Python keras.layers.Layer() Examples

The following are 30 code examples of keras.layers.Layer(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module keras.layers , or try the search function .
Example #1
Source Project: CycleGAN-Keras   Author: simontomaskarlsson   File: model.py    License: GNU General Public License v3.0 6 votes vote down vote up
def modelDiscriminator(self, name=None):
        # Specify input
        input_img = Input(shape=self.img_shape)
        # Layer 1 (#Instance normalization is not used for this layer)
        x = self.ck(input_img, 64, False, 2)
        # Layer 2
        x = self.ck(x, 128, True, 2)
        # Layer 3
        x = self.ck(x, 256, True, 2)
        # Layer 4
        x = self.ck(x, 512, True, 1)
        # Output layer
        if self.use_patchgan:
            x = Conv2D(filters=1, kernel_size=4, strides=1, padding='same')(x)
        else:
            x = Flatten()(x)
            x = Dense(1)(x)
        #x = Activation('sigmoid')(x) - No sigmoid to avoid near-fp32 machine epsilon discriminator cost
        return Model(inputs=input_img, outputs=x, name=name) 
Example #2
Source Project: GAN-MRI   Author: simontomaskarlsson   File: CycleGAN.py    License: GNU General Public License v3.0 6 votes vote down vote up
def modelDiscriminator(self, name=None):
        # Specify input
        input_img = Input(shape=self.img_shape)
        # Layer 1 (#Instance normalization is not used for this layer)
        x = self.ck(input_img, 64, False, 2)
        # Layer 2
        x = self.ck(x, 128, True, 2)
        # Layer 3
        x = self.ck(x, 256, True, 2)
        # Layer 4
        x = self.ck(x, 512, True, 1)
        # Output layer
        if self.use_patchgan:
            x = Conv2D(filters=1, kernel_size=4, strides=1, padding='same')(x)
        else:
            x = Flatten()(x)
            x = Dense(1)(x)
        #x = Activation('sigmoid')(x) - No sigmoid to avoid near-fp32 machine epsilon discriminator cost
        return Model(inputs=input_img, outputs=x, name=name) 
Example #3
Source Project: mlflow   Author: mlflow   File: test_keras_model_export.py    License: Apache License 2.0 6 votes vote down vote up
def custom_layer():
    class MyDense(Layer):
        def __init__(self, output_dim, **kwargs):
            self.output_dim = output_dim
            super(MyDense, self).__init__(**kwargs)

        def build(self, input_shape):
            self.kernel = self.add_weight(name='kernel',
                                          shape=(input_shape[1], self.output_dim),
                                          initializer='uniform',
                                          trainable=True)
            super(MyDense, self).build(input_shape)

        def call(self, x):
            return K.dot(x, self.kernel)

        def compute_output_shape(self, input_shape):
            return (input_shape[0], self.output_dim)

        def get_config(self):
            return {'output_dim': self.output_dim}

    return MyDense 
Example #4
Source Project: keras-utility-layer-collection   Author: zimmerrol   File: attention.py    License: MIT License 5 votes vote down vote up
def _validate_input_shape(self, input_shape):
        if len(input_shape) != 3:
            raise ValueError("Layer received an input shape {0} but expected three inputs (Q, V, K).".format(input_shape))
        else:
            if input_shape[0][0] != input_shape[1][0] or input_shape[1][0] != input_shape[2][0]:
                raise ValueError("All three inputs (Q, V, K) have to have the same batch size; received batch sizes: {0}, {1}, {2}".format(input_shape[0][0], input_shape[1][0], input_shape[2][0]))
            if input_shape[0][1] != input_shape[1][1] or input_shape[1][1] != input_shape[2][1]:
                raise ValueError("All three inputs (Q, V, K) have to have the same length; received lengths: {0}, {1}, {2}".format(input_shape[0][0], input_shape[1][0], input_shape[2][0]))
            if input_shape[0][2] != input_shape[1][2]:
                raise ValueError("Input shapes of Q {0} and V {1} do not match.".format(input_shape[0], input_shape[1])) 
Example #5
Source Project: keras-utility-layer-collection   Author: zimmerrol   File: attention.py    License: MIT License 5 votes vote down vote up
def _validate_input_shape(self, input_shape):
        if len(input_shape) != 3:
            raise ValueError("Layer received an input shape {0} but expected three inputs (Q, V, K).".format(input_shape))
        else:
            if input_shape[0][0] != input_shape[1][0] or input_shape[1][0] != input_shape[2][0]:
                raise ValueError("All three inputs (Q, V, K) have to have the same batch size; received batch sizes: {0}, {1}, {2}".format(input_shape[0][0], input_shape[1][0], input_shape[2][0]))
            if input_shape[0][1] != input_shape[1][1] or input_shape[1][1] != input_shape[2][1]:
                raise ValueError("All three inputs (Q, V, K) have to have the same length; received lengths: {0}, {1}, {2}".format(input_shape[0][0], input_shape[1][0], input_shape[2][0]))
            if input_shape[0][2] != input_shape[1][2]:
                raise ValueError("Input shapes of Q {0} and V {1} do not match.".format(input_shape[0], input_shape[1])) 
Example #6
Source Project: keras-utility-layer-collection   Author: zimmerrol   File: attention.py    License: MIT License 5 votes vote down vote up
def _validate_input_shape(self, input_shape):
        if len(input_shape) != 2:
            raise ValueError("Layer received an input shape {0} but expected two inputs (source, query).".format(input_shape))
        else:
            if input_shape[0][0] != input_shape[1][0]:
                raise ValueError("Both two inputs (source, query) have to have the same batch size; received batch sizes: {0}, {1}".format(input_shape[0][0], input_shape[1][0]))
            if input_shape[0][1] != input_shape[1][1]:
                raise ValueError("Both inputs (source, query) have to have the same length; received lengths: {0}, {1}".format(input_shape[0][0], input_shape[1][0])) 
Example #7
Source Project: keras-utility-layer-collection   Author: zimmerrol   File: attention.py    License: MIT License 5 votes vote down vote up
def _validate_input_shape(self, input_shape):
        if len(input_shape) != 3:
            raise ValueError("Layer received an input with shape {0} but expected a Tensor of rank 3.".format(input_shape[0])) 
Example #8
Source Project: keras-utility-layer-collection   Author: zimmerrol   File: attention.py    License: MIT License 5 votes vote down vote up
def _validate_input_shape(self, input_shape):
        if len(input_shape) >= 2:
            if len(input_shape[:2]) != 2:
                raise ValueError("Layer has to receive two inputs: the temporal signal and the external signal which is constant for all time steps")
            if len(input_shape[0]) != 3:
                raise ValueError("Layer received a temporal input with shape {0} but expected a Tensor of rank 3.".format(input_shape[0]))
            if len(input_shape[1]) != 3:
                raise ValueError("Layer received a time-independent input with shape {0} but expected a Tensor of rank 3.".format(input_shape[1]))
        else:
            raise ValueError("Layer has to receive at least 2 inputs: the temporal signal and the external signal which is constant for all time steps") 
Example #9
Source Project: deep_complex_networks   Author: ChihebTrabelsi   File: norm.py    License: MIT License 5 votes vote down vote up
def layernorm(x, axis, epsilon, gamma, beta):
    # assert self.built, 'Layer must be built before being called'
    input_shape = K.shape(x)
    reduction_axes = list(range(K.ndim(x)))
    del reduction_axes[axis]
    del reduction_axes[0]
    broadcast_shape = [1] * K.ndim(x)
    broadcast_shape[axis] = input_shape[axis]
    broadcast_shape[0] = K.shape(x)[0]

    # Perform normalization: centering and reduction

    mean = K.mean(x, axis=reduction_axes)
    broadcast_mean = K.reshape(mean, broadcast_shape)
    x_centred = x - broadcast_mean
    variance  = K.mean(x_centred ** 2, axis=reduction_axes) + epsilon
    broadcast_variance = K.reshape(variance, broadcast_shape)

    x_normed = x_centred / K.sqrt(broadcast_variance)

    # Perform scaling and shifting

    broadcast_shape_params = [1] * K.ndim(x)
    broadcast_shape_params[axis] = K.shape(x)[axis]
    broadcast_gamma  = K.reshape(gamma, broadcast_shape_params)
    broadcast_beta  = K.reshape(beta,  broadcast_shape_params)

    x_LN = broadcast_gamma * x_normed + broadcast_beta

    return x_LN 
Example #10
Source Project: deep_complex_networks   Author: ChihebTrabelsi   File: norm.py    License: MIT License 5 votes vote down vote up
def call(self, x, mask=None):
        assert self.built, 'Layer must be built before being called'
        return layernorm(x, self.axis, self.epsilon, self.gamma, self.beta) 
Example #11
Source Project: Keras-TextClassification   Author: yongzhuo   File: layer_normalization.py    License: MIT License 5 votes vote down vote up
def __init__(self,
                 center=True,
                 scale=True,
                 epsilon=None,
                 gamma_initializer='ones',
                 beta_initializer='zeros',
                 gamma_regularizer=None,
                 beta_regularizer=None,
                 gamma_constraint=None,
                 beta_constraint=None,
                 **kwargs):
        """Layer normalization layer

        See: [Layer Normalization](https://arxiv.org/pdf/1607.06450.pdf)

        :param center: Add an offset parameter if it is True.
        :param scale: Add a scale parameter if it is True.
        :param epsilon: Epsilon for calculating variance.
        :param gamma_initializer: Initializer for the gamma weight.
        :param beta_initializer: Initializer for the beta weight.
        :param gamma_regularizer: Optional regularizer for the gamma weight.
        :param beta_regularizer: Optional regularizer for the beta weight.
        :param gamma_constraint: Optional constraint for the gamma weight.
        :param beta_constraint: Optional constraint for the beta weight.
        :param kwargs:
        """
        super(LayerNormalization, self).__init__(**kwargs)
        self.supports_masking = True
        self.center = center
        self.scale = scale
        if epsilon is None:
            epsilon = K.epsilon() * K.epsilon()
        self.epsilon = epsilon
        self.gamma_initializer = keras.initializers.get(gamma_initializer)
        self.beta_initializer = keras.initializers.get(beta_initializer)
        self.gamma_regularizer = keras.regularizers.get(gamma_regularizer)
        self.beta_regularizer = keras.regularizers.get(beta_regularizer)
        self.gamma_constraint = keras.constraints.get(gamma_constraint)
        self.beta_constraint = keras.constraints.get(beta_constraint)
        self.gamma, self.beta = None, None 
Example #12
Source Project: CycleGAN-Keras   Author: simontomaskarlsson   File: model.py    License: GNU General Public License v3.0 5 votes vote down vote up
def modelGenerator(self, name=None):
        # Specify input
        input_img = Input(shape=self.img_shape)
        # Layer 1
        x = ReflectionPadding2D((3, 3))(input_img)
        x = self.c7Ak(x, 32)
        # Layer 2
        x = self.dk(x, 64)
        # Layer 3
        x = self.dk(x, 128)

        if self.use_multiscale_discriminator:
            # Layer 3.5
            x = self.dk(x, 256)

        # Layer 4-12: Residual layer
        for _ in range(4, 13):
            x = self.Rk(x)

        if self.use_multiscale_discriminator:
            # Layer 12.5
            x = self.uk(x, 128)

        # Layer 13
        x = self.uk(x, 64)
        # Layer 14
        x = self.uk(x, 32)
        x = ReflectionPadding2D((3, 3))(x)
        x = Conv2D(self.channels, kernel_size=7, strides=1)(x)
        x = Activation('tanh')(x)  # They say they use Relu but really they do not
        return Model(inputs=input_img, outputs=x, name=name)

#===============================================================================
# Test - simple model 
Example #13
Source Project: keras-gat   Author: danielegrattarola   File: graph_attention_layer.py    License: MIT License 5 votes vote down vote up
def build(self, input_shape):
        assert len(input_shape) >= 2
        F = input_shape[0][-1]

        # Initialize weights for each attention head
        for head in range(self.attn_heads):
            # Layer kernel
            kernel = self.add_weight(shape=(F, self.F_),
                                     initializer=self.kernel_initializer,
                                     regularizer=self.kernel_regularizer,
                                     constraint=self.kernel_constraint,
                                     name='kernel_{}'.format(head))
            self.kernels.append(kernel)

            # # Layer bias
            if self.use_bias:
                bias = self.add_weight(shape=(self.F_, ),
                                       initializer=self.bias_initializer,
                                       regularizer=self.bias_regularizer,
                                       constraint=self.bias_constraint,
                                       name='bias_{}'.format(head))
                self.biases.append(bias)

            # Attention kernels
            attn_kernel_self = self.add_weight(shape=(self.F_, 1),
                                               initializer=self.attn_kernel_initializer,
                                               regularizer=self.attn_kernel_regularizer,
                                               constraint=self.attn_kernel_constraint,
                                               name='attn_kernel_self_{}'.format(head),)
            attn_kernel_neighs = self.add_weight(shape=(self.F_, 1),
                                                 initializer=self.attn_kernel_initializer,
                                                 regularizer=self.attn_kernel_regularizer,
                                                 constraint=self.attn_kernel_constraint,
                                                 name='attn_kernel_neigh_{}'.format(head))
            self.attn_kernels.append([attn_kernel_self, attn_kernel_neighs])
        self.built = True 
Example #14
Source Project: keras-neural-graph-fingerprint   Author: keiserlab   File: layers.py    License: MIT License 5 votes vote down vote up
def __init__(self, inner_layer_arg, **kwargs):
        # Initialise based on one of the three initialisation methods

        # Case 1: Check if inner_layer_arg is conv_width
        if isinstance(inner_layer_arg, (int, long)):
            self.conv_width = inner_layer_arg
            dense_layer_kwargs, kwargs = filter_func_args(layers.Dense.__init__,
            kwargs, overrule_args=['name'])
            self.create_inner_layer_fn = lambda: layers.Dense(self.conv_width, **dense_layer_kwargs)

        # Case 2: Check if an initialised keras layer is given
        elif isinstance(inner_layer_arg, layers.Layer):
            assert inner_layer_arg.built == False, 'When initialising with a keras layer, it cannot be built.'
            _, self.conv_width = inner_layer_arg.get_output_shape_for((None, None))
            # layer_from_config will mutate the config dict, therefore create a get fn
            self.create_inner_layer_fn = lambda: layer_from_config(dict(
                                                    class_name=inner_layer_arg.__class__.__name__,
                                                    config=inner_layer_arg.get_config()))

        # Case 3: Check if a function is provided that returns a initialised keras layer
        elif callable(inner_layer_arg):
            example_instance = inner_layer_arg()
            assert isinstance(example_instance, layers.Layer), 'When initialising with a function, the function has to return a keras layer'
            assert example_instance.built == False, 'When initialising with a keras layer, it cannot be built.'
            _, self.conv_width = example_instance.get_output_shape_for((None, None))
            self.create_inner_layer_fn = inner_layer_arg

        else:
            raise ValueError('NeuralGraphHidden has to be initialised with 1). int conv_widht, 2). a keras layer instance, or 3). a function returning a keras layer instance.')

        super(NeuralGraphHidden, self).__init__(**kwargs) 
Example #15
Source Project: keras-neural-graph-fingerprint   Author: keiserlab   File: layers.py    License: MIT License 5 votes vote down vote up
def __init__(self, inner_layer_arg, **kwargs):
        # Initialise based on one of the three initialisation methods

        # Case 1: Check if inner_layer_arg is fp_length
        if isinstance(inner_layer_arg, (int, long)):
            self.fp_length = inner_layer_arg
            dense_layer_kwargs, kwargs = filter_func_args(layers.Dense.__init__,
            kwargs, overrule_args=['name'])
            self.create_inner_layer_fn = lambda: layers.Dense(self.fp_length, **dense_layer_kwargs)

        # Case 2: Check if an initialised keras layer is given
        elif isinstance(inner_layer_arg, layers.Layer):
            assert inner_layer_arg.built == False, 'When initialising with a keras layer, it cannot be built.'
            _, self.fp_length = inner_layer_arg.get_output_shape_for((None, None))
            self.create_inner_layer_fn = lambda: inner_layer_arg

        # Case 3: Check if a function is provided that returns a initialised keras layer
        elif callable(inner_layer_arg):
            example_instance = inner_layer_arg()
            assert isinstance(example_instance, layers.Layer), 'When initialising with a function, the function has to return a keras layer'
            assert example_instance.built == False, 'When initialising with a keras layer, it cannot be built.'
            _, self.fp_length = example_instance.get_output_shape_for((None, None))
            self.create_inner_layer_fn = inner_layer_arg

        else:
            raise ValueError('NeuralGraphHidden has to be initialised with 1). int conv_widht, 2). a keras layer instance, or 3). a function returning a keras layer instance.')

        super(NeuralGraphOutput, self).__init__(**kwargs) 
Example #16
Source Project: deepcpg   Author: cangermueller   File: utils.py    License: MIT License 5 votes vote down vote up
def copy_weights(src_model, dst_model, must_exist=True):
    """Copy weights from `src_model` to `dst_model`.

    Parameters
    ----------
    src_model
        Keras source model.
    dst_model
        Keras destination model.
    must_exist: bool
        If `True`, raises `ValueError` if a layer in `dst_model` does not exist
        in `src_model`.

    Returns
    -------
    list
        Names of layers that were copied.
    """
    copied = []
    for dst_layer in dst_model.layers:
        for src_layer in src_model.layers:
            if src_layer.name == dst_layer.name:
                break
        if not src_layer:
            if must_exist:
                tmp = 'Layer "%s" not found!' % (src_layer.name)
                raise ValueError(tmp)
            else:
                continue
        dst_layer.set_weights(src_layer.get_weights())
        copied.append(dst_layer.name)
    return copied 
Example #17
Source Project: deep_qa   Author: allenai   File: character_tokenizer.py    License: Apache License 2.0 5 votes vote down vote up
def embed_input(self,
                    input_layer: Layer,
                    embed_function: Callable[[Layer, str, str], Layer],
                    text_trainer,
                    embedding_suffix: str=''):
        return embed_function(input_layer,
                              embedding_name='characters' + embedding_suffix,
                              vocab_name='words') 
Example #18
Source Project: deep_qa   Author: allenai   File: word_tokenizer.py    License: Apache License 2.0 5 votes vote down vote up
def embed_input(self,
                    input_layer: Layer,
                    embed_function: Callable[[Layer, str, str], Layer],
                    text_trainer,
                    embedding_suffix: str=""):
        # pylint: disable=protected-access
        return embed_function(input_layer,
                              embedding_name='words' + embedding_suffix,
                              vocab_name='words') 
Example #19
Source Project: deep_qa   Author: allenai   File: tokenizer.py    License: Apache License 2.0 5 votes vote down vote up
def get_custom_objects(self) -> Dict[str, 'Layer']:  # pylint: disable=no-self-use
        """
        If you use any custom ``Layers`` in your ``embed_input`` method, you need to return them
        here, so that the ``TextTrainer`` can correctly load models.
        """
        return {} 
Example #20
Source Project: deep_qa   Author: allenai   File: tokenizer.py    License: Apache License 2.0 5 votes vote down vote up
def embed_input(self,
                    input_layer: Layer,
                    embed_function: Callable[[Layer, str, str], Layer],
                    text_trainer,
                    embedding_suffix: str=''):
        """
        Applies embedding layers to the input_layer.  See :func:`TextTrainer._embed_input
        <deep_qa.training.text_trainer.TextTrainer._embed_input>` for a more detailed comment on
        what this method does.

        Parameters
        ----------
        input_layer: Keras ``Input()`` layer
            The layer to embed.

        embed_function: Callable[['Layer', str, str], 'Tensor']
            This should be the __get_embedded_input method from your instantiated ``TextTrainer``.
            This function actually applies an ``Embedding`` layer (and maybe also a projection and
            dropout) to the input layer.

        text_trainer: TextTrainer
            Simple ``Tokenizers`` will just need to use the ``embed_function`` that gets passed as
            a parameter here, but complex ``Tokenizers`` might need more than just an embedding
            function.  So that you can get an encoder or other things from the ``TextTrainer`` here
            if you need them, we take this object as a parameter.

        embedding_suffix: str, optional (default="")
            A suffix to add to embedding keys that we use, so that, e.g., you could specify several
            different word embedding matrices, for whatever reason.
        """
        raise NotImplementedError 
Example #21
Source Project: GAN-MRI   Author: simontomaskarlsson   File: CycleGAN.py    License: GNU General Public License v3.0 5 votes vote down vote up
def modelGenerator(self, name=None):
        # Specify input
        input_img = Input(shape=self.img_shape)
        # Layer 1
        x = ReflectionPadding2D((3, 3))(input_img)
        x = self.c7Ak(x, 32)
        # Layer 2
        x = self.dk(x, 64)
        # Layer 3
        x = self.dk(x, 128)

        if self.use_multiscale_discriminator:
            # Layer 3.5
            x = self.dk(x, 256)

        # Layer 4-12: Residual layer
        for _ in range(4, 13):
            x = self.Rk(x)

        if self.use_multiscale_discriminator:
            # Layer 12.5
            x = self.uk(x, 128)

        # Layer 13
        x = self.uk(x, 64)
        # Layer 14
        x = self.uk(x, 32)
        x = ReflectionPadding2D((3, 3))(x)
        x = Conv2D(self.channels, kernel_size=7, strides=1)(x)
        x = Activation('tanh')(x)  # They say they use Relu but really they do not
        return Model(inputs=input_img, outputs=x, name=name)

#===============================================================================
# Test - simple model 
Example #22
Source Project: qrnn   Author: DingKe   File: qrnn.py    License: MIT License 5 votes vote down vote up
def reset_states(self):
        assert self.stateful, 'Layer must be stateful.'
        input_shape = self.input_spec[0].shape
        if not input_shape[0]:
            raise Exception('If a RNN is stateful, a complete ' +
                            'input_shape must be provided (including batch size).')
        if hasattr(self, 'states'):
            K.set_value(self.states[0],
                        np.zeros((input_shape[0], self.output_dim)))
        else:
            self.states = [K.zeros((input_shape[0], self.output_dim))] 
Example #23
Source Project: embedding-as-service   Author: amansrivastava17   File: qrnn.py    License: MIT License 4 votes vote down vote up
def reset_states(self, states=None):
        if not self.stateful:
            raise AttributeError('Layer must be stateful.')
        if not self.input_spec:
            raise RuntimeError('Layer has never been called '
                               'and thus has no states.')

        batch_size = self.input_spec.shape[0]
        if not batch_size:
            raise ValueError('If a QRNN is stateful, it needs to know '
                             'its batch size. Specify the batch size '
                             'of your input tensors: \n'
                             '- If using a Sequential model, '
                             'specify the batch size by passing '
                             'a `batch_input_shape` '
                             'argument to your first layer.\n'
                             '- If using the functional API, specify '
                             'the time dimension by passing a '
                             '`batch_shape` argument to your Input layer.')

        if self.states[0] is None:
            self.states = [K.zeros((batch_size, self.units))
                           for _ in self.states]
        elif states is None:
            for state in self.states:
                K.set_value(state, np.zeros((batch_size, self.units)))
        else:
            if not isinstance(states, (list, tuple)):
                states = [states]
            if len(states) != len(self.states):
                raise ValueError('Layer ' + self.name + ' expects ' +
                                 str(len(self.states)) + ' states, '
                                                         'but it received ' + str(len(states)) +
                                 'state values. Input received: ' +
                                 str(states))
            for index, (value, state) in enumerate(zip(states, self.states)):
                if value.shape != (batch_size, self.units):
                    raise ValueError('State ' + str(index) +
                                     ' is incompatible with layer ' +
                                     self.name + ': expected shape=' +
                                     str((batch_size, self.units)) +
                                     ', found shape=' + str(value.shape))
                K.set_value(state, value) 
Example #24
Source Project: embedding-as-service   Author: amansrivastava17   File: qrnn.py    License: MIT License 4 votes vote down vote up
def call(self, inputs, mask=None, initial_state=None, training=None):
        # input shape: `(samples, time (padded with zeros), input_dim)`
        # note that the .build() method of subclasses MUST define
        # self.input_spec and self.state_spec with complete input shapes.
        if isinstance(inputs, list):
            initial_states = inputs[1:]
            inputs = inputs[0]
        elif initial_state is not None:
            pass
        elif self.stateful:
            initial_states = self.states
        else:
            initial_states = self.get_initial_states(inputs)

        if len(initial_states) != len(self.states):
            raise ValueError('Layer has ' + str(len(self.states)) +
                             ' states but was passed ' +
                             str(len(initial_states)) +
                             ' initial states.')
        input_shape = K.int_shape(inputs)
        if self.unroll and input_shape[1] is None:
            raise ValueError('Cannot unroll a RNN if the '
                             'time dimension is undefined. \n'
                             '- If using a Sequential model, '
                             'specify the time dimension by passing '
                             'an `input_shape` or `batch_input_shape` '
                             'argument to your first layer. If your '
                             'first layer is an Embedding, you can '
                             'also use the `input_length` argument.\n'
                             '- If using the functional API, specify '
                             'the time dimension by passing a `shape` '
                             'or `batch_shape` argument to your Input layer.')
        constants = self.get_constants(inputs, training=None)
        preprocessed_input = self.preprocess_input(inputs, training=None)

        last_output, outputs, states = K.rnn(self.step, preprocessed_input,
                                             initial_states,
                                             go_backwards=self.go_backwards,
                                             mask=mask,
                                             constants=constants,
                                             unroll=self.unroll,
                                             input_length=input_shape[1])
        if self.stateful:
            updates = []
            for i in range(len(states)):
                updates.append((self.states[i], states[i]))
            self.add_update(updates, inputs)

        # Properly set learning phase
        if 0 < self.dropout < 1:
            last_output._uses_learning_phase = True
            outputs._uses_learning_phase = True

        if self.return_sequences:
            return outputs
        else:
            return last_output 
Example #25
Source Project: keras-gat   Author: danielegrattarola   File: graph_attention_layer.py    License: MIT License 4 votes vote down vote up
def __init__(self,
                 F_,
                 attn_heads=1,
                 attn_heads_reduction='concat',  # {'concat', 'average'}
                 dropout_rate=0.5,
                 activation='relu',
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 attn_kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 attn_kernel_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 attn_kernel_constraint=None,
                 **kwargs):
        if attn_heads_reduction not in {'concat', 'average'}:
            raise ValueError('Possbile reduction methods: concat, average')

        self.F_ = F_  # Number of output features (F' in the paper)
        self.attn_heads = attn_heads  # Number of attention heads (K in the paper)
        self.attn_heads_reduction = attn_heads_reduction  # Eq. 5 and 6 in the paper
        self.dropout_rate = dropout_rate  # Internal dropout rate
        self.activation = activations.get(activation)  # Eq. 4 in the paper
        self.use_bias = use_bias

        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.attn_kernel_initializer = initializers.get(attn_kernel_initializer)

        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.attn_kernel_regularizer = regularizers.get(attn_kernel_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.attn_kernel_constraint = constraints.get(attn_kernel_constraint)
        self.supports_masking = False

        # Populated by build()
        self.kernels = []       # Layer kernels for attention heads
        self.biases = []        # Layer biases for attention heads
        self.attn_kernels = []  # Attention kernels for attention heads

        if attn_heads_reduction == 'concat':
            # Output will have shape (..., K * F')
            self.output_dim = self.F_ * self.attn_heads
        else:
            # Output will have shape (..., F')
            self.output_dim = self.F_

        super(GraphAttention, self).__init__(**kwargs) 
Example #26
Source Project: BERT_with_keras   Author: miroozyx   File: modeling.py    License: MIT License 4 votes vote down vote up
def get_lm_model(self):
        """construct language model for pretraining"""
        config = self.config
        positions_input = Input(shape=(self.max_predictions_per_seq,), dtype='int32', name='masked_lm_positions')
        cur_inputs = self.inputs + [positions_input]

        sequence_output = Lambda(
            function=lambda x: gather_indexes(x[0], x[1]),
            output_shape=lambda x: (x[0][0], x[1][1], x[0][2])
        )([self.sequence_output, positions_input])

        sequence_output = Dense(
            units=config.hidden_size,
            activation=get_activation(config.hidden_act),
            kernel_initializer=initializers.truncated_normal(stddev=config.initializer_range),
        )(sequence_output)
        sequence_output = LayerNormalization()(sequence_output)

        sequence_att = Lambda(
            function=lambda x: K.dot(x[0], K.permute_dimensions(x[1], pattern=(1,0))),
            output_shape=lambda x: (x[0][0], x[0][1] ,x[1][0]),
        )([sequence_output, self.embedding_table])

        class AddBiasSoftmax(Layer):
            def __init__(self, **kwargs):
                super(AddBiasSoftmax, self).__init__(**kwargs)
                self.supports_masking=True

            def build(self, input_shape):
                self.bias = self.add_weight(shape=(input_shape[-1],),
                                                  name='output_bias',
                                                  initializer=initializers.get('zeros'))
                super(AddBiasSoftmax, self).build(input_shape)

            def call(self, inputs, **kwargs):
                output = K.bias_add(inputs, self.bias)
                output = K.softmax(output, axis=-1)
                return output

            def compute_output_shape(self, input_shape):
                return input_shape

        sequence_softmax = AddBiasSoftmax()(sequence_att)

        self.lm_model = Model(inputs=cur_inputs, outputs=sequence_softmax, name='lm_model')
        return self.lm_model 
Example #27
Source Project: nn_playground   Author: DingKe   File: qrnn.py    License: MIT License 4 votes vote down vote up
def reset_states(self, states=None):
        if not self.stateful:
            raise AttributeError('Layer must be stateful.')
        if not self.input_spec:
            raise RuntimeError('Layer has never been called '
                               'and thus has no states.')

        batch_size = self.input_spec.shape[0]
        if not batch_size:
            raise ValueError('If a QRNN is stateful, it needs to know '
                             'its batch size. Specify the batch size '
                             'of your input tensors: \n'
                             '- If using a Sequential model, '
                             'specify the batch size by passing '
                             'a `batch_input_shape` '
                             'argument to your first layer.\n'
                             '- If using the functional API, specify '
                             'the time dimension by passing a '
                             '`batch_shape` argument to your Input layer.')

        if self.states[0] is None:
            self.states = [K.zeros((batch_size, self.units))
                           for _ in self.states]
        elif states is None:
            for state in self.states:
                K.set_value(state, np.zeros((batch_size, self.units)))
        else:
            if not isinstance(states, (list, tuple)):
                states = [states]
            if len(states) != len(self.states):
                raise ValueError('Layer ' + self.name + ' expects ' +
                                 str(len(self.states)) + ' states, '
                                 'but it received ' + str(len(states)) +
                                 'state values. Input received: ' +
                                 str(states))
            for index, (value, state) in enumerate(zip(states, self.states)):
                if value.shape != (batch_size, self.units):
                    raise ValueError('State ' + str(index) +
                                     ' is incompatible with layer ' +
                                     self.name + ': expected shape=' +
                                     str((batch_size, self.units)) +
                                     ', found shape=' + str(value.shape))
                K.set_value(state, value) 
Example #28
Source Project: nn_playground   Author: DingKe   File: qrnn.py    License: MIT License 4 votes vote down vote up
def call(self, inputs, mask=None, initial_state=None, training=None):
        # input shape: `(samples, time (padded with zeros), input_dim)`
        # note that the .build() method of subclasses MUST define
        # self.input_spec and self.state_spec with complete input shapes.
        if isinstance(inputs, list):
            initial_states = inputs[1:]
            inputs = inputs[0]
        elif initial_state is not None:
            pass
        elif self.stateful:
            initial_states = self.states
        else:
            initial_states = self.get_initial_states(inputs)

        if len(initial_states) != len(self.states):
            raise ValueError('Layer has ' + str(len(self.states)) +
                             ' states but was passed ' +
                             str(len(initial_states)) +
                             ' initial states.')
        input_shape = K.int_shape(inputs)
        if self.unroll and input_shape[1] is None:
            raise ValueError('Cannot unroll a RNN if the '
                             'time dimension is undefined. \n'
                             '- If using a Sequential model, '
                             'specify the time dimension by passing '
                             'an `input_shape` or `batch_input_shape` '
                             'argument to your first layer. If your '
                             'first layer is an Embedding, you can '
                             'also use the `input_length` argument.\n'
                             '- If using the functional API, specify '
                             'the time dimension by passing a `shape` '
                             'or `batch_shape` argument to your Input layer.')
        constants = self.get_constants(inputs, training=None)
        preprocessed_input = self.preprocess_input(inputs, training=None)

        last_output, outputs, states = K.rnn(self.step, preprocessed_input,
                                            initial_states,
                                            go_backwards=self.go_backwards,
                                            mask=mask,
                                            constants=constants,
                                            unroll=self.unroll,
                                            input_length=input_shape[1])
        if self.stateful:
            updates = []
            for i in range(len(states)):
                updates.append((self.states[i], states[i]))
            self.add_update(updates, inputs)

        # Properly set learning phase
        if 0 < self.dropout < 1:
            last_output._uses_learning_phase = True
            outputs._uses_learning_phase = True

        if self.return_sequences:
            return outputs
        else:
            return last_output 
Example #29
Source Project: deep_qa   Author: allenai   File: text_trainer.py    License: Apache License 2.0 4 votes vote down vote up
def _embed_input(self, input_layer: Layer, embedding_suffix: str=""):
        """
        This function embeds a word sequence input, using an embedding defined by
        ``embedding_suffix``.  You should call this function in your ``_build_model`` method any time
        you want to convert word indices into word embeddings.  Note that if this is used in
        conjunction with ``_get_sentence_shape``, we will do the correct thing for whatever
        :class:`~deep_qa.data.tokenizers.tokenizer.Tokenizer` you use.  The actual input to this
        might be words and characters, and we might actually do a concatenation of a word embedding
        and a character-level encoder.  All of this is handled transparently to your concrete model
        subclass, if you use the API correctly, calling ``_get_sentence_shape()`` to get the shape
        for your ``Input`` layer, and passing that input layer into this ``_embed_input()`` method.

        We need to take the input Layer here, instead of just returning a Layer that you can use as
        you wish, because we might have to apply several layers to the input, depending on the
        parameters you specified for embedding things.  So we return, essentially,
        ``embedding(input_layer)``.

        The input layer can have arbitrary shape, as long as it ends with a word sequence.  For
        example, you could pass in a single sentence, a set of sentences, or a set of sets of
        sentences, and we will handle them correctly.

        Internally, we will create a dictionary mapping embedding names to embedding layers, so if
        you have several things you want to embed with the same embedding layer, be sure you use
        the same name each time (or just don't pass a name, which accomplishes the same thing).  If
        for some reason you want to have different embeddings for different inputs, use a different
        name for the embedding.

        In this function, we pass the work off to self.tokenizer, which might need to do some
        additional processing to actually give you a word embedding (e.g., if your text encoder
        uses both words and characters, we need to run the character encoder and concatenate the
        result with a word embedding).

        Note that the ``embedding_suffix`` parameter is a `suffix` to whatever name the tokenizer
        will give to the embeddings it creates.  Typically, the tokenizer will use the name
        ``words``, though it could also use ``characters``, or something else.  So if you pass
        ``_A`` for ``embedding_suffix``, you will end up with actual embedding names like
        ``words_A`` and ``characters_A``.  These are the keys you need to specify in your parameter
        file, for embedding sizes etc.  When constructing actual ``Embedding``
        layers, we will further append the string ``_embedding``, so the layer would be named
        ``words_A_embedding``.
        """
        return self.tokenizer.embed_input(input_layer,
                                          self.__get_embedded_input,
                                          self,
                                          embedding_suffix) 
Example #30
Source Project: deep_qa   Author: allenai   File: text_trainer.py    License: Apache License 2.0 4 votes vote down vote up
def __get_new_embedding(self, name: str, vocab_name: str='words'):
        """
        Creates an Embedding Layer (and possibly also a Dense projection Layer) based on the
        parameters you've passed to the TextTrainer.  These could be pre-trained embeddings or not,
        could include a projection or not, and so on.

        Parameters
        ----------
        name : ``str``
            The name of the embedding.  This needs to correspond to one of the keys in the
            ``embeddings`` parameter dictionary passed to the constructor.
        """
        embedding_params = self.embedding_params.pop(name)
        with tensorflow.device("/cpu:0"):
            pretrained_file = embedding_params.pop('pretrained_file', None)
            projection_layer = None
            if pretrained_file:
                embedding_layer = PretrainedEmbeddings.get_embedding_layer(
                        pretrained_file,
                        self.data_indexer,
                        embedding_params.pop('fine_tune', False),
                        name=name + '_embedding')

                if embedding_params.pop('project', False):
                    # This projection layer is not time distributed, because we handle it later
                    # in __get_embedded_input - this allows us to more easily reuse embeddings
                    # for inputs with different shapes, as Keras sets layer attributes such as
                    # input shape the first time the layer is called, which is overly restrictive
                    # in the case of sharing embedding lookup tables.
                    projection_layer = Dense(units=embedding_params.pop('dimension'), name=name + "_projection")
                else:
                    embedding_dimension = embedding_params.pop('dimension', None)
                    if embedding_dimension is not None and embedding_dimension != embedding_layer.output_dim:
                        raise ConfigurationError("You have specified both 'pretrained_file' "
                                                 " and 'dimension' in your embedding parameters, but "
                                                 "the 'project' argument was either False or unset and the "
                                                 "dimension you specified was not equal to the pretrained"
                                                 " embedding size. Refusing to continue without clarification"
                                                 " of parameters.")
            else:
                embedding_layer = Embedding(
                        input_dim=self.data_indexer.get_vocab_size(vocab_name),
                        output_dim=embedding_params.pop('dimension'),
                        mask_zero=True,  # this handles padding correctly
                        name=name + '_embedding')
                if embedding_params.pop('project', False):
                    raise ConfigurationError("You are projecting randomly initialised embeddings. Change "
                                             " 'project' to false or add pretrained_file to your config. ")
            dropout = embedding_params.pop('dropout', 0.5)

            # We now should have popped all parameters from this
            # embedding scope, so we check for any which remain.
            embedding_params.assert_empty("embedding with name {}".format(name))
            return embedding_layer, projection_layer, dropout