Python keras.metrics.binary_crossentropy() Examples
The following are 17
code examples of keras.metrics.binary_crossentropy().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.metrics
, or try the search function
.

Example #1
Source Project: VAE-for-Image-Generation Author: chaitanya100100 File: mnist_train.py License: MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean): xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #2
Source Project: VAE-for-Image-Generation Author: chaitanya100100 File: caltech101_92_generate.py License: MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #3
Source Project: VAE-for-Image-Generation Author: chaitanya100100 File: mnist_2d_latent_space_and_generate.py License: MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean): xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #4
Source Project: VAE-for-Image-Generation Author: chaitanya100100 File: caltech101_128_train.py License: MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #5
Source Project: VAE-for-Image-Generation Author: chaitanya100100 File: mnist_3d_latent_space_and_generate.py License: MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean): xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #6
Source Project: VAE-for-Image-Generation Author: chaitanya100100 File: caltech101_128_generate.py License: MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #7
Source Project: VAE-for-Image-Generation Author: chaitanya100100 File: cifar10_train.py License: MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #8
Source Project: VAE-for-Image-Generation Author: chaitanya100100 File: mnist_general_latent_space_and_generate.py License: MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean): xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #9
Source Project: VAE-for-Image-Generation Author: chaitanya100100 File: cifar10_generate.py License: MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #10
Source Project: VAE-for-Image-Generation Author: chaitanya100100 File: caltech101_92_train.py License: MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #11
Source Project: pCVR Author: xjtushilei File: variational_autoencoder.py License: Apache License 2.0 | 5 votes |
def vae_loss(self, x, x_decoded_mean): xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #12
Source Project: pCVR Author: xjtushilei File: variational_autoencoder_deconv.py License: Apache License 2.0 | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #13
Source Project: keras_experiments Author: avolkov1 File: variational_autoencoder_deconv.py License: The Unlicense | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * \ metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean( 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #14
Source Project: keras_experiments Author: avolkov1 File: vae_common.py License: The Unlicense | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash, z_mean, z_log_var): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) img_rows, img_cols = self._img_rows, self._img_cols # generative or reconstruction loss xent_loss = img_rows * img_cols * \ metrics.binary_crossentropy(x, x_decoded_mean_squash) # Kullback-Leibler divergence loss kl_loss = - 0.5 * K.mean( 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #15
Source Project: Benchmarks Author: ECP-CANDLE File: p1b1_baseline_keras2.py License: MIT License | 5 votes |
def xent(y_true, y_pred): return binary_crossentropy(y_true, y_pred)
Example #16
Source Project: Benchmarks Author: ECP-CANDLE File: keras_utils.py License: MIT License | 5 votes |
def xent(y_true, y_pred): return binary_crossentropy(y_true, y_pred)
Example #17
Source Project: kaggle_ndsb2017 Author: juliandewit File: step2_train_nodule_detector.py License: MIT License | 4 votes |
def get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=None, features=False, mal=False) -> Model: inputs = Input(shape=input_shape, name="input_1") x = inputs x = AveragePooling3D(pool_size=(2, 1, 1), strides=(2, 1, 1), border_mode="same")(x) x = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same', name='conv1', subsample=(1, 1, 1))(x) x = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), border_mode='valid', name='pool1')(x) # 2nd layer group x = Convolution3D(128, 3, 3, 3, activation='relu', border_mode='same', name='conv2', subsample=(1, 1, 1))(x) x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool2')(x) if USE_DROPOUT: x = Dropout(p=0.3)(x) # 3rd layer group x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3a', subsample=(1, 1, 1))(x) x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3b', subsample=(1, 1, 1))(x) x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool3')(x) if USE_DROPOUT: x = Dropout(p=0.4)(x) # 4th layer group x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4a', subsample=(1, 1, 1))(x) x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4b', subsample=(1, 1, 1),)(x) x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool4')(x) if USE_DROPOUT: x = Dropout(p=0.5)(x) last64 = Convolution3D(64, 2, 2, 2, activation="relu", name="last_64")(x) out_class = Convolution3D(1, 1, 1, 1, activation="sigmoid", name="out_class_last")(last64) out_class = Flatten(name="out_class")(out_class) out_malignancy = Convolution3D(1, 1, 1, 1, activation=None, name="out_malignancy_last")(last64) out_malignancy = Flatten(name="out_malignancy")(out_malignancy) model = Model(input=inputs, output=[out_class, out_malignancy]) if load_weight_path is not None: model.load_weights(load_weight_path, by_name=False) model.compile(optimizer=SGD(lr=LEARN_RATE, momentum=0.9, nesterov=True), loss={"out_class": "binary_crossentropy", "out_malignancy": mean_absolute_error}, metrics={"out_class": [binary_accuracy, binary_crossentropy], "out_malignancy": mean_absolute_error}) if features: model = Model(input=inputs, output=[last64]) model.summary(line_length=140) return model