Python numpy.corrcoef() Examples
The following are 30 code examples for showing how to use numpy.corrcoef(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: nanops.py License: Apache License 2.0 | 7 votes |
def get_corr_func(method): if method in ['kendall', 'spearman']: from scipy.stats import kendalltau, spearmanr elif callable(method): return method def _pearson(a, b): return np.corrcoef(a, b)[0, 1] def _kendall(a, b): rs = kendalltau(a, b) if isinstance(rs, tuple): return rs[0] return rs def _spearman(a, b): return spearmanr(a, b)[0] _cor_methods = { 'pearson': _pearson, 'kendall': _kendall, 'spearman': _spearman } return _cor_methods[method]
Example 2
Project: pymoo Author: msu-coinlab File: latin_hypercube_sampling.py License: Apache License 2.0 | 6 votes |
def _calc_score(self, X): if isinstance(self.criterion, str): if self.criterion == "maxmin": D = cdist(X, X) np.fill_diagonal(D, np.inf) return np.min(D) elif self.criterion == "correlation": M = np.corrcoef(X.T, rowvar=True) return -np.sum(np.tril(M, -1) ** 2) else: raise Exception("Unknown criterion.") elif callable(self.criterion): return self.criterion(X) else: raise Exception("Either provide a str or a function as a criterion!")
Example 3
Project: recruit Author: Frank-qlu File: test_extras.py License: Apache License 2.0 | 6 votes |
def test_2d_with_missing(self): # Test corrcoef on 2D variable w/ missing value x = self.data x[-1] = masked x = x.reshape(3, 4) test = corrcoef(x) control = np.corrcoef(x) assert_almost_equal(test[:-1, :-1], control[:-1, :-1]) with suppress_warnings() as sup: sup.filter(DeprecationWarning, "bias and ddof have no effect") # ddof and bias have no or negligible effect on the function assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1], control[:-1, :-1]) assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1], control[:-1, :-1]) assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1], control[:-1, :-1])
Example 4
Project: lambda-packs Author: ryfeus File: test_extras.py License: MIT License | 6 votes |
def test_2d_with_missing(self): # Test corrcoef on 2D variable w/ missing value x = self.data x[-1] = masked x = x.reshape(3, 4) test = corrcoef(x) control = np.corrcoef(x) assert_almost_equal(test[:-1, :-1], control[:-1, :-1]) with suppress_warnings() as sup: sup.filter(DeprecationWarning, "bias and ddof have no effect") # ddof and bias have no or negligible effect on the function assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1], control[:-1, :-1]) assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1], control[:-1, :-1]) assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1], control[:-1, :-1])
Example 5
Project: hoggorm Author: olivertomic File: plsr2.py License: BSD 2-Clause "Simplified" License | 6 votes |
def X_corrLoadings(self): """ Returns array holding correlation loadings of array X. First column holds correlation loadings for component 1, second column holds correlation loadings for component 2, etc. """ # Creates empty matrix for correlation loadings arr_XcorrLoadings = np.zeros((np.shape(self.arrT)[1], np.shape(self.arrP)[0]), float) # Compute correlation loadings: # For each PC in score matrix for PC in range(np.shape(self.arrT)[1]): PCscores = self.arrT[:, PC] # For each variable/attribute in original matrix (not meancentered) for var in range(np.shape(self.arrX)[1]): origVar = self.arrX[:, var] corrs = np.corrcoef(PCscores, origVar) arr_XcorrLoadings[PC, var] = corrs[0,1] self.arr_XcorrLoadings = np.transpose(arr_XcorrLoadings) return self.arr_XcorrLoadings
Example 6
Project: hoggorm Author: olivertomic File: plsr2.py License: BSD 2-Clause "Simplified" License | 6 votes |
def Y_corrLoadings(self): """ Returns array holding correlation loadings of array X. First column holds correlation loadings for component 1, second column holds correlation loadings for component 2, etc. """ # Creates empty matrix for correlation loadings arr_YcorrLoadings = np.zeros((np.shape(self.arrT)[1], np.shape(self.arrQ)[0]), float) # Compute correlation loadings: # For each PC in score matrix for PC in range(np.shape(self.arrT)[1]): PCscores = self.arrT[:, PC] # For each variable/attribute in original matrix (not meancentered) for var in range(np.shape(self.arrY)[1]): origVar = self.arrY[:, var] corrs = np.corrcoef(PCscores, origVar) arr_YcorrLoadings[PC, var] = corrs[0,1] self.arr_YcorrLoadings = np.transpose(arr_YcorrLoadings) return self.arr_YcorrLoadings
Example 7
Project: hoggorm Author: olivertomic File: pcr.py License: BSD 2-Clause "Simplified" License | 6 votes |
def X_corrLoadings(self): """ Returns array holding correlation loadings of array X. First column holds correlation loadings for component 1, second column holds correlation loadings for component 2, etc. """ # Creates empty matrix for correlation loadings arr_corrLoadings = np.zeros((np.shape(self.arrT)[1], np.shape(self.arrP)[0]), float) # Compute correlation loadings: # For each component in score matrix for PC in range(np.shape(self.arrT)[1]): PCscores = self.arrT[:, PC] # For each variable/attribute in original matrix (not meancentered) for var in range(np.shape(self.arrX)[1]): origVar = self.arrX[:, var] corrs = np.corrcoef(PCscores, origVar) arr_corrLoadings[PC, var] = corrs[0,1] self.arr_corrLoadings = np.transpose(arr_corrLoadings) return self.arr_corrLoadings
Example 8
Project: hoggorm Author: olivertomic File: pcr.py License: BSD 2-Clause "Simplified" License | 6 votes |
def Y_corrLoadings(self): """ Returns array holding correlation loadings of array X. First column holds correlation loadings for component 1, second column holds correlation loadings for component 2, etc. """ # Creates empty matrix for correlation loadings arr_YcorrLoadings = np.zeros((np.shape(self.arrT)[1], np.shape(self.arrQ)[0]), float) # Compute correlation loadings: # For each component in score matrix for PC in range(np.shape(self.arrT)[1]): PCscores = self.arrT[:, PC] # For each variable/attribute in original matrix (not meancentered) for var in range(np.shape(self.arrY)[1]): origVar = self.arrY[:, var] corrs = np.corrcoef(PCscores, origVar) arr_YcorrLoadings[PC, var] = corrs[0,1] self.arr_YcorrLoadings = np.transpose(arr_YcorrLoadings) return self.arr_YcorrLoadings
Example 9
Project: hoggorm Author: olivertomic File: pca.py License: BSD 2-Clause "Simplified" License | 6 votes |
def X_corrLoadings(self): """ Returns array holding correlation loadings of array X. First column holds correlation loadings for component 1, second column holds correlation loadings for component 2, etc. """ # Creates empty matrix for correlation loadings arr_corrLoadings = np.zeros((np.shape(self.arrT)[1], np.shape(self.arrP)[0]), float) # Compute correlation loadings: # For each component in score matrix for PC in range(np.shape(self.arrT)[1]): PCscores = self.arrT[:, PC] # For each variable/attribute in original matrix (not meancentered) for var in range(np.shape(self.arrX)[1]): origVar = self.arrX[:, var] corrs = np.corrcoef(PCscores, origVar) arr_corrLoadings[PC, var] = corrs[0, 1] self.arr_corrLoadings = np.transpose(arr_corrLoadings) return self.arr_corrLoadings
Example 10
Project: hoggorm Author: olivertomic File: plsr1.py License: BSD 2-Clause "Simplified" License | 6 votes |
def Y_corrLoadings(self): """ Returns an array holding correlation loadings of vector y. Columns represent components. First column for component 1, second columns for component 2, etc. """ # Creates empty matrix for correlation loadings arr_ycorrLoadings = np.zeros((np.shape(self.arrT)[1], np.shape(self.arrQ)[0]), float) # Compute correlation loadings: # For each PC in score matrix for PC in range(np.shape(self.arrT)[1]): PCscores = self.arrT[:, PC] # For each variable/attribute in original matrix (not meancentered) for var in range(np.shape(self.vecy)[1]): origVar = self.vecy[:, var] corrs = np.corrcoef(PCscores, origVar) arr_ycorrLoadings[PC, var] = corrs[0,1] self.arr_ycorrLoadings = np.transpose(arr_ycorrLoadings) return self.arr_ycorrLoadings
Example 11
Project: QTS_Research Author: geome-mitbbs File: Quant_Indicators.py License: MIT License | 6 votes |
def correlation(obj1, obj2, start=0, end=-1, price_feature='Close'): if isinstance(obj1, str) or isinstance(obj2, str): obj1 = log_price_returns(obj1, start, end, price_feature) obj2 = log_price_returns(obj2, start, end, price_feature) # simple and rough treatment: assume biz days are the same among the two tickers if len(obj1)>len(obj2): obj1 = obj1[len(obj1)-len(obj2):] else: obj2 = obj2[len(obj2)-len(obj1):] start = 0 end = -1 if end < 0: end += len(obj1) if start < 0: start += len(obj1) return np.corrcoef(obj1[start: (end + 1)], obj2[start: (end + 1)])[0, 1]
Example 12
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_extras.py License: MIT License | 6 votes |
def test_2d_w_missing(self): # Test corrcoef on 2D variable w/ missing value x = self.data x[-1] = masked x = x.reshape(3, 4) test = corrcoef(x) control = np.corrcoef(x) assert_almost_equal(test[:-1, :-1], control[:-1, :-1]) with catch_warn_mae(): warnings.simplefilter("ignore") # ddof and bias have no or negligible effect on the function assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1], control[:-1, :-1]) assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1], control[:-1, :-1]) assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1], control[:-1, :-1])
Example 13
Project: pde-surrogate Author: cics-nd File: lhs.py License: MIT License | 6 votes |
def _lhscorrelate(n, samples, iterations): mincorr = np.inf # Minimize the components correlation coefficients for i in range(iterations): # Generate a random LHS Hcandidate = _lhsclassic(n, samples) R = np.corrcoef(Hcandidate) if np.max(np.abs(R[R != 1])) < mincorr: mincorr = np.max(np.abs(R - np.eye(R.shape[0]))) print( 'new candidate solution found with max,abs corrcoef = {}'.format( mincorr)) H = Hcandidate.copy() return H ################################################################################
Example 14
Project: NiBetaSeries Author: HBClab File: test_nilearn.py License: MIT License | 5 votes |
def test_atlas_connectivity(betaseries_file, atlas_file, atlas_lut): # read in test files bs_data = nib.load(str(betaseries_file)).get_data() atlas_lut_df = pd.read_csv(str(atlas_lut), sep='\t') # expected output pcorr = np.corrcoef(bs_data.squeeze()) np.fill_diagonal(pcorr, np.NaN) regions = atlas_lut_df['regions'].values pcorr_df = pd.DataFrame(pcorr, index=regions, columns=regions) expected_zcorr_df = pcorr_df.apply(lambda x: (np.log(1 + x) - np.log(1 - x)) * 0.5) # run instance of AtlasConnectivity ac = AtlasConnectivity(timeseries_file=str(betaseries_file), atlas_file=str(atlas_file), atlas_lut=str(atlas_lut)) res = ac.run() output_zcorr_df = pd.read_csv(res.outputs.correlation_matrix, na_values='n/a', delimiter='\t', index_col=0) os.remove(res.outputs.correlation_matrix) # test equality of the matrices up to 3 decimals pd.testing.assert_frame_equal(output_zcorr_df, expected_zcorr_df, check_less_precise=3)
Example 15
Project: neuropythy Author: noahbenson File: __init__.py License: GNU Affero General Public License v3.0 | 5 votes |
def test_mesh(self): ''' test_mesh() ensures that many general mesh properties and methods are working. ''' import neuropythy.geometry as geo logging.info('neuropythy: Testing meshes and properties...') # get a random subject's mesh sub = ny.data['benson_winawer_2018'].subjects['S1204'] hem = sub.hemis[('lh','rh')[np.random.randint(2)]] msh = hem.white_surface # few simple things self.assertEqual(msh.coordinates.shape[0], 3) self.assertEqual(msh.tess.faces.shape[0], 3) self.assertEqual(msh.tess.edges.shape[0], 2) self.assertEqual(msh.vertex_count, msh.coordinates.shape[1]) # face areas and edge lengths should all be non-negative self.assertGreaterEqual(np.min(msh.face_areas), 0) self.assertGreaterEqual(np.min(msh.edge_lengths), 0) # test the properties self.assertTrue('blerg' in msh.with_prop(blerg=msh.prop('curvature')).properties) self.assertFalse('curvature' in msh.wout_prop('curvature').properties) self.assertEqual(msh.properties.row_count, msh.vertex_count) self.assertLessEqual(np.abs(np.mean(msh.prop('curvature'))), 0.1) # use the property interface to grab a fancy masked property v123_areas = msh.property('midgray_surface_area', mask=('inf-prf_visual_area', (1,2,3)), null=0) v123_area = np.sum(v123_areas) self.assertLessEqual(v123_area, 15000) self.assertGreaterEqual(v123_area, 500) (v1_ecc, v1_rad) = msh.property(['prf_eccentricity','prf_radius'], mask=('inf-prf_visual_area', 1), weights='prf_variance_explained', weight_min=0.1, clipped=0, null=np.nan) wh = np.isfinite(v1_ecc) & np.isfinite(v1_rad) self.assertGreater(np.corrcoef(v1_ecc[wh], v1_rad[wh])[0,0], 0.5)
Example 16
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: metric.py License: Apache License 2.0 | 5 votes |
def update(self, labels, preds): """Updates the internal evaluation result. Parameters ---------- labels : list of `NDArray` The labels of the data. preds : list of `NDArray` Predicted values. """ labels, preds = check_label_shapes(labels, preds, True) for label, pred in zip(labels, preds): check_label_shapes(label, pred, False, True) label = label.asnumpy() pred = pred.asnumpy() self.sum_metric += numpy.corrcoef(pred.ravel(), label.ravel())[0, 1] self.num_inst += 1
Example 17
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: test_metric.py License: Apache License 2.0 | 5 votes |
def test_pearsonr(): pred = mx.nd.array([[0.7, 0.3], [0.1, 0.9], [1., 0]]) label = mx.nd.array([[0, 1], [1, 0], [1, 0]]) pearsonr_expected = np.corrcoef(pred.asnumpy().ravel(), label.asnumpy().ravel())[0, 1] metric = mx.metric.create('pearsonr') metric.update([label], [pred]) _, pearsonr = metric.get() assert pearsonr == pearsonr_expected
Example 18
Project: lirpg Author: Hwhitetooth File: math_util.py License: MIT License | 5 votes |
def ncc(ypred, y): return np.corrcoef(ypred, y)[1,0]
Example 19
Project: HardRLWithYoutube Author: MaxSobolMark File: math_util.py License: MIT License | 5 votes |
def ncc(ypred, y): return np.corrcoef(ypred, y)[1,0]
Example 20
Project: weiboanalysis Author: Zephery File: mood.py License: Apache License 2.0 | 5 votes |
def _pears_sim(inA, inB): if len(inA) < 3: return 1.0 return 0.5 + 0.5 * np.corrcoef(inA, inB, rowvar=0)[0][1] # 余弦相关范围-1->+1 越大越相似
Example 21
Project: ciftify Author: edickie File: cifti_vis_PINT.py License: MIT License | 5 votes |
def make_seed_corr(self, summary_df, network, func_fnifti, temp_dir): self.seed_corr = os.path.join(temp_dir, 'scorr{}{}.dscalar.nii'.format( self.vert_type, network)) meants = self.dataframe.loc[:, summary_df.loc[:, 'NETWORK'] == network].mean(axis=1) temp_nifti_seed = os.path.join(temp_dir, 'seedcorr{}.nii.gz'.format( network)) ## correlated the mean timeseries with the func data out = np.zeros([func_fnifti.dims[0]*func_fnifti.dims[1]*func_fnifti.dims[2], 1]) ## determine brainmask bits.. std_array = np.std(func_fnifti.data, axis=1) std_nonzero = np.where(std_array > 0)[0] mask_indices = std_nonzero for i in mask_indices: out[i] = np.corrcoef(meants, func_fnifti.data[i, :])[0][1] ## reshape data and write it out to a fake nifti file out = out.reshape([func_fnifti.dims[0], func_fnifti.dims[1], func_fnifti.dims[2], 1]) out = nib.nifti1.Nifti1Image(out, func_fnifti.affine) out.to_filename(temp_nifti_seed) ## convert back run(['wb_command','-cifti-convert','-from-nifti', temp_nifti_seed, func_fnifti.template, self.seed_corr, '-reset-scalars']) run(['wb_command', '-cifti-palette', self.seed_corr, 'MODE_AUTO_SCALE_PERCENTAGE', self.seed_corr, '-palette-name', 'PSYCH-NO-NONE']) if not os.path.exists(self.seed_corr): logger.error("Could not generate seed corr file {} for {}" "".format(self.seed_corr, self.vert_type)) sys.exit(1)
Example 22
Project: ciftify Author: edickie File: ciftify_PINT_vertices.py License: MIT License | 5 votes |
def mass_partial_corr(X,massY,Z): ''' mass partial correlation between X and many Y signals after regressing Z from both sides Parameters ----------- X : 1D predictor vector (n observations) massY : 2D numpy matrix of signals to correlate (k signals by n observations) Z : 2D numpy matrix of signals to regress from both X and Y (n observations by p confounds) Returns ----------- 1D vector or partial correlations (k signals long) ''' assert X.shape[0]==massY.shape[1] assert massY.shape[1]==Z.shape[0] ## stack X and Y together to prepare to regress pre_res = np.vstack((X,massY)) ## loop over all signals and to regress out confounds res_by_z = np.zeros(pre_res.shape) -1 for i in range(pre_res.shape[0]): res_by_z[i,:] = linalg_calc_residulals(Z, pre_res[i,:]) ## correlate all the residuals, take the relevant values from the first row mass_pcorrs = np.corrcoef(res_by_z)[0, 1:] assert len(mass_pcorrs)==massY.shape[0] return(mass_pcorrs)
Example 23
Project: radiometric_normalization Author: planetlabs File: pif.py License: Apache License 2.0 | 5 votes |
def _debug_logging(c_band, r_band, valid_pixels, pif_pixels): ''' Optional logging information ''' logging.debug('PIF: Original corrcoef = {}'.format( numpy.corrcoef(c_band[valid_pixels], r_band[valid_pixels])[0, 1])) if pif_pixels[0] != [] and pif_pixels[1] != []: logging.debug('PIF: Filtered corrcoef = {}'.format( numpy.corrcoef(c_band[pif_pixels], r_band[pif_pixels])[0, 1]))
Example 24
Project: seizure-prediction Author: MichaelHills File: transforms.py License: MIT License | 5 votes |
def apply_one(self, data, meta=None): return np.corrcoef(data)
Example 25
Project: brainforge Author: csxeba File: local_correlation.py License: GNU General Public License v3.0 | 5 votes |
def learn_batch(self, X, Y, w=None, metrics=(), update=True): m = len(X) Y_correlations = np.corrcoef(Y.reshape((m, -1))) for layer in self.trainable_layers: h_correlations = np.corrcoef(layer.output.reshape(m, -1)) local_error = mse(h_correlations.flat, Y_correlations.flat)
Example 26
Project: Reinforcement_Learning_for_Traffic_Light_Control Author: quantumiracle File: math_util.py License: Apache License 2.0 | 5 votes |
def ncc(ypred, y): return np.corrcoef(ypred, y)[1,0]
Example 27
Project: Reinforcement_Learning_for_Traffic_Light_Control Author: quantumiracle File: math_util.py License: Apache License 2.0 | 5 votes |
def ncc(ypred, y): return np.corrcoef(ypred, y)[1,0]
Example 28
Project: Reinforcement_Learning_for_Traffic_Light_Control Author: quantumiracle File: math_util.py License: Apache License 2.0 | 5 votes |
def ncc(ypred, y): return np.corrcoef(ypred, y)[1,0]
Example 29
Project: qsar-tools Author: dkoes File: trainlinearmodel.py License: Apache License 2.0 | 5 votes |
def scoremodel(model, x, y): '''Return fitness of model. We'll use R^2 and RMS. We also compare to the RMS with the mean.''' p = model.predict(x).squeeze() r = rms(p-y) aver = rms(y-np.mean(y)) #RMS if we just used average if np.std(p) == 0.0 or np.std(y) == 0: #R not defined return 0,r,aver return np.corrcoef(p,y)[0][1]**2,r,aver
Example 30
Project: qsar-tools Author: dkoes File: applylinearmodel.py License: Apache License 2.0 | 5 votes |
def scoremodel(model, x, y): '''Return fitness of model. We'll use R^2 and RMS. We also compare to the RMS with the mean.''' p = model.predict(x).squeeze() r = rms(p-y) aver = rms(y-np.mean(y)) #RMS if we just used average return np.corrcoef(p,y)[0,1]**2,r,aver