Python typing.Tuple() Examples

The following are 30 code examples of typing.Tuple(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module typing , or try the search function .
Example #1
Source File: file_utils.py    From cmrc2019 with Creative Commons Attribution Share Alike 4.0 International 9 votes vote down vote up
def filename_to_url(filename: str, cache_dir: Union[str, Path] = None) -> Tuple[str, str]:
    """
    Return the url and etag (which may be ``None``) stored for `filename`.
    Raise ``FileNotFoundError`` if `filename` or its stored metadata do not exist.
    """
    if cache_dir is None:
        cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
    if isinstance(cache_dir, Path):
        cache_dir = str(cache_dir)

    cache_path = os.path.join(cache_dir, filename)
    if not os.path.exists(cache_path):
        raise FileNotFoundError("file {} not found".format(cache_path))

    meta_path = cache_path + '.json'
    if not os.path.exists(meta_path):
        raise FileNotFoundError("file {} not found".format(meta_path))

    with open(meta_path) as meta_file:
        metadata = json.load(meta_file)
    url = metadata['url']
    etag = metadata['etag']

    return url, etag 
Example #2
Source File: black_box.py    From OpenFermion-Cirq with Apache License 2.0 6 votes vote down vote up
def noise_bounds(self,
                     cost: float,
                     confidence: Optional[float]=None
                     ) -> Tuple[float, float]:
        """Exact or approximate bounds on noise in the objective function.

        Returns a tuple (a, b) such that when `evaluate_with_cost` is called
        with the given cost and returns an approximate function value y, the
        true function value lies in the interval [y + a, y + b]. Thus, it should
        be the case that a <= 0 <= b.

        This function takes an optional `confidence` parameter which is a real
        number strictly between 0 and 1 that gives the confidence level in the
        bound. This is used for situations in which exact bounds on the noise
        cannot be guaranteed. The value can be interpreted as the probability
        that a repeated call to `evaluate_with_cost` with the same cost will
        return a value within the bounds.
        """
        return -numpy.inf, numpy.inf 
Example #3
Source File: shamir.py    From python-shamir-mnemonic with MIT License 6 votes vote down vote up
def _precompute_exp_log() -> Tuple[List[int], List[int]]:
    exp = [0 for i in range(255)]
    log = [0 for i in range(256)]

    poly = 1
    for i in range(255):
        exp[i] = poly
        log[poly] = i

        # Multiply poly by the polynomial x + 1.
        poly = (poly << 1) ^ poly

        # Reduce poly by x^8 + x^4 + x^3 + x + 1.
        if poly & 0x100:
            poly ^= 0x11B

    return exp, log 
Example #4
Source File: terraformize_terraform_wrapper.py    From terraformize with GNU Lesser General Public License v3.0 6 votes vote down vote up
def apply(self, variables: Optional[dict] = None, parallelism: int = 10) -> Tuple[str, str, str]:
        """
        Will run a terraform apply on a workspace & will pass all variables to the terraform apply as terraform
        variables

        Arguments:
            :param variables: the variables to pass to the terraform apply command
            :param parallelism: the number of parallel resource operations

        Returns:
            :return return_code: the return code of the terraform apply
            :return stdout: the stdout stream of the terraform apply
            :return stderr: the stderr stream of the terraform apply
        """
        if variables is None:
            variables = {}

        return_code, stdout, stderr = self.tf.apply(no_color=IsFlagged, var=variables, skip_plan=True,
                                                    parallelism=parallelism)
        return return_code, stdout, stderr 
Example #5
Source File: terraformize_terraform_wrapper.py    From terraformize with GNU Lesser General Public License v3.0 6 votes vote down vote up
def destroy(self, variables: Optional[dict] = None, parallelism: int = 10) -> Tuple[str, str, str]:
        """

        Arguments:
            :param variables: the variables to pass to the terraform destroy command
            :param parallelism: the number of parallel resource operations

        Will run a terraform destroy on a workspace will pass all variables to the terraform destroy as terraform
        variables, not deleting the workspace as one might want to keep historical data or have multiple modules under
        the same workspace name

        Arguments:

        Returns:
            :return return_code: the return code of the terraform destroy
            :return stdout: the stdout stream of the terraform destroy
            :return stderr: the stderr stream of the terraform destroy
        """
        return_code, stdout, stderr = self.tf.destroy(no_color=IsFlagged, var=variables, auto_approve=True,
                                                      parallelism=parallelism)
        return return_code, stdout, stderr 
Example #6
Source File: domain.py    From everyclass-server with Mozilla Public License 2.0 6 votes vote down vote up
def semester_calculate(current_semester: str, semester_list: List[str]) -> List[Tuple[str, bool]]:
    """生成一个列表,每个元素是一个二元组,分别为学期字符串和是否为当前学期的布尔值"""
    available_semesters = []

    for each_semester in semester_list:
        if current_semester == each_semester:
            available_semesters.append((each_semester, True))
        else:
            available_semesters.append((each_semester, False))
    return available_semesters 
Example #7
Source File: domain.py    From everyclass-server with Mozilla Public License 2.0 6 votes vote down vote up
def get_semester_date(date: datetime.date) -> Tuple[str, int, int]:
    """获取日期对应的学期、所属周次及星期(0表示周日,1表示周一...)

    >>> get_semester_date(datetime.date(2020, 2, 22))
    ('2019-2020-1', 26, 6)

    >>> get_semester_date(datetime.date(2020, 2, 23))
    ('2019-2020-2', 1, 0)
    """
    config = get_config()

    semesters = list(config.AVAILABLE_SEMESTERS.items())
    semesters.sort(key=lambda x: x[0], reverse=True)

    for sem in semesters:
        sem_start_date = datetime.date(*sem[1]["start"])
        if date >= sem_start_date:
            days_delta = (date - sem_start_date).days
            return "-".join([str(x) for x in sem[0]]), days_delta // 7 + 1, days_delta % 7
    raise ValueError("no applicable semester") 
Example #8
Source File: views.py    From everyclass-server with Mozilla Public License 2.0 6 votes vote down vote up
def _empty_column_check(cards: dict) -> Tuple[bool, bool, bool, bool]:
    """检查是否周末和晚上有课,返回三个布尔值"""
    with tracer.trace('_empty_column_check'):
        # 空闲周末判断,考虑到大多数人周末都是没有课程的
        empty_sat = True
        for cls_time in range(1, 7):
            if (6, cls_time) in cards:
                empty_sat = False

        empty_sun = True
        for cls_time in range(1, 7):
            if (7, cls_time) in cards:
                empty_sun = False

        # 空闲课程判断,考虑到大多数人11-12节都是没有课程的
        empty_6 = True
        for cls_day in range(1, 8):
            if (cls_day, 6) in cards:
                empty_6 = False
        empty_5 = True
        for cls_day in range(1, 8):
            if (cls_day, 5) in cards:
                empty_5 = False
    return empty_5, empty_6, empty_sat, empty_sun 
Example #9
Source File: helpers.py    From hydrus with MIT License 6 votes vote down vote up
def get_link_props_for_multiple_objects(path: str,
                                        object_list: List[Dict[str, Any]]
                                        ) -> Tuple[List[Dict[str, Any]], bool]:
    """
    Get link_props of multiple objects.
    :param path: Path of the collection or non-collection class.
    :param object_list: List of objects being inserted.
    :return: List of link properties processed with the help of get_link_props.
    """
    link_prop_list = list()
    for object_ in object_list:
        link_props, type_check = get_link_props(path, object_)
        if type_check is True:
            link_prop_list.append(link_props)
        else:
            return [], False
    return link_prop_list, True 
Example #10
Source File: helpers.py    From hydrus with MIT License 6 votes vote down vote up
def add_pagination_iri_mappings(template: str,
                                template_mapping: List[IriTemplateMapping]
                                ) -> Tuple[str, List[IriTemplateMapping]]:
    """Add various pagination related to variable to the IRI template and also adds mappings for them.
    :param template: IriTemplate string.
    :param template_mapping: List of template mappings.
    :return: Final IriTemplate string and related list of mappings.
    """
    paginate_variables = ["pageIndex", "limit", "offset"]
    for i in range(len(paginate_variables)):
        # If final variable then do not add space and comma and add the final parentheses
        if i == len(paginate_variables) - 1:
            template += "{})".format(paginate_variables[i])
        else:
            template += "{}, ".format(paginate_variables[i])
        mapping = IriTemplateMapping(variable=paginate_variables[i], prop=paginate_variables[i])
        template_mapping.append(mapping)
    return template, template_mapping 
Example #11
Source File: crud_helpers.py    From hydrus with MIT License 6 votes vote down vote up
def calculate_page_limit_and_offset(paginate: bool, page_size: int, page: int, result_length: int,
                                    offset: int, limit: int) -> Tuple[int, int]:
    """Calculate page limit and offset for pagination.
    :param paginate: Showing whether pagination is enable/disable.
    :param page_size: Number maximum elements showed in a page.
    :param page: page number.
    :param result_length: Length of the list containing desired elements.
    :param offset: offset value.
    :param limit: page limit.
    :return: page limit and offset.
    """
    if limit is not None:
        page_size = limit
    if paginate is True:
        if offset is None:
            offset = (page - 1) * page_size
        limit = page_size
    else:
        offset = 0
        limit = result_length

    return limit, offset 
Example #12
Source File: result.py    From OpenFermion-Cirq with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 optimal_value: float,
                 optimal_parameters: numpy.ndarray,
                 num_evaluations: Optional[int]=None,
                 cost_spent: Optional[float]=None,
                 function_values: Optional[List[Tuple[
                     float, Optional[float], Optional[numpy.ndarray]
                     ]]]=None,
                 wait_times: Optional[List[float]]=None,
                 time: Optional[int]=None,
                 seed: Optional[int]=None,
                 status: Optional[int]=None,
                 message: Optional[str]=None) -> None:
        self.optimal_value = optimal_value
        self.optimal_parameters = optimal_parameters
        self.num_evaluations = num_evaluations
        self.cost_spent = cost_spent
        self.function_values = function_values
        self.wait_times = wait_times
        self.time = time
        self.seed = seed
        self.status = status
        self.message = message 
Example #13
Source File: objective.py    From OpenFermion-Cirq with Apache License 2.0 6 votes vote down vote up
def noise_bounds(self,
                     cost: float,
                     confidence: Optional[float]=None
                     ) -> Tuple[float, float]:
        """Exact or approximate bounds on noise.

        Returns a tuple (a, b) such that when `noise` is called with the given
        cost, the returned value lies between a and b. It should be the case
        that a <= 0 <= b.

        This function takes an optional `confidence` parameter which is a real
        number strictly between 0 and 1 that gives the probability of the bounds
        being correct. This is used for situations in which exact bounds on the
        noise cannot be guaranteed.
        """
        return -numpy.inf, numpy.inf 
Example #14
Source File: helpers.py    From quart with MIT License 6 votes vote down vote up
def find_package(name: str) -> Tuple[Optional[Path], Path]:
    """Finds packages install prefix (or None) and it's containing Folder
    """
    module = name.split(".")[0]
    loader = pkgutil.get_loader(module)
    if name == "__main__" or loader is None:
        package_path = Path.cwd()
    else:
        if hasattr(loader, "get_filename"):
            filename = loader.get_filename(module)  # type: ignore
        else:
            __import__(name)
            filename = sys.modules[name].__file__
        package_path = Path(filename).resolve().parent
        if hasattr(loader, "is_package"):
            is_package = loader.is_package(module)  # type: ignore
            if is_package:
                package_path = Path(package_path).resolve().parent
    sys_prefix = Path(sys.prefix).resolve()
    try:
        package_path.relative_to(sys_prefix)
    except ValueError:
        return None, package_path
    else:
        return sys_prefix, package_path 
Example #15
Source File: black_box.py    From OpenFermion-Cirq with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 save_x_vals: bool=False,
                 **kwargs) -> None:
        """
        Args:
            save_x_vals: Whether to save all points (x values) that the
                black box was queried at. Setting this to True will cause the
                black box to consume a lot more memory. This does not affect
                whether the function values (y values) are saved (they are
                saved no matter what).
        """
        self.function_values = [] \
            # type: List[Tuple[float, Optional[float], Optional[numpy.ndarray]]]
        self.cost_spent = 0.0
        self.wait_times = []  # type: List[float]
        self._save_x_vals = save_x_vals
        self._time_of_last_query = None  # type: Optional[float]
        super().__init__(**kwargs) 
Example #16
Source File: swap_network_trotter_hubbard.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def param_bounds(self) -> Optional[Sequence[Tuple[float, float]]]:
        """Bounds on the parameters."""
        bounds = []
        for param in self.params():
            s = 1.0 if param.letter == 'V' else 2.0
            bounds.append((-s, s))
        return bounds 
Example #17
Source File: signals.py    From quart with MIT License 5 votes vote down vote up
def send(self, *sender: Any, **kwargs: Any) -> List[Tuple[Callable, Any]]:
        coroutines = super().send(*sender, **kwargs)
        result: List[Tuple[Callable, Any]] = []
        for handler, coroutine in coroutines:
            result.append((handler, await coroutine))
        return result 
Example #18
Source File: test_utils.py    From QCElemental with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def doc_fixture():
    class Nest(BaseModel):
        """A nested model"""

        n: float = 56

    class X(BaseModel):
        """A Pydantic model made up of many, many different combinations of ways of mapping types in Pydantic"""

        x: int
        y: str = Field(...)
        n: Nest
        n2: Nest = Field(Nest(), description="A detailed description")
        z: float = 5
        z2: float = None
        z3: Optional[float]
        z4: Optional[float] = Field(5, description="Some number I just made up")
        z5: Optional[Union[float, int]]
        z6: Optional[List[int]]
        l: List[int]
        l2: List[Union[int, str]]
        t: Tuple[str, int]
        t2: Tuple[List[int]]
        t3: Tuple[Any]
        d: Dict[str, Any]
        dlu: Dict[Union[int, str], List[Union[int, str, float]]] = Field(..., description="this is complicated")
        dlu2: Dict[Any, List[Union[int, str, float]]]
        dlu3: Dict[str, Any]
        si: int = Field(..., description="A level of constraint", gt=0)
        sf: float = Field(None, description="Optional Constrained Number", le=100.3)

    yield X 
Example #19
Source File: low_rank.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def step_qubit_permutation(self,
                               qubits: Sequence[cirq.Qid],
                               control_qubit: Optional[cirq.Qid]=None
                               ) -> Tuple[Sequence[cirq.Qid],
                                          Optional[cirq.Qid]]:
        # A Trotter step reverses the qubit ordering when the number of
        # eigenvalues is odd
        if len(self.eigenvalues) & 1:
            return qubits[::-1], None
        else:
            return qubits, None 
Example #20
Source File: trotter_algorithm.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def step_qubit_permutation(self,
                               qubits: Sequence[cirq.Qid],
                               control_qubit: Optional[cirq.Qid]=None
                               ) -> Tuple[Sequence[cirq.Qid],
                                          Optional[cirq.Qid]]:
        """The qubit permutation induced by a single Trotter step.

        Returns:
            A tuple whose first element is the new list of system qubits and
            second element is the new control qubit
        """
        # Default: identity permutation
        return qubits, control_qubit 
Example #21
Source File: simulate_trotter_test.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def produce_simulation_test_parameters(
        hamiltonian: Hamiltonian,
        time: float,
        seed: Optional[int]=None
        ) -> Tuple[numpy.ndarray, numpy.ndarray]:
    """Produce objects for testing Hamiltonian simulation.

    Produces a random initial state and evolves it under the given Hamiltonian
    for the specified amount of time. Returns the initial state and final
    state.

    Args:
        hamiltonian: The Hamiltonian to evolve under.
        time: The time to evolve for
        seed: An RNG seed.
    """

    n_qubits = openfermion.count_qubits(hamiltonian)

    # Construct a random initial state
    initial_state = openfermion.haar_random_vector(2**n_qubits, seed)

    # Simulate exact evolution
    hamiltonian_sparse = openfermion.get_sparse_operator(hamiltonian)
    exact_state = scipy.sparse.linalg.expm_multiply(
            -1j * time * hamiltonian_sparse, initial_state)

    # Make sure the time is not too small
    assert fidelity(exact_state, initial_state) < .95

    return initial_state, exact_state


# Produce test parameters 
Example #22
Source File: split_operator.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def step_qubit_permutation(self,
                               qubits: Sequence[cirq.Qid],
                               control_qubit: Optional[cirq.Qid]=None
                               ) -> Tuple[Sequence[cirq.Qid],
                                          Optional[cirq.Qid]]:
        # A Trotter step reverses the qubit ordering
        return qubits[::-1], control_qubit 
Example #23
Source File: swap_network_trotter.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def param_bounds(self) -> Optional[Sequence[Tuple[float, float]]]:
        """Bounds on the parameters."""
        bounds = []
        for param in self.params():
            if param.letter == 'U' or param.letter == 'V':
                bounds.append((-1.0, 1.0))
            elif param.letter == 'T' or param.letter == 'W':
                bounds.append((-2.0, 2.0))
        return bounds 
Example #24
Source File: split_operator_trotter.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def param_bounds(self) -> Optional[Sequence[Tuple[float, float]]]:
        """Bounds on the parameters."""
        return [(-1.0, 1.0)] * len(list(self.params())) 
Example #25
Source File: low_rank.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def param_bounds(self) -> Optional[Sequence[Tuple[float, float]]]:
        """Bounds on the parameters."""
        return [(-1.0, 1.0)] * len(list(self.params())) 
Example #26
Source File: molecular_example_odd_qubits.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def make_h3_2_5() -> Tuple[RestrictedHartreeFockObjective, of.MolecularData, np.
                           ndarray, np.ndarray, np.ndarray]:
    # load the molecule from moelcular data
    h3_2_5_path = os.path.join(
        hfvqe.__path__[0],
        'molecular_data/hydrogen_chains/h_3_p_sto-3g/bond_distance_2.5')

    molfile = os.path.join(h3_2_5_path,
                           'H3_plus_sto-3g_singlet_linear_r-2.5.hdf5')
    molecule = of.MolecularData(filename=molfile)
    molecule.load()

    S = np.load(os.path.join(h3_2_5_path, 'overlap.npy'))
    Hcore = np.load(os.path.join(h3_2_5_path, 'h_core.npy'))
    TEI = np.load(os.path.join(h3_2_5_path, 'tei.npy'))

    _, X = sp.linalg.eigh(Hcore, S)
    obi = of.general_basis_change(Hcore, X, (1, 0))
    tbi = np.einsum('psqr', of.general_basis_change(TEI, X, (1, 0, 1, 0)))
    molecular_hamiltonian = generate_hamiltonian(obi, tbi,
                                                 molecule.nuclear_repulsion)

    rhf_objective = RestrictedHartreeFockObjective(molecular_hamiltonian,
                                                   molecule.n_electrons)

    scipy_result = rhf_minimization(rhf_objective)
    return rhf_objective, molecule, scipy_result.x, obi, tbi 
Example #27
Source File: variational_black_box.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def noise_bounds(self,
                     cost: float,
                     confidence: Optional[float]=None
                     ) -> Tuple[float, float]:
        """Exact or approximate bounds on noise in the objective function."""
        return self.objective.noise_bounds(cost, confidence) 
Example #28
Source File: ansatz.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def param_bounds(self) -> Optional[Sequence[Tuple[float, float]]]:
        """Optional bounds on the parameters.

        Returns a list of tuples of the form (low, high), where low and high
        are lower and upper bounds on a parameter. The order of the tuples
        corresponds to the order of the parameters as yielded by the
        `params` method.
        """
        return None 
Example #29
Source File: util.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def generate_fswap_unitaries(swap_pairs: List[List[Tuple]], dimension: int):
    swap_unitaries = []
    for swap_tuples in swap_pairs:
        generator = np.zeros((dimension, dimension), dtype=np.complex128)
        for i, j in swap_tuples:
            generator[i, i] = -1
            generator[j, j] = -1
            generator[i, j] = 1
            generator[j, i] = 1
        swap_unitaries.append(expm(-1j * np.pi * generator / 2))
    return swap_unitaries 
Example #30
Source File: molecular_example.py    From OpenFermion-Cirq with Apache License 2.0 5 votes vote down vote up
def make_h6_1_3() -> Tuple[RestrictedHartreeFockObjective,
                           of.MolecularData,
                           np.ndarray,
                           np.ndarray,
                           np.ndarray]:
    # load the molecule from moelcular data
    import openfermioncirq.experiments.hfvqe as hfvqe
    h6_1_3_path = os.path.join(
        hfvqe.__path__[0],
        'molecular_data/hydrogen_chains/h_6_sto-3g/bond_distance_1.3')

    molfile = os.path.join(h6_1_3_path, 'H6_sto-3g_singlet_linear_r-1.3.hdf5')
    molecule = of.MolecularData(filename=molfile)
    molecule.load()

    S = np.load(os.path.join(h6_1_3_path, 'overlap.npy'))
    Hcore = np.load(os.path.join(h6_1_3_path, 'h_core.npy'))
    TEI = np.load(os.path.join(h6_1_3_path, 'tei.npy'))

    _, X = sp.linalg.eigh(Hcore, S)
    obi = of.general_basis_change(Hcore, X, (1, 0))
    tbi = np.einsum('psqr', of.general_basis_change(TEI, X, (1, 0, 1, 0)))
    molecular_hamiltonian = generate_hamiltonian(obi, tbi,
                                                 molecule.nuclear_repulsion)

    rhf_objective = RestrictedHartreeFockObjective(molecular_hamiltonian,
                                                   molecule.n_electrons)

    scipy_result = rhf_minimization(rhf_objective)

    return rhf_objective, molecule, scipy_result.x, obi, tbi