(), name='EoM_' + str(n))
    df = df.join(Eom_ma)
    return df


def commodity_channel_index(df, n):
    """Calculate Commodity Channel Index for given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    PP = (df['High'] + df['Low'] + df['Close']) / 3
    CCI = pd.Series((PP - PP.rolling(n, min_periods=n).mean()) / PP.rolling(n, min_periods=n).std(),
                    name='CCI_' + str(n))
    df = df.join(CCI)
    return df


def coppock_curve(df, n):
    """Calculate Coppock Curve for given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    M = df['Close'].diff(int(n * 11 / 10) - 1)
    N = df['Close'].shift(int(n * 11 / 10) - 1)
    ROC1 = M / N
    M = df['Close'].diff(int(n * 14 / 10) - 1)
    N = df['Close'].shift(int(n * 14 / 10) - 1)
    ROC2 = M / N
    Copp = pd.Series((ROC1 + ROC2).ewm(span=n, min_periods=n).mean(), name='Copp_' + str(n))
    df = df.join(Copp)
    return df


def keltner_channel(df, n):
    """Calculate Keltner Channel for given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    KelChM = pd.Series(((df['High'] + df['Low'] + df['Close']) / 3).rolling(n, min_periods=n).mean(),
                       name='KelChM_' + str(n))
    KelChU = pd.Series(((4 * df['High'] - 2 * df['Low'] + df['Close']) / 3).rolling(n, min_periods=n).mean(),
                       name='KelChU_' + str(n))
    KelChD = pd.Series(((-2 * df['High'] + 4 * df['Low'] + df['Close']) / 3).rolling(n, min_periods=n).mean(),
                       name='KelChD_' + str(n))
    df = df.join(KelChM)
    df = df.join(KelChU)
    df = df.join(KelChD)
    return df


def ultimate_oscillator(df):
    """Calculate Ultimate Oscillator for given data.
    
    :param df: pandas.DataFrame
    :return: pandas.DataFrame
    """
    i = 0
    TR_l = [0]
    BP_l = [0]
    while i < df.index[-1]:
        TR = max(df.loc[i + 1, 'High'], df.loc[i, 'Close']) - min(df.loc[i + 1, 'Low'], df.loc[i, 'Close'])
        TR_l.append(TR)
        BP = df.loc[i + 1, 'Close'] - min(df.loc[i + 1, 'Low'], df.loc[i, 'Close'])
        BP_l.append(BP)
        i = i + 1
    UltO = pd.Series((4 * pd.Series(BP_l).rolling(7).sum() / pd.Series(TR_l).rolling(7).sum()) + (
                2 * pd.Series(BP_l).rolling(14).sum() / pd.Series(TR_l).rolling(14).sum()) + (
                                 pd.Series(BP_l).rolling(28).sum() / pd.Series(TR_l).rolling(28).sum()),
                     name='Ultimate_Osc')
    df = df.join(UltO)
    return df


def donchian_channel(df, n):
    """Calculate donchian channel of given pandas data frame.
    :param df: pandas.DataFrame
    :param n:
    :return: pandas.DataFrame
    """
    i = 0
    dc_l = []
    while i < n - 1:
        dc_l.append(0)
        i += 1

    i = 0
    while i + n - 1 < df.index[-1]:
        dc = max(df['High'].ix[i:i + n - 1]) - min(df['Low'].ix[i:i + n - 1])
        dc_l.append(dc)
        i += 1

    donchian_chan = pd.Series(dc_l, name='Donchian_' + str(n))
    donchian_chan = donchian_chan.shift(n - 1)
    return df.join(donchian_chan)


def standard_deviation(df, n):
    """Calculate Standard Deviation for given data.
    
    :param df: pandas.DataFrame
    :param n: 
    :return: pandas.DataFrame
    """
    df = df.join(pd.Series(df['Close'].rolling(n, min_periods=n).std(), name='STD_' + str(n)))
    return df