# Python math.gcd() Examples

The following are
code examples for showing how to use *math.gcd()*. They are
extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don't like. You can also save this page to your account.

Example 1

Project: algorithms Author: anirudhpillai File: water_and_a_jug_problem.py (license) View Source Project | 6 votes |

def canMeasureWater(self, x, y, z): """ :type x: int :type y: int :type z: int :rtype: bool """ if x + y < z: return False if z <= 0 or x == z or y == z or x + y == z: return True return z % gcd(x, y) == 0 # Can also be done using bfs but that's slower # https://discuss.leetcode.com/topic/50425/breadth-first-search-with-explanation/2

Example 2

Project: py-prng Author: czechnology File: cryptographically_secure_generators.py (license) View Source Project | 6 votes |

def _verify_params(self): phi = (self.p - 1) * (self.q - 1) if self.p == self.q: raise ValueError("p and q cannot be identical") # verify that p and q are far enough apart - https://crypto.stackexchange.com/a/35096 if self.n >= 1024 and abs(self.p - self.q).bit_length() <= (self.n.bit_length() // 2 - 100): raise ValueError("p and q are too close together") if not is_prime(self.p): raise ValueError("p must be a prime (probabilistic)") if not is_prime(self.q): raise ValueError("q must be a prime (probabilistic)") if not (1 < self.e < phi): raise ValueError("e must be between 1 and (p-1)(q-1)") if gcd(self.e, phi) != 1: raise ValueError("e must be co-prime to (p-1)(q-1)")

Example 3

Project: py-prng Author: czechnology File: cryptographically_secure_generators.py (license) View Source Project | 6 votes |

def __init__(self, pq=None, seed=None): if pq is not None: if len(pq) != 2: raise ValueError("Parameter pq must be a triple of the values p and q") self.p, self.q = pq self.n = self.p * self.q self._verify_params() else: self._gen_params(511) self.x = None if not seed: seed = SystemRandom().randrange(1, self.n) while gcd(seed, self.n) != 1: seed = SystemRandom().randrange(1, self.n) super().__init__(seed)

Example 4

Project: Pushy Author: FTcode File: pushy_interpreter.py (license) View Source Project | 5 votes |

def lcm(a, b): return (a * b) // math.gcd(a, b)

Example 5

Project: epic Author: biocore-ntnu File: merge_helpers.py (license) View Source Project | 5 votes |

def compute_bin_size(dfs): bin_sizes = [] for df in dfs.values(): bins = df.head(100000).index.get_level_values("Bin").astype(int) bin_size = reduce(gcd, bins) bin_sizes.append(bin_size) assert len(set(bin_sizes)) == 1, "Matrixes have different bin sizes: " + str(bin_sizes) bin_size = bin_sizes.pop() logging.info("Bin size: " + str(bin_size)) return bin_size

Example 6

Project: django-route Author: vinayinvicible File: utils.py (license) View Source Project | 5 votes |

def gcd_of_list(l): return reduce(gcd, l, 0)

Example 7

Project: ccepy Author: ranea File: test_aritmetica_elemental.py (license) View Source Project | 5 votes |

def test_alg_euclides(self, a, b): x, y, d = alg_euclides(a, b) assert x * a + y * b == d assert d == gcd(a, b) if (a // b) * b != a and (b // a) * a != b: # a no divide a b y viceversa assert x < b // d assert y < a // d

Example 8

Project: ccepy Author: ranea File: test_aritmetica_elemental.py (license) View Source Project | 5 votes |

def test_alg_euclides_polinomios(self, l1, l2, primo): assume(l1) assume(l2) g = PolinomioZp(l1, primo) h = PolinomioZp(l2, primo) cero = PolinomioZp([0], primo) assume(g != cero) s, t, d = alg_euclides_polinomios(g, h, p=primo) assert s * g + t * h == d assert g % d == 0 and h % d == 0 # vemos si el gcd divide a ambos if h != cero: assert s.grado() <= h.grado() and t.grado() <= g.grado()

Example 9

Project: Python-iBeacon-Scan Author: NikNitro File: egyptian_fraction.py (license) View Source Project | 5 votes |

def egypt_greedy(x, y): if x == 1: return [y] else: a = (-y) % (x) b = y*(y//x + 1) c = gcd(a, b) if c > 1: num, denom = a//c, b//c else: num, denom = a, b return [y//x + 1] + egypt_greedy(num, denom)

Example 10

Project: RemoteTree Author: deNULL File: rsa.py (license) View Source Project | 5 votes |

def rsa_recover_prime_factors(n, e, d): """ Compute factors p and q from the private exponent d. We assume that n has no more than two factors. This function is adapted from code in PyCrypto. """ # See 8.2.2(i) in Handbook of Applied Cryptography. ktot = d * e - 1 # The quantity d*e-1 is a multiple of phi(n), even, # and can be represented as t*2^s. t = ktot while t % 2 == 0: t = t // 2 # Cycle through all multiplicative inverses in Zn. # The algorithm is non-deterministic, but there is a 50% chance # any candidate a leads to successful factoring. # See "Digitalized Signatures and Public Key Functions as Intractable # as Factorization", M. Rabin, 1979 spotted = False a = 2 while not spotted and a < _MAX_RECOVERY_ATTEMPTS: k = t # Cycle through all values a^{t*2^i}=a^k while k < ktot: cand = pow(a, k, n) # Check if a^k is a non-trivial root of unity (mod n) if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1: # We have found a number such that (cand-1)(cand+1)=0 (mod n). # Either of the terms divides n. p = gcd(cand + 1, n) spotted = True break k *= 2 # This value was not any good... let's try another! a += 2 if not spotted: raise ValueError("Unable to compute factors p and q from exponent d.") # Found ! q, r = divmod(n, p) assert r == 0 p, q = sorted((p, q), reverse=True) return (p, q)

Example 11

Project: quickstart-git2s3 Author: aws-quickstart File: rsa.py (license) View Source Project | 5 votes |

Example 12

Project: ProjectQ Author: ProjectQ-Framework File: _constantmath.py (license) View Source Project | 5 votes |

def mul_by_constant_modN(eng, c, N, quint_in): """ Multiplies a quantum integer by a classical number a modulo N, i.e., |x> -> |a*x mod N> (only works if a and N are relative primes, otherwise the modular inverse does not exist). """ assert(c < N and c >= 0) assert(gcd(c, N) == 1) n = len(quint_in) quint_out = eng.allocate_qureg(n + 1) for i in range(n): with Control(eng, quint_in[i]): AddConstantModN((c << i) % N, N) | quint_out for i in range(n): Swap | (quint_out[i], quint_in[i]) cinv = inv_mod_N(c, N) for i in range(n): with Control(eng, quint_in[i]): SubConstantModN((cinv << i) % N, N) | quint_out del quint_out # calculates the inverse of a modulo N

Example 13

Project: py-prng Author: czechnology File: cryptographically_secure_generators.py (license) View Source Project | 5 votes |

def _gen_param_e(self): # use builtin RNG rand = SystemRandom() phi = (self.p - 1) * (self.q - 1) self.e = rand.randint(2, phi - 1) while gcd(self.e, phi) != 1: self.e = rand.randint(2, phi - 1)

Example 14

5 votes |

def _gen_param_e(self): # use builtin RNG rand = SystemRandom() n_bits = self.n.bit_length() phi = (self.p - 1) * (self.q - 1) mx = min(phi - 1, n_bits // 80) # top limits are phi (exclusive) and N/80 (inclusive) self.e = rand.randint(2, mx) while gcd(self.e, phi) != 1: self.e = rand.randint(2, mx)

Example 15

5 votes |

def seed(self, a=None, version=2): """Initialize the internal state of the generator.""" if not (1 <= a <= self.n - 1): raise ValueError("Seed value must be between 1 and n-1=" + str(self.n - 1)) if gcd(a, self.n) != 1: raise ValueError("Seed value must be co-prime to n=" + str(self.n)) super().seed(a, version) self.x = pow(a, 2, self.n)

Example 16

Project: python_exercises Author: Enether File: four_again.py (license) View Source Project | 5 votes |

def print_results(best_result): _, nominator, denominator = best_result # print results from math import gcd gcd_of_both = gcd(nominator, denominator) print("{}/{}".format( nominator // gcd_of_both, denominator // gcd_of_both )) exit()

Example 17

Project: rnnlab Author: phueb File: figutils.py (license) View Source Project | 5 votes |

def extract_n_elements(l, n): while not gcd(n, len(l)) == n: l.pop(0) len_div = len(l) step = len_div // n ids = [i - 1 for i in np.arange(step, len_div + step, step)] # -1 for indexing elements = np.asarray(l)[ids].tolist() return elements

Example 18

Project: rnnlab Author: phueb File: task.py (license) View Source Project | 5 votes |

def populate_folds(yes_questions, no_questions, mb_size, verbose=False): yes_to_pop, no_to_pop = yes_questions[:], no_questions[:] num_questions = len(yes_questions) + len(no_questions) min_fold_len = (num_questions - mb_size * GlobalConfigs.NUM_TEST_FOLDS) // GlobalConfigs.NUM_TEST_FOLDS # TODO loosing questions task_folds = [[] for _ in range(GlobalConfigs.NUM_TEST_FOLDS)] assert mb_size % 2 == 0 # must be even # populate for i in range(GlobalConfigs.NUM_TEST_FOLDS): while gcd(mb_size, len(task_folds[i])) != mb_size or len(task_folds[i]) < min_fold_len: task_folds[i].append(yes_to_pop.pop()) task_folds[i].append(no_to_pop.pop()) if verbose: print('fold {} length: {}'.format(i, len(task_folds[i]))) return task_folds

Example 19

Project: rnnlab Author: phueb File: task.py (license) View Source Project | 5 votes |

def gen_task_mbs(self, style, test_fold_id): num_task_iterations = int(''.join([c for c in self.regime if c.isdigit()])) # make blocks if style == 'train': task_lines = list(chain(*[fold for n, fold in enumerate(self.task_folds) if n != test_fold_id])) windows_x, windows_y = self.make_windows(task_lines) block_x = np.tile(windows_x, [num_task_iterations, 1]) block_y = np.tile(windows_y, [num_task_iterations, 1]) elif style == 'test': task_lines = list(chain(*[fold for n, fold in enumerate(self.task_folds) if n == test_fold_id])) windows_x, windows_y = self.make_windows(task_lines) block_x = windows_x block_y = windows_y elif style == 'train1': task_lines = list(chain(*[fold for n, fold in enumerate(self.task_folds) if n != test_fold_id])) windows_x, windows_y = self.make_windows(task_lines) block_x = windows_x block_y = windows_y else: raise AttributeError('rnnlab: Invalid arg to "style"') # split to mbs if not gcd(self.mb_size, len(block_x)) == self.mb_size: raise Exception( 'rnnlab: Number of task_lines must be divisible by mb_size') num_splits = len(block_x) // self.mb_size # generate for x, y in zip(np.vsplit(block_x, num_splits), np.vsplit(block_y, num_splits)): yield x, y

Example 20

Project: Packages Author: Keypirinha File: calc.py (license) View Source Project | 5 votes |

def _safe_math_gcd(a, b): safe_a = Number(a) safe_b = Number(b) if safe_a == 0 and safe_b == 0: return 0 else: return math.gcd(safe_a.__float__(), safe_b.__float__())

Example 21

Project: Dshield Author: ywjt File: rrule.py (license) View Source Project | 4 votes |

def __construct_byset(self, start, byxxx, base): """ If a `BYXXX` sequence is passed to the constructor at the same level as `FREQ` (e.g. `FREQ=HOURLY,BYHOUR={2,4,7},INTERVAL=3`), there are some specifications which cannot be reached given some starting conditions. This occurs whenever the interval is not coprime with the base of a given unit and the difference between the starting position and the ending position is not coprime with the greatest common denominator between the interval and the base. For example, with a FREQ of hourly starting at 17:00 and an interval of 4, the only valid values for BYHOUR would be {21, 1, 5, 9, 13, 17}, because 4 and 24 are not coprime. :param start: Specifies the starting position. :param byxxx: An iterable containing the list of allowed values. :param base: The largest allowable value for the specified frequency (e.g. 24 hours, 60 minutes). This does not preserve the type of the iterable, returning a set, since the values should be unique and the order is irrelevant, this will speed up later lookups. In the event of an empty set, raises a :exception:`ValueError`, as this results in an empty rrule. """ cset = set() # Support a single byxxx value. if isinstance(byxxx, integer_types): byxxx = (byxxx, ) for num in byxxx: i_gcd = gcd(self._interval, base) # Use divmod rather than % because we need to wrap negative nums. if i_gcd == 1 or divmod(num - start, i_gcd)[1] == 0: cset.add(num) if len(cset) == 0: raise ValueError("Invalid rrule byxxx generates an empty set.") return cset

Example 22

Project: aws-cfn-plex Author: lordmuffin File: rrule.py (license) View Source Project | 4 votes |

Example 23

Project: AshsSDK Author: thehappydinoa File: rrule.py (license) View Source Project | 4 votes |

Example 24

Project: oa_qian Author: sunqb File: rrule.py (license) View Source Project | 4 votes |

Example 25

Project: aws-ec2rescue-linux Author: awslabs File: rrule.py (license) View Source Project | 4 votes |

Example 26

Project: ShelbySearch Author: Agentscreech File: rrule.py (license) View Source Project | 4 votes |

Example 27

Project: alexa-apple-calendar Author: zanderxyz File: rrule.py (license) View Source Project | 4 votes |

Example 28

Project: Wox.Plugin.Lunar Author: imwr File: rrule.py (license) View Source Project | 4 votes |

Example 29

Project: QualquerMerdaAPI Author: tiagovizoto File: rrule.py (license) View Source Project | 4 votes |

Example 30

Project: alfredToday Author: jeeftor File: rrule.py (license) View Source Project | 4 votes |

Example 31

Project: slack_scholar Author: xLeitix File: rrule.py (license) View Source Project | 4 votes |

Example 32

Project: matchpy Author: HPAC File: utils.py (license) View Source Project | 4 votes |

def extended_euclid(a: int, b: int) -> Tuple[int, int, int]: """Extended Euclidean algorithm that computes the Bézout coefficients as well as :math:`gcd(a, b)` Returns ``x, y, d`` where *x* and *y* are a solution to :math:`ax + by = d` and :math:`d = gcd(a, b)`. *x* and *y* are a minimal pair of Bézout's coefficients. See `Extended Euclidean algorithm <https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm>`_ or `Bézout's identity <https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity>`_ for more information. Example: Compute the Bézout coefficients and GCD of 42 and 12: >>> a, b = 42, 12 >>> x, y, d = extended_euclid(a, b) >>> x, y, d (1, -3, 6) Verify the results: >>> import math >>> d == math.gcd(a, b) True >>> a * x + b * y == d True Args: a: The first integer. b: The second integer. Returns: A tuple with the Bézout coefficients and the greatest common divider of the arguments. """ if b == 0: return (1, 0, a) x0, y0, d = extended_euclid(b, a % b) x, y = y0, x0 - (a // b) * y0 return (x, y, d)

Example 33

Project: matchpy Author: HPAC File: utils.py (license) View Source Project | 4 votes |

def solve_linear_diop(total: int, *coeffs: int) -> Iterator[Tuple[int, ...]]: r"""Yield non-negative integer solutions of a linear Diophantine equation of the format :math:`c_1 x_1 + \dots + c_n x_n = total`. If there are at most two coefficients, :func:`base_solution_linear()` is used to find the solutions. Otherwise, the solutions are found recursively, by reducing the number of variables in each recursion: 1. Compute :math:`d := gcd(c_2, \dots , c_n)` 2. Solve :math:`c_1 x + d y = total` 3. Recursively solve :math:`c_2 x_2 + \dots + c_n x_n = y` for each solution for `y` 4. Combine these solutions to form a solution for the whole equation Args: total: The constant of the equation. *coeffs: The coefficients :math:`c_i` of the equation. Yields: The non-negative integer solutions of the equation as a tuple :math:`(x_1, \dots, x_n)`. """ if len(coeffs) == 0: if total == 0: yield tuple() return if len(coeffs) == 1: if total % coeffs[0] == 0: yield (total // coeffs[0], ) return if len(coeffs) == 2: yield from base_solution_linear(coeffs[0], coeffs[1], total) return # calculate gcd(coeffs[1:]) remainder_gcd = math.gcd(coeffs[1], coeffs[2]) for coeff in coeffs[3:]: remainder_gcd = math.gcd(remainder_gcd, coeff) # solve coeffs[0] * x + remainder_gcd * y = total for coeff0_solution, remainder_gcd_solution in base_solution_linear(coeffs[0], remainder_gcd, total): new_coeffs = [c // remainder_gcd for c in coeffs[1:]] # use the solutions for y to solve the remaining variables recursively for remainder_solution in solve_linear_diop(remainder_gcd_solution, *new_coeffs): yield (coeff0_solution, ) + remainder_solution

Example 34

Project: noobotkit Author: nazroll File: rrule.py (license) View Source Project | 4 votes |

Example 35

Project: hackathon Author: vertica File: rrule.py (license) View Source Project | 4 votes |

Example 36

Project: yatta_reader Author: sound88 File: rrule.py (license) View Source Project | 4 votes |

Example 37

Project: Chorus Author: DonaldBough File: rrule.py (license) View Source Project | 4 votes |

Example 38

Project: tf_aws_ecs_instance_draining_on_scale_in Author: terraform-community-modules File: rrule.py (license) View Source Project | 4 votes |