Python plotly.plotly.iplot() Examples

The following are 12 code examples for showing how to use plotly.plotly.iplot(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.

You may want to check out the right sidebar which shows the related API usage.

You may also want to check out all available functions/classes of the module plotly.plotly , or try the search function .

Example 1
Project: lddmm-ot   Author: jeanfeydy   File: plotly.py    License: MIT License 5 votes vote down vote up
def _plot_option_logic(plot_options_from_call_signature):
    """
    Given some plot_options as part of a plot call, decide on final options.
    Precedence:
        1 - Start with DEFAULT_PLOT_OPTIONS
        2 - Update each key with ~/.plotly/.config options (tls.get_config)
        3 - Update each key with session plot options (set by py.sign_in)
        4 - Update each key with plot, iplot call signature options

    """
    default_plot_options = copy.deepcopy(DEFAULT_PLOT_OPTIONS)
    file_options = tools.get_config_file()
    session_options = get_session_plot_options()
    plot_options_from_call_signature = copy.deepcopy(plot_options_from_call_signature)

    # Validate options and fill in defaults w world_readable and sharing
    for option_set in [plot_options_from_call_signature,
                       session_options, file_options]:
        utils.validate_world_readable_and_sharing_settings(option_set)
        utils.set_sharing_and_world_readable(option_set)

        # dynamic defaults
        if ('filename' in option_set and
                'fileopt' not in option_set):
            option_set['fileopt'] = 'overwrite'

    user_plot_options = {}
    user_plot_options.update(default_plot_options)
    user_plot_options.update(file_options)
    user_plot_options.update(session_options)
    user_plot_options.update(plot_options_from_call_signature)
    user_plot_options = {k: v for k, v in user_plot_options.items()
                         if k in default_plot_options}

    return user_plot_options 
Example 2
Project: lddmm-ot   Author: jeanfeydy   File: plotly.py    License: MIT License 5 votes vote down vote up
def iplot_mpl(fig, resize=True, strip_style=False, update=None,
              **plot_options):
    """Replot a matplotlib figure with plotly in IPython.

    This function:
    1. converts the mpl figure into JSON (run help(plolty.tools.mpl_to_plotly))
    2. makes a request to Plotly to save this figure in your account
    3. displays the image in your IPython output cell

    Positional agruments:
    fig -- a figure object from matplotlib

    Keyword arguments:
    resize (default=True) -- allow plotly to choose the figure size
    strip_style (default=False) -- allow plotly to choose style options
    update (default=None) -- update the resulting figure with an 'update'
        dictionary-like object resembling a plotly 'Figure' object

    Additional keyword arguments:
    plot_options -- run help(plotly.plotly.iplot)

    """
    fig = tools.mpl_to_plotly(fig, resize=resize, strip_style=strip_style)
    if update and isinstance(update, dict):
        fig.update(update)
        fig.validate()
    elif update is not None:
        raise exceptions.PlotlyGraphObjectError(
            "'update' must be dictionary-like and a valid plotly Figure "
            "object. Run 'help(plotly.graph_objs.Figure)' for more info."
        )
    return iplot(fig, **plot_options) 
Example 3
Project: lddmm-ot   Author: jeanfeydy   File: plotly.py    License: MIT License 5 votes vote down vote up
def ishow(cls, figure_or_data, format='png', width=None, height=None,
              scale=None):
        """Display a static image of the plot described by `figure_or_data`
        in an IPython Notebook.

        positional arguments:
        - figure_or_data: The figure dict-like or data list-like object that
                          describes a plotly figure.
                          Same argument used in `py.plot`, `py.iplot`,
                          see https://plot.ly/python for examples
        - format: 'png', 'svg', 'jpeg', 'pdf'
        - width: output width
        - height: output height
        - scale: Increase the resolution of the image by `scale` amount
               Only valid for PNG and JPEG images.

        example:
        ```
        import plotly.plotly as py
        fig = {'data': [{'x': [1, 2, 3], 'y': [3, 1, 5], 'type': 'bar'}]}
        py.image.ishow(fig, 'png', scale=3)
        """
        if format == 'pdf':
            raise exceptions.PlotlyError(
                "Aw, snap! "
                "It's not currently possible to embed a pdf into "
                "an IPython notebook. You can save the pdf "
                "with the `image.save_as` or you can "
                "embed an png, jpeg, or svg.")
        img = cls.get(figure_or_data, format, width, height, scale)
        from IPython.display import display, Image, SVG
        if format == 'svg':
            display(SVG(img))
        else:
            display(Image(img)) 
Example 4
Project: cloudbrain   Author: marionleborgne   File: plotly_stream.py    License: GNU Affero General Public License v3.0 5 votes vote down vote up
def setup_metric_streams(self, local_stream_ids, metric_name, num_channels):

        for i in range(num_channels):
            stream_id = local_stream_ids[i]
            self.stream_ids.append(stream_id)
            py_stream = py.Stream(stream_id)
            py_stream.open()
            self.py_streams.append(py_stream)

            go_stream = go.Stream(token=stream_id, maxpoints=self.max_points)
            self.go_streams.append(go_stream)

        traces = []
        for i in range(num_channels):
            channel_name = "channel_%s" % i
            go_stream = self.go_streams[i]

            trace = go.Scatter(
                x=[],
                y=[],
                mode='splines',
                stream=go_stream,
                name=channel_name
            )
            traces.append(trace)

        data = go.Data(traces)
        layout = go.Layout(title=metric_name)
        fig = go.Figure(data=data, layout=layout)
        py.iplot(fig, filename=metric_name) 
Example 5
Project: dota2-predictor   Author: andreiapostoae   File: learning_curve.py    License: MIT License 4 votes vote down vote up
def _plot_plotly(subset_sizes, data_list, mmr):
    """ Plots learning curve using plotly backend.
    Args:
        subset_sizes: list of dataset sizes on which the evaluation was done
        data_list: list of ROC AUC scores corresponding to subset_sizes
        mmr: what MMR the data is taken from
    """
    if mmr:
        title = 'Learning curve plot for %d MMR' % mmr
    else:
        title = 'Learning curve plot'

    trace0 = go.Scatter(
        x=subset_sizes,
        y=data_list[0],
        name='Cross validation error'
    )
    trace1 = go.Scatter(
        x=subset_sizes,
        y=data_list[1],
        name='Test error'
    )
    data = go.Data([trace0, trace1])

    layout = go.Layout(
        title=title,

        xaxis=dict(
            title='Dataset size (logspace)',
            type='log',
            autorange=True,
            titlefont=dict(
                family='Courier New, monospace',
                size=15,
                color='#7f7f7f'
            )
        ),
        yaxis=dict(
            title='Error',
            titlefont=dict(
                family='Courier New, monospace',
                size=15,
                color='#7f7f7f'
            )
        )
    )
    fig = go.Figure(data=data, layout=layout)
    py.iplot(fig, filename='learning_curve_%dMMR' % mmr) 
Example 6
Project: dota2-predictor   Author: andreiapostoae   File: hero_combinations.py    License: MIT License 4 votes vote down vote up
def plot_synergies():
    synergies = np.loadtxt('pretrained/synergies_all.csv')

    for i in range(114):
        synergies[i, i] = 0.5

    hero_dict = get_hero_dict()

    x_labels = []
    for i in range(114):
        if i != 23:
            x_labels.append(hero_dict[i + 1])

    synergies = np.delete(synergies, [23], 0)
    synergies = np.delete(synergies, [23], 1)

    trace = go.Heatmap(z=synergies,
                       x=x_labels,
                       y=x_labels,
                       colorscale='Viridis')

    layout = go.Layout(
        title='Hero synergies',
        width=1000,
        height=1000,
        xaxis=dict(ticks='',
                   nticks=114,
                   tickfont=dict(
                        size=8,
                        color='black')),
        yaxis=dict(ticks='',
                   nticks=114,
                   tickfont=dict(
                        size=8,
                        color='black'))

    )

    data = [trace]
    fig = go.Figure(data=data, layout=layout)

    py.iplot(fig, filename='heatmap_synergies') 
Example 7
Project: dota2-predictor   Author: andreiapostoae   File: hero_combinations.py    License: MIT License 4 votes vote down vote up
def plot_counters():
    counters = np.loadtxt('pretrained/counters_all.csv')

    for i in range(114):
        counters[i, i] = 0.5

    hero_dict = get_hero_dict()

    x_labels = []
    for i in range(114):
        if i != 23:
            x_labels.append(hero_dict[i + 1])

    counters = np.delete(counters, [23], 0)
    counters = np.delete(counters, [23], 1)

    trace = go.Heatmap(z=counters,
                       x=x_labels,
                       y=x_labels,
                       colorscale='Viridis')

    layout = go.Layout(
        title='Hero counters (hero1 winrate against hero2)',
        width=1000,
        height=1000,
        xaxis=dict(ticks='',
                   nticks=114,
                   title='hero2',
                   tickfont=dict(
                        size=8,
                        color='black')),
        yaxis=dict(ticks='',
                   nticks=114,
                   title='hero1',
                   tickfont=dict(
                        size=8,
                        color='black'))

    )

    data = [trace]
    fig = go.Figure(data=data, layout=layout)

    py.iplot(fig, filename='heatmap_counters') 
Example 8
Project: dota2-predictor   Author: andreiapostoae   File: dataset_stats.py    License: MIT License 4 votes vote down vote up
def winrate_statistics(dataset_df, mmr_info):
    x_data, y_data = dataset_df

    wins = np.zeros(114)
    games = np.zeros(114)
    winrate = np.zeros(114)

    for idx, game in enumerate(x_data):
        for i in range(228):
            if game[i] == 1:
                games[i % 114] += 1

                if y_data[idx] == 1:
                    if i < 114:
                        wins[i] += 1
                else:
                    if i >= 114:
                        wins[i - 114] += 1

    winrate = wins / games

    winrate_dict = dict()
    hero_dict = get_hero_dict()

    for i in range(114):
        if i != 23:
            winrate_dict[hero_dict[i + 1]] = winrate[i]

    sorted_winrates = sorted(winrate_dict.items(), key=operator.itemgetter(1))
    x_plot_data = [x[0] for x in sorted_winrates]
    y_plot_data = [x[1] for x in sorted_winrates]

    title = 'Hero winrates at ' + mmr_info + ' MMR'
    data = [go.Bar(
        y=x_plot_data,
        x=y_plot_data,
        orientation='h'
    )]

    layout = go.Layout(
        title=title,
        width=1000,
        height=1400,
        yaxis=dict(title='hero',
                   ticks='',
                   nticks=114,
                   tickfont=dict(
                       size=8,
                       color='black')
                   ),
        xaxis=dict(title='win rate',
                   nticks=30,
                   tickfont=dict(
                       size=10,
                       color='black')
                   )
    )

    fig = go.Figure(data=data, layout=layout)

    py.iplot(fig, filename='hero_winrates_' + mmr_info) 
Example 9
Project: dota2-predictor   Author: andreiapostoae   File: dataset_stats.py    License: MIT License 4 votes vote down vote up
def pick_statistics(dataset_df, mmr_info):
    x_data, y_data = dataset_df

    wins = np.zeros(114)
    games = np.zeros(114)
    pick_rate = np.zeros(114)

    for idx, game in enumerate(x_data):
        for i in range(228):
            if game[i] == 1:
                games[i % 114] += 1

                if y_data[idx] == 1:
                    if i < 114:
                        wins[i] += 1
                else:
                    if i >= 114:
                        wins[i - 114] += 1

    pick_rate = games / np.sum(games)

    pick_rate_dict = dict()
    hero_dict = get_hero_dict()

    for i in range(114):
        if i != 23:
            pick_rate_dict[hero_dict[i + 1]] = pick_rate[i]

    sorted_pickrates = sorted(pick_rate_dict.items(), key=operator.itemgetter(1))
    x_plot_data = [x[0] for x in sorted_pickrates]
    y_plot_data = [x[1] for x in sorted_pickrates]

    title = 'Hero pick rates at ' + mmr_info + ' MMR'
    data = [go.Bar(
        y=x_plot_data,
        x=y_plot_data * 100,
        orientation='h'
    )]

    layout = go.Layout(
        title=title,
        width=1000,
        height=1400,
        yaxis=dict(title='hero',
                   ticks='',
                   nticks=114,
                   tickfont=dict(
                       size=8,
                       color='black')
                   ),
        xaxis=dict(title='pick rate',
                   nticks=30,
                   tickfont=dict(
                       size=10,
                       color='black')
                   )
    )

    fig = go.Figure(data=data, layout=layout)

    py.iplot(fig, filename='hero_pickrates_' + mmr_info) 
Example 10
Project: facebook-archive   Author: kaustubhhiware   File: where_have_you_been.py    License: MIT License 4 votes vote down vote up
def plot_on_map(locations):    
    """
        :params locations: The locations which have to be plotted
        Plots the point passed
    """    
    mapbox_access_token = 'pk.eyJ1IjoiYW5pbWVzaHNpbmdoIiwiYSI6ImNqcGM1MHpyeDJ0eHgzcXBoZDNrd3dyNnIifQ.N32_UbaPj_KSHkuIJfl33w'

    lat1 = list()
    long1 = list()
    lat_sum = 0
    long_sum = 0

    for i in locations:
        lat1.append(str(i[0]))
        long1.append(str(i[1]))

        lat_sum += i[0]
        long_sum += i[1]

    avg_lat = (lat_sum/len(locations))
    avg_long = (long_sum/len(locations))

    data = [
        go.Scattermapbox(
            lat=lat1,
            lon=long1,
            mode='markers',
            marker=dict(
                size=14
            ),
            text=['Locations'],
        )
    ]

    layout = go.Layout(
        autosize=True,
        hovermode='closest',
        mapbox=dict(
            accesstoken=mapbox_access_token,
            bearing=0,
            center=dict(
                lat=avg_lat,
                lon=avg_long
            ),
            pitch=0,
            zoom=6
        ),
    )

    fig = dict(data=data, layout=layout)
    name = input('Enter your name: ')
    file = 'Location History-' + name
    print("View your plot in your browser at https://plot.ly/~animeshsingh38/ where it is named ",file)
    py.iplot(fig, filename=file) 
Example 11
Project: lddmm-ot   Author: jeanfeydy   File: plotly.py    License: MIT License 4 votes vote down vote up
def iplot(figure_or_data, **plot_options):
    """Create a unique url for this plot in Plotly and open in IPython.

    plot_options keyword agruments:
    filename (string) -- the name that will be associated with this figure
    fileopt ('new' | 'overwrite' | 'extend' | 'append')
        - 'new': create a new, unique url for this plot
        - 'overwrite': overwrite the file associated with `filename` with this
        - 'extend': add additional numbers (data) to existing traces
        - 'append': add additional traces to existing data lists
    sharing ('public' | 'private' | 'secret') -- Toggle who can view this graph
        - 'public': Anyone can view this graph. It will appear in your profile
                    and can appear in search engines. You do not need to be
                    logged in to Plotly to view this chart.
        - 'private': Only you can view this plot. It will not appear in the
                     Plotly feed, your profile, or search engines. You must be
                     logged in to Plotly to view this graph. You can privately
                     share this graph with other Plotly users in your online
                     Plotly account and they will need to be logged in to
                     view this plot.
        - 'secret': Anyone with this secret link can view this chart. It will
                    not appear in the Plotly feed, your profile, or search
                    engines. If it is embedded inside a webpage or an IPython
                    notebook, anybody who is viewing that page will be able to
                    view the graph. You do not need to be logged in to view
                    this plot.
    world_readable (default=True) -- Deprecated: use "sharing".
                                     Make this figure private/public
    """
    if 'auto_open' not in plot_options:
        plot_options['auto_open'] = False
    url = plot(figure_or_data, **plot_options)

    if isinstance(figure_or_data, dict):
        layout = figure_or_data.get('layout', {})
    else:
        layout = {}

    embed_options = dict()
    embed_options['width'] = layout.get('width', '100%')
    embed_options['height'] = layout.get('height', 525)
    try:
        float(embed_options['width'])
    except (ValueError, TypeError):
        pass
    else:
        embed_options['width'] = str(embed_options['width']) + 'px'

    try:
        float(embed_options['height'])
    except (ValueError, TypeError):
        pass
    else:
        embed_options['height'] = str(embed_options['height']) + 'px'

    return tools.embed(url, **embed_options) 
Example 12
Project: lddmm-ot   Author: jeanfeydy   File: plotly.py    License: MIT License 4 votes vote down vote up
def save_as(cls, figure_or_data, filename, format=None, width=None,
                height=None, scale=None):
        """Save a image of the plot described by `figure_or_data` locally as
        `filename`.

        Valid image formats are 'png', 'svg', 'jpeg', and 'pdf'.
        The format is taken as the extension of the filename or as the
        supplied format.

        positional arguments:
        - figure_or_data: The figure dict-like or data list-like object that
                          describes a plotly figure.
                          Same argument used in `py.plot`, `py.iplot`,
                          see https://plot.ly/python for examples
        - filename: The filepath to save the image to
        - format: 'png', 'svg', 'jpeg', 'pdf'
        - width: output width
        - height: output height
        - scale: Increase the resolution of the image by `scale` amount
               Only valid for PNG and JPEG images.

        example:
        ```
        import plotly.plotly as py
        fig = {'data': [{'x': [1, 2, 3], 'y': [3, 1, 5], 'type': 'bar'}]}
        py.image.save_as(fig, 'my_image.png', scale=3)
        ```
        """
        # todo: format shadows built-in name
        (base, ext) = os.path.splitext(filename)
        if not ext and not format:
            filename += '.png'
        elif ext and not format:
            format = ext[1:]
        elif not ext and format:
            filename += '.' + format

        img = cls.get(figure_or_data, format, width, height, scale)

        f = open(filename, 'wb')
        f.write(img)
        f.close()