Python keras.constraints.get() Examples
The following are 30
code examples of keras.constraints.get().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.constraints
, or try the search function
.

Example #1
Source Project: Document-Classifier-LSTM Author: AlexGidiotis File: attention.py License: MIT License | 6 votes |
def __init__(self, W_regularizer=None, u_regularizer=None, b_regularizer=None, W_constraint=None, u_constraint=None, b_constraint=None, bias=True, **kwargs): self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.u_regularizer = regularizers.get(u_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.u_constraint = constraints.get(u_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias super(AttentionWithContext, self).__init__(**kwargs)
Example #2
Source Project: DeepResearch Author: Hsankesara File: attention_with_context.py License: MIT License | 6 votes |
def __init__(self, W_regularizer=None, u_regularizer=None, b_regularizer=None, W_constraint=None, u_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.u_regularizer = regularizers.get(u_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.u_constraint = constraints.get(u_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias super(AttentionWithContext, self).__init__(**kwargs)
Example #3
Source Project: elmo-bilstm-cnn-crf Author: UKPLab File: ChainCRF.py License: Apache License 2.0 | 6 votes |
def __init__(self, init='glorot_uniform', U_regularizer=None, b_start_regularizer=None, b_end_regularizer=None, U_constraint=None, b_start_constraint=None, b_end_constraint=None, weights=None, **kwargs): super(ChainCRF, self).__init__(**kwargs) self.init = initializers.get(init) self.U_regularizer = regularizers.get(U_regularizer) self.b_start_regularizer = regularizers.get(b_start_regularizer) self.b_end_regularizer = regularizers.get(b_end_regularizer) self.U_constraint = constraints.get(U_constraint) self.b_start_constraint = constraints.get(b_start_constraint) self.b_end_constraint = constraints.get(b_end_constraint) self.initial_weights = weights self.supports_masking = True self.uses_learning_phase = True self.input_spec = [InputSpec(ndim=3)]
Example #4
Source Project: deep_complex_networks Author: ChihebTrabelsi File: norm.py License: MIT License | 6 votes |
def __init__(self, epsilon=1e-4, axis=-1, beta_init='zeros', gamma_init='ones', gamma_regularizer=None, beta_regularizer=None, **kwargs): self.supports_masking = True self.beta_init = initializers.get(beta_init) self.gamma_init = initializers.get(gamma_init) self.epsilon = epsilon self.axis = axis self.gamma_regularizer = regularizers.get(gamma_regularizer) self.beta_regularizer = regularizers.get(beta_regularizer) super(LayerNormalization, self).__init__(**kwargs)
Example #5
Source Project: Coloring-greyscale-images Author: emilwallner File: instance_normalization.py License: MIT License | 6 votes |
def __init__(self, axis=None, epsilon=1e-3, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, **kwargs): super(InstanceNormalization, self).__init__(**kwargs) self.supports_masking = True self.axis = axis self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = initializers.get(beta_initializer) self.gamma_initializer = initializers.get(gamma_initializer) self.beta_regularizer = regularizers.get(beta_regularizer) self.gamma_regularizer = regularizers.get(gamma_regularizer) self.beta_constraint = constraints.get(beta_constraint) self.gamma_constraint = constraints.get(gamma_constraint)
Example #6
Source Project: deephlapan Author: jiujiezz File: attention.py License: GNU General Public License v2.0 | 6 votes |
def __init__(self, W_regularizer=None, b_regularizer=None, W_constraint=None, b_constraint=None, bias=True, return_attention=False, **kwargs): self.supports_masking = True self.return_attention = return_attention self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias super(Attention, self).__init__(**kwargs)
Example #7
Source Project: se_relativisticgan Author: deepakbaby File: normalizations.py License: MIT License | 6 votes |
def __init__(self, axis=None, epsilon=1e-3, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, **kwargs): super(InstanceNormalization, self).__init__(**kwargs) self.supports_masking = True self.axis = axis self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = initializers.get(beta_initializer) self.gamma_initializer = initializers.get(gamma_initializer) self.beta_regularizer = regularizers.get(beta_regularizer) self.gamma_regularizer = regularizers.get(gamma_regularizer) self.beta_constraint = constraints.get(beta_constraint) self.gamma_constraint = constraints.get(gamma_constraint)
Example #8
Source Project: se_relativisticgan Author: deepakbaby File: normalizations.py License: MIT License | 6 votes |
def __init__(self, axis=-1, momentum=0.99, center=True, scale=True, epsilon=1e-3, r_max_value=3., d_max_value=5., t_delta=1e-3, weights=None, beta_initializer='zero', gamma_initializer='one', moving_mean_initializer='zeros', moving_variance_initializer='ones', gamma_regularizer=None, beta_regularizer=None, beta_constraint=None, gamma_constraint=None, **kwargs): self.supports_masking = True self.axis = axis self.epsilon = epsilon self.center = center self.scale = scale self.momentum = momentum self.gamma_regularizer = regularizers.get(gamma_regularizer) self.beta_regularizer = regularizers.get(beta_regularizer) self.initial_weights = weights self.r_max_value = r_max_value self.d_max_value = d_max_value self.t_delta = t_delta self.beta_initializer = initializers.get(beta_initializer) self.gamma_initializer = initializers.get(gamma_initializer) self.moving_mean_initializer = initializers.get(moving_mean_initializer) self.moving_variance_initializer = initializers.get(moving_variance_initializer) self.beta_constraint = constraints.get(beta_constraint) self.gamma_constraint = constraints.get(gamma_constraint) super(BatchRenormalization, self).__init__(**kwargs)
Example #9
Source Project: keras-utilities Author: cbaziotis File: layers.py License: MIT License | 6 votes |
def __init__(self, W_regularizer=None, u_regularizer=None, b_regularizer=None, W_constraint=None, u_constraint=None, b_constraint=None, bias=True, return_attention=False, **kwargs): self.supports_masking = True self.return_attention = return_attention self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.u_regularizer = regularizers.get(u_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.u_constraint = constraints.get(u_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias super(AttentionWithContext, self).__init__(**kwargs)
Example #10
Source Project: DigiX_HuaWei_Population_Age_Attribution_Predict Author: WeavingWong File: models.py License: MIT License | 6 votes |
def __init__(self, W_regularizer=None, u_regularizer=None, b_regularizer=None, W_constraint=None, u_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.u_regularizer = regularizers.get(u_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.u_constraint = constraints.get(u_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias super(AttentionWithContext, self).__init__(**kwargs)
Example #11
Source Project: DigiX_HuaWei_Population_Age_Attribution_Predict Author: WeavingWong File: models.py License: MIT License | 6 votes |
def __init__(self, W_regularizer=None, u_regularizer=None, b_regularizer=None, W_constraint=None, u_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.u_regularizer = regularizers.get(u_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.u_constraint = constraints.get(u_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias super(AttentionWithContext, self).__init__(**kwargs)
Example #12
Source Project: DigiX_HuaWei_Population_Age_Attribution_Predict Author: WeavingWong File: models.py License: MIT License | 6 votes |
def on_epoch_end(self, epoch, logs=None): logs = logs or {} self.epochs_since_last_save += 1 if self.epochs_since_last_save >= self.period: self.epochs_since_last_save = 0 #filepath = self.filepath.format(epoch=epoch + 1, **logs) current = logs.get(self.monitor) if current is None: warnings.warn('Can pick best model only with %s available, ' 'skipping.' % (self.monitor), RuntimeWarning) else: if self.monitor_op(current, self.best): if self.verbose > 0: print('\nEpoch %05d: %s improved from %0.5f to %0.5f,' ' storing weights.' % (epoch + 1, self.monitor, self.best, current)) self.best = current self.best_epochs = epoch + 1 self.best_weights = self.model.get_weights() else: if self.verbose > 0: print('\nEpoch %05d: %s did not improve' % (epoch + 1, self.monitor))
Example #13
Source Project: DigiX_HuaWei_Population_Age_Attribution_Predict Author: WeavingWong File: rnn_feature.py License: MIT License | 6 votes |
def __init__(self, W_regularizer=None, u_regularizer=None, b_regularizer=None, W_constraint=None, u_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.u_regularizer = regularizers.get(u_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.u_constraint = constraints.get(u_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias super(AttentionWithContext, self).__init__(**kwargs)
Example #14
Source Project: dts Author: albertogaspar File: FFNN.py License: MIT License | 6 votes |
def evaluate(self, inputs, fn_inverse=None, fn_plot=None): try: X, y = inputs inputs = X except: X, conditions, y = inputs inputs = [X, conditions] y_hat = self.predict(inputs) if fn_inverse is not None: y_hat = fn_inverse(y_hat) y = fn_inverse(y) if fn_plot is not None: fn_plot([y, y_hat]) results = [] for m in self.model.metrics: if isinstance(m, str): results.append(K.eval(K.mean(get(m)(y, y_hat)))) else: results.append(K.eval(K.mean(m(y, y_hat)))) return results
Example #15
Source Project: naacl18-multitask_argument_mining Author: UKPLab File: ChainCRF.py License: Apache License 2.0 | 6 votes |
def __init__(self, init='glorot_uniform', U_regularizer=None, b_start_regularizer=None, b_end_regularizer=None, U_constraint=None, b_start_constraint=None, b_end_constraint=None, weights=None, **kwargs): self.supports_masking = True self.uses_learning_phase = True self.input_spec = [InputSpec(ndim=3)] self.init = initializations.get(init) self.U_regularizer = regularizers.get(U_regularizer) self.b_start_regularizer = regularizers.get(b_start_regularizer) self.b_end_regularizer = regularizers.get(b_end_regularizer) self.U_constraint = constraints.get(U_constraint) self.b_start_constraint = constraints.get(b_start_constraint) self.b_end_constraint = constraints.get(b_end_constraint) self.initial_weights = weights super(ChainCRF, self).__init__(**kwargs)
Example #16
Source Project: Attention-Based-Aspect-Extraction Author: madrugado File: my_layers.py License: Apache License 2.0 | 6 votes |
def __init__(self, W_regularizer=None, b_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): """ Keras Layer that implements an Content Attention mechanism. Supports Masking. """ self.supports_masking = True self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias super(Attention, self).__init__(**kwargs)
Example #17
Source Project: Attention-Based-Aspect-Extraction Author: madrugado File: my_layers.py License: Apache License 2.0 | 6 votes |
def __init__(self, input_dim, output_dim, init='uniform', input_length=None, W_regularizer=None, activity_regularizer=None, W_constraint=None, weights=None, dropout=0., **kwargs): self.input_dim = input_dim self.output_dim = output_dim self.init = initializers.get(init) self.input_length = input_length self.dropout = dropout self.W_constraint = constraints.get(W_constraint) self.W_regularizer = regularizers.get(W_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) if 0. < self.dropout < 1.: self.uses_learning_phase = True self.initial_weights = weights kwargs['input_shape'] = (self.input_length,) kwargs['input_dtype'] = K.floatx() super(WeightedAspectEmb, self).__init__(**kwargs)
Example #18
Source Project: keras-contrib Author: keras-team File: core.py License: MIT License | 6 votes |
def __init__(self, units, kernel_initializer='glorot_uniform', activation=None, weights=None, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, use_bias=True, **kwargs): if 'input_shape' not in kwargs and 'input_dim' in kwargs: kwargs['input_shape'] = (kwargs.pop('input_dim'),) self.kernel_initializer = initializers.get(kernel_initializer) self.activation = activations.get(activation) self.units = units self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.use_bias = use_bias self.initial_weights = weights super(CosineDense, self).__init__(**kwargs)
Example #19
Source Project: keras-contrib Author: keras-team File: pelu.py License: MIT License | 6 votes |
def __init__(self, alpha_initializer='ones', alpha_regularizer=None, alpha_constraint=None, beta_initializer='ones', beta_regularizer=None, beta_constraint=None, shared_axes=None, **kwargs): super(PELU, self).__init__(**kwargs) self.supports_masking = True self.alpha_initializer = initializers.get(alpha_initializer) self.alpha_regularizer = regularizers.get(alpha_regularizer) self.alpha_constraint = constraints.get(alpha_constraint) self.beta_initializer = initializers.get(beta_initializer) self.beta_regularizer = regularizers.get(beta_regularizer) self.beta_constraint = constraints.get(beta_constraint) if shared_axes is None: self.shared_axes = None elif not isinstance(shared_axes, (list, tuple)): self.shared_axes = [shared_axes] else: self.shared_axes = list(shared_axes)
Example #20
Source Project: keras-contrib Author: keras-team File: capsule.py License: MIT License | 6 votes |
def __init__(self, num_capsule, dim_capsule, routings=3, share_weights=True, initializer='glorot_uniform', activation=None, regularizer=None, constraint=None, **kwargs): super(Capsule, self).__init__(**kwargs) self.num_capsule = num_capsule self.dim_capsule = dim_capsule self.routings = routings self.share_weights = share_weights self.activation = activations.get(activation) self.regularizer = regularizers.get(regularizer) self.initializer = initializers.get(initializer) self.constraint = constraints.get(constraint)
Example #21
Source Project: research Author: commaai File: layers.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, output_dim, output_length, init='glorot_uniform', inner_init='orthogonal', activation='tanh', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.output_length = output_length self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.activation = activations.get(activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(DreamyRNN, self).__init__(**kwargs)
Example #22
Source Project: research Author: commaai File: layers.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, output_dim, output_length, control_dim=2, init='glorot_uniform', inner_init='orthogonal', activation='tanh', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0., dropout_U=0., **kwargs): self.output_dim = output_dim self.output_length = output_length self.init = initializations.get(init) self.inner_init = initializations.get(inner_init) self.activation = activations.get(activation) self.W_regularizer = regularizers.get(W_regularizer) self.U_regularizer = regularizers.get(U_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.dropout_W, self.dropout_U = dropout_W, dropout_U self.control_dim = control_dim if self.dropout_W or self.dropout_U: self.uses_learning_phase = True super(CondDreamyRNN, self).__init__(**kwargs)
Example #23
Source Project: NeuralResponseRanking Author: yangliuy File: SparseFullyConnectedLayer.py License: MIT License | 6 votes |
def __init__(self, output_dim, init='glorot_uniform', activation='relu',weights=None, W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, input_dim=None, **kwargs): self.W_initializer = initializers.get(init) self.b_initializer = initializers.get('zeros') self.activation = activations.get(activation) self.output_dim = output_dim self.input_dim = input_dim self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.initial_weights = weights self.input_spec = InputSpec(ndim=2) if self.input_dim: kwargs['input_shape'] = (self.input_dim,) super(SparseFullyConnectedLayer, self).__init__(**kwargs)
Example #24
Source Project: costar_plan Author: jhu-lcsr File: instance_normalization.py License: Apache License 2.0 | 6 votes |
def __init__(self, axis=None, epsilon=1e-3, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, **kwargs): super(InstanceNormalization, self).__init__(**kwargs) self.supports_masking = True self.axis = axis self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = initializers.get(beta_initializer) self.gamma_initializer = initializers.get(gamma_initializer) self.beta_regularizer = regularizers.get(beta_regularizer) self.gamma_regularizer = regularizers.get(gamma_regularizer) self.beta_constraint = constraints.get(beta_constraint) self.gamma_constraint = constraints.get(gamma_constraint)
Example #25
Source Project: delft Author: kermitt2 File: layers.py License: Apache License 2.0 | 6 votes |
def __init__(self, init='glorot_uniform', U_regularizer=None, b_start_regularizer=None, b_end_regularizer=None, U_constraint=None, b_start_constraint=None, b_end_constraint=None, weights=None, **kwargs): super(ChainCRF, self).__init__(**kwargs) self.init = initializers.get(init) self.U_regularizer = regularizers.get(U_regularizer) self.b_start_regularizer = regularizers.get(b_start_regularizer) self.b_end_regularizer = regularizers.get(b_end_regularizer) self.U_constraint = constraints.get(U_constraint) self.b_start_constraint = constraints.get(b_start_constraint) self.b_end_constraint = constraints.get(b_end_constraint) self.initial_weights = weights self.supports_masking = True self.uses_learning_phase = True self.input_spec = [InputSpec(ndim=3)]
Example #26
Source Project: delft Author: kermitt2 File: Attention.py License: Apache License 2.0 | 6 votes |
def __init__(self, step_dim, W_regularizer=None, b_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias self.step_dim = step_dim self.features_dim = 0 super(Attention, self).__init__(**kwargs)
Example #27
Source Project: Quora Author: KevinLiao159 File: neural_networks.py License: MIT License | 6 votes |
def recall_score(y_true, y_proba, thres=THRES): """ Recall metric Only computes a batch-wise average of recall Computes the recall, a metric for multi-label classification of how many relevant items are selected """ # get prediction y_pred = K.cast(K.greater(y_proba, thres), dtype='float32') # calc true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall
Example #28
Source Project: Quora Author: KevinLiao159 File: neural_networks.py License: MIT License | 6 votes |
def __init__(self, step_dim, W_regularizer=None, b_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias self.step_dim = step_dim self.features_dim = 0 super(Attention, self).__init__(**kwargs)
Example #29
Source Project: keras-mobilenet Author: rcmalli File: depthwise_conv2d.py License: MIT License | 5 votes |
def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, bias_constraint=None, **kwargs): super(DepthwiseConv2D, self).__init__( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, activation=activation, use_bias=use_bias, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, bias_constraint=bias_constraint, **kwargs) self.depth_multiplier = depth_multiplier self.depthwise_initializer = initializers.get(depthwise_initializer) self.depthwise_regularizer = regularizers.get(depthwise_regularizer) self.depthwise_constraint = constraints.get(depthwise_constraint)
Example #30
Source Project: kaggle-carvana-2017 Author: killthekitten File: mobile_net_fixed.py License: MIT License | 5 votes |
def __init__(self, kernel_size, strides=(1, 1), padding='valid', depth_multiplier=1, data_format=None, activation=None, use_bias=True, depthwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, bias_constraint=None, **kwargs): super(DepthwiseConv2D, self).__init__( filters=None, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, activation=activation, use_bias=use_bias, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, bias_constraint=bias_constraint, **kwargs) self.depth_multiplier = depth_multiplier self.depthwise_initializer = initializers.get(depthwise_initializer) self.depthwise_regularizer = regularizers.get(depthwise_regularizer) self.depthwise_constraint = constraints.get(depthwise_constraint) self.bias_initializer = initializers.get(bias_initializer)