Python numpy.asscalar() Examples
The following are 30 code examples for showing how to use numpy.asscalar(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: vergeml Author: mme File: imagenet.py License: MIT License | 6 votes |
def predict(self, f, k=5, resize_mode='fill'): from keras.preprocessing import image from vergeml.img import resize_image filename = os.path.basename(f) if not os.path.exists(f): return dict(filename=filename, prediction=[]) img = image.load_img(f) img = resize_image(img, self.image_size, self.image_size, 'antialias', resize_mode) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = self.preprocess_input(x) preds = self.model.predict(x) pred = self._decode(preds, top=k)[0] prediction=[dict(probability=np.asscalar(perc), label=klass) for _, klass, perc in pred] return dict(filename=filename, prediction=prediction)
Example 2
Project: connecting_the_dots Author: autonomousvision File: metric.py License: MIT License | 6 votes |
def add(self, es, ta, ma=None): if ma is not None: raise Exception('mask is not implemented') es = es.ravel() ta = ta.ravel() if es.shape[0] != ta.shape[0]: raise Exception('invalid shape of es, or ta') if es.min() < 0 or es.max() > 1: raise Exception('estimate has wrong value range') ta_p = (ta == 1) ta_n = (ta == 0) es_p = es[ta_p] es_n = es[ta_n] for idx, wp in enumerate(self.thresholds): wp = np.asscalar(wp) self.tps[idx] += (es_p > wp).sum() self.fps[idx] += (es_n > wp).sum() self.fns[idx] += (es_p <= wp).sum() self.tns[idx] += (es_n <= wp).sum() self.n_pos += ta_p.sum() self.n_neg += ta_n.sum()
Example 3
Project: tutorials Author: facebookarchive File: Multi-GPU_Training.py License: Apache License 2.0 | 6 votes |
def accuracy(model): accuracy = [] prefix = model.net.Proto().name for device in model._devices: accuracy.append( np.asscalar(workspace.FetchBlob("gpu_{}/{}_accuracy".format(device, prefix)))) return np.average(accuracy) # ## Part 11: Run Multi-GPU Training and Get Test Results # You've come a long way. Now is the time to see it all pay off. Since you already ran ResNet once, you can glance at the code below and run it. The big difference this time is your model is parallelized! # # The additional components at the end deal with accuracy so you may want to dig into those specifics as a bonus task. You can try it again: just adjust the `num_epochs` value below, run the block, and see the results. You can also go back to Part 10 to reinitialize the model, and run this step again. (You may want to add `workspace.ResetWorkspace()` before you run the new models again.) # # Go back and check the images/sec from when you ran single GPU. Note how you can scale up with a small amount of overhead. # # ### Task: How many GPUs would it take to train ImageNet in under a minute? # In[ ]: # Start looping through epochs where we run the batches of images to cover the entire dataset # Usually you would want to run a lot more epochs to increase your model's accuracy
Example 4
Project: tutorials Author: facebookarchive File: Multi-GPU_Training.py License: Apache License 2.0 | 6 votes |
def accuracy(model): accuracy = [] prefix = model.net.Proto().name for device in model._devices: accuracy.append( np.asscalar(workspace.FetchBlob("gpu_{}/{}_accuracy".format(device, prefix)))) return np.average(accuracy) # In[ ]: # SOLUTION for Part 11 # Start looping through epochs where we run the batches of images to cover the entire dataset # Usually you would want to run a lot more epochs to increase your model's accuracy
Example 5
Project: pase Author: santi-pdp File: transforms.py License: MIT License | 6 votes |
def __call__(self, wav, srate=16000, nbits=16): """ Add noise to clean wav """ if isinstance(wav, torch.Tensor): wav = wav.numpy() noise_idx = np.random.choice(list(range(len(self.noises))), 1) sel_noise = self.noises[np.asscalar(noise_idx)] noise = sel_noise['data'] snr = np.random.choice(self.snr_levels, 1) # print('Applying SNR: {} dB'.format(snr[0])) if wav.ndim > 1: wav = wav.reshape((-1,)) noisy, noise_bound = self.addnoise_asl(wav, noise, srate, nbits, snr, do_IRS=self.do_IRS) # normalize to avoid clipping if np.max(noisy) >= 1 or np.min(noisy) < -1: small = 0.1 while np.max(noisy) >= 1 or np.min(noisy) < -1: noisy = noisy / (1. + small) small = small + 0.1 return torch.FloatTensor(noisy.astype(np.float32))
Example 6
Project: calfem-python Author: CALFEM File: core.py License: MIT License | 6 votes |
def bar2e(ex,ey,ep): """ Compute the element stiffness matrix for two dimensional bar element. :param list ex: element x coordinates [x1, x2] :param list ey: element y coordinates [y1, y2] :param list ep: [E, A]: E - Young's modulus, A - Cross section area :return mat Ke: stiffness matrix, [4 x 4] """ E=ep[0] A=ep[1] b = np.mat([[ex[1]-ex[0]],[ey[1]-ey[0]]]) L = np.asscalar(np.sqrt(b.T*b)) Kle = np.mat([[1.,-1.],[-1.,1.]])*E*A/L n = np.asarray(b.T/L).reshape(2,) G = np.mat([ [n[0],n[1],0.,0.], [0.,0.,n[0],n[1]] ]) return G.T*Kle*G
Example 7
Project: ilqr Author: anassinator File: cost.py License: GNU General Public License v3.0 | 6 votes |
def l(self, x, u, i, terminal=False): """Instantaneous cost function. Args: x: Current state [state_size]. u: Current control [action_size]. None if terminal. i: Current time step. terminal: Compute terminal cost. Default: False. Returns: Instantaneous cost (scalar). """ if terminal: z = np.hstack([x, i]) return np.asscalar(self._l_terminal(*z)) z = np.hstack([x, u, i]) return np.asscalar(self._l(*z))
Example 8
Project: ilqr Author: anassinator File: cost.py License: GNU General Public License v3.0 | 6 votes |
def l(self, x, u, i, terminal=False): """Instantaneous cost function. Args: x: Current state [state_size]. u: Current control [action_size]. None if terminal. i: Current time step. terminal: Compute terminal cost. Default: False. Returns: Instantaneous cost (scalar). """ if terminal: return np.asscalar(self._l_term(x, i)) return np.asscalar(self._l(x, u, i))
Example 9
Project: dket Author: dkmfbk File: test_data.py License: GNU General Public License v3.0 | 6 votes |
def test_parse(self): """Base test for the `dket.data.decode` function.""" words = [1, 2, 3, 0] formula = [12, 23, 34, 45, 0] example = data.encode(words, formula) serialized = example.SerializeToString() words_t, sent_len_t, formula_t, form_len_t = data.parse(serialized) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) actual = sess.run([words_t, sent_len_t, formula_t, form_len_t]) self.assertEqual(words, actual[0].tolist()) self.assertEqual(len(words), np.asscalar(actual[1])) self.assertEqual(formula, actual[2].tolist()) self.assertEqual(len(formula), np.asscalar(actual[3]))
Example 10
Project: pysheds Author: mdbartos File: rfsm.py License: GNU General Public License v3.0 | 6 votes |
def set_cumulative_capacities(self, node): if node.l: self.set_cumulative_capacities(node.l) if node.r: self.set_cumulative_capacities(node.r) if node.parent: if node.name: elevdiff = node.parent.elev - self.dem[self.ws[node.level] == node.name] vol = abs(np.asscalar(elevdiff[elevdiff > 0].sum()) * self.x * self.y) node.vol = vol else: leaves = [] self.enumerate_leaves(node, level=node.level, stack=leaves) mask = np.isin(self.ws[node.level], leaves) boundary = list(chain.from_iterable([self.b[node.level].setdefault(pair, []) for pair in combinations(leaves, 2)])) mask.flat[boundary] = True elevdiff = node.parent.elev - self.dem[mask] vol = abs(np.asscalar(elevdiff[elevdiff > 0].sum()) * self.x * self.y) node.vol = vol
Example 11
Project: pysheds Author: mdbartos File: swmm.py License: GNU General Public License v3.0 | 6 votes |
def generate_storage_uncontrolled(self, ixes, **kwargs): storage_uncontrolled = {} depths = 4 init_depths = 0.1 storage_ends = [np.asscalar(self.endnodes[np.where(self.startnodes == ix)]) for ix in ixes] storage_uncontrolled['name'] = 'ST' + pd.Series(ixes).astype(str) storage_uncontrolled['elev'] = self.grid.view(self.dem).flat[storage_ends] storage_uncontrolled['ymax'] = self.channel_d.flat[ixes] + 1 storage_uncontrolled['y0'] = 0 storage_uncontrolled['Acurve'] = 'FUNCTIONAL' storage_uncontrolled['A0'] = self.channel_w.flat[ixes] storage_uncontrolled['A1'] = 0 storage_uncontrolled['A2'] = 1 storage_uncontrolled = pd.DataFrame.from_dict(storage_uncontrolled) # Manual overrides for key, value in kwargs.items(): storage_uncontrolled[key] = value self.storage_uncontrolled = storage_uncontrolled[['name', 'elev', 'ymax', 'y0', 'Acurve', 'A1', 'A2', 'A0']]
Example 12
Project: pysheds Author: mdbartos File: swmm.py License: GNU General Public License v3.0 | 6 votes |
def generate_storage_controlled(self, ixes, **kwargs): storage_controlled = {} depths = 2 init_depths = 0.1 storage_ends = [np.asscalar(self.endnodes[np.where(self.startnodes == ix)]) for ix in ixes] storage_controlled['name'] = 'C' + pd.Series(ixes).astype(str) storage_controlled['elev'] = self.grid.view(self.dem).flat[storage_ends] storage_controlled['ymax'] = depths storage_controlled['y0'] = 0 storage_controlled['Acurve'] = 'FUNCTIONAL' storage_controlled['A0'] = 1000 storage_controlled['A1'] = 10000 storage_controlled['A2'] = 1 storage_controlled = pd.DataFrame.from_dict(storage_controlled) # Manual overrides for key, value in kwargs.items(): storage_controlled[key] = value self.storage_controlled = storage_controlled[['name', 'elev', 'ymax', 'y0', 'Acurve', 'A1', 'A2', 'A0']]
Example 13
Project: trax Author: google File: arrays.py License: Apache License 2.0 | 6 votes |
def __index__(self): """Returns a python scalar. This allows using an instance of this class as an array index. Note that only arrays of integer types with size 1 can be used as array indices. Returns: A Python scalar. Raises: TypeError: If the array is not of an integer type. ValueError: If the array does not have size 1. """ # TODO(wangpeng): Handle graph mode return np.asscalar(self.data.numpy())
Example 14
Project: training_results_v0.5 Author: mlperf File: in_memory_eval.py License: Apache License 2.0 | 6 votes |
def end(self, session): # pylint: disable=unused-argument """Runs evaluator for final model.""" # Only runs eval at the end if highest accuracy so far # is less than self._stop_threshold. if not self._run_success: step = np.asscalar(session.run(self._global_step_tensor)) logging.info('Starting eval.') eval_results = self._evaluate(session, step) mlperf_log.resnet_print(key=mlperf_log.EVAL_STOP) mlperf_log.resnet_print( key=mlperf_log.EVAL_ACCURACY, value={ 'epoch': max(step // self._steps_per_epoch - 1, 0), 'value': float(eval_results[_EVAL_METRIC]) }) if eval_results[_EVAL_METRIC] >= self._stop_threshold: mlperf_log.resnet_print( key=mlperf_log.RUN_STOP, value={'success': 'true'}) else: mlperf_log.resnet_print( key=mlperf_log.RUN_STOP, value={'success': 'false'})
Example 15
Project: vergeml Author: mme File: env.py License: MIT License | 5 votes |
def _toscalar(v): if isinstance(v, (np.float16, np.float32, np.float64, np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64)): return np.asscalar(v) else: return v
Example 16
Project: me-ica Author: ME-ICA File: nifti1.py License: GNU Lesser General Public License v2.1 | 5 votes |
def get_intent(self, code_repr='label'): ''' Get intent code, parameters and name Parameters ---------- code_repr : string string giving output form of intent code representation. Default is 'label'; use 'code' for integer representation. Returns ------- code : string or integer intent code, or string describing code parameters : tuple parameters for the intent name : string intent name Examples -------- >>> hdr = Nifti1Header() >>> hdr.set_intent('t test', (10,), name='some score') >>> hdr.get_intent() ('t test', (10.0,), 'some score') >>> hdr.get_intent('code') (3, (10.0,), 'some score') ''' hdr = self._structarr recoder = self._field_recoders['intent_code'] code = int(hdr['intent_code']) if code_repr == 'code': label = code elif code_repr == 'label': label = recoder.label[code] else: raise TypeError('repr can be "label" or "code"') n_params = len(recoder.parameters[code]) params = (float(hdr['intent_p%d' % (i+1)]) for i in range(n_params)) name = asstr(np.asscalar(hdr['intent_name'])) return label, tuple(params), name
Example 17
Project: me-ica Author: ME-ICA File: nifti1.py License: GNU Lesser General Public License v2.1 | 5 votes |
def _chk_magic_offset(hdr, fix=False): rep = Report(HeaderDataError) # for ease of later string formatting, use scalar of byte string magic = np.asscalar(hdr['magic']) offset = hdr['vox_offset'] if magic == asbytes('n+1'): # one file if offset >= 352: if not offset % 16: return hdr, rep else: # SPM uses memory mapping to read the data, and # apparently this has to start on 16 byte boundaries rep.problem_msg = ('vox offset (=%s) not divisible ' 'by 16, not SPM compatible' % offset) rep.problem_level = 30 if fix: rep.fix_msg = 'leaving at current value' return hdr, rep rep.problem_level = 40 rep.problem_msg = ('vox offset %d too low for ' 'single file nifti1' % offset) if fix: hdr['vox_offset'] = 352 rep.fix_msg = 'setting to minimum value of 352' elif magic != asbytes('ni1'): # two files # unrecognized nii magic string, oh dear rep.problem_msg = ('magic string "%s" is not valid' % asstr(magic)) rep.problem_level = 45 if fix: rep.fix_msg = 'leaving as is, but future errors are likely' return hdr, rep
Example 18
Project: me-ica Author: ME-ICA File: trackvis.py License: GNU Lesser General Public License v2.1 | 5 votes |
def _hdr_from_mapping(hdr=None, mapping=None, endianness=native_code): ''' Fill `hdr` from mapping `mapping`, with given endianness ''' if hdr is None: # passed a valid mapping as header? Copy and return if isinstance(mapping, np.ndarray): test_dtype = mapping.dtype.newbyteorder('=') if test_dtype in (header_1_dtype, header_2_dtype): return mapping.copy() # otherwise make a new empty header. If no version specified, # go for default (2) if mapping is None: version = 2 else: version = mapping.get('version', 2) hdr = empty_header(endianness, version) if mapping is None: return hdr if isinstance(mapping, np.ndarray): mapping = rec2dict(mapping) for key, value in mapping.items(): hdr[key] = value # check header values if np.asscalar(hdr['id_string'])[:5] != asbytes('TRACK'): raise HeaderError('Expecting TRACK as first ' '5 characaters of id_string') if hdr['version'] not in (1, 2): raise HeaderError('Reader only supports version 1') if hdr['hdr_size'] != 1000: raise HeaderError('hdr_size should be 1000') return hdr
Example 19
Project: me-ica Author: ME-ICA File: volumeutils.py License: GNU Lesser General Public License v2.1 | 5 votes |
def rec2dict(rec): ''' Convert recarray to dictionary Also converts scalar values to scalars Parameters ---------- rec : ndarray structured ndarray Returns ------- dct : dict dict with key, value pairs as for `rec` Examples -------- >>> r = np.zeros((), dtype = [('x', 'i4'), ('s', 'S10')]) >>> d = rec2dict(r) >>> d == {'x': 0, 's': ''} #23dt : replace("''", "b''") True ''' dct = {} for key in rec.dtype.fields: val = rec[key] try: val = np.asscalar(val) except ValueError: pass dct[key] = val return dct
Example 20
Project: DualFisheye Author: ooterness File: fisheye.py License: MIT License | 5 votes |
def get_x(self): return np.asscalar(self.center_px[0])
Example 21
Project: DualFisheye Author: ooterness File: fisheye.py License: MIT License | 5 votes |
def get_y(self): return np.asscalar(self.center_px[1])
Example 22
Project: sadl Author: coinse File: sa.py License: MIT License | 5 votes |
def _get_lsa(kde, at, removed_cols): refined_at = np.delete(at, removed_cols, axis=0) return np.asscalar(-kde.logpdf(np.transpose(refined_at)))
Example 23
Project: brainforge Author: csxeba File: typing.py License: GNU General Public License v3.0 | 5 votes |
def scalX(scalar, dtype=floatX): return np.asscalar(np.array([scalar], dtype=dtype))
Example 24
Project: ludwig Author: uber File: batcher.py License: Apache License 2.0 | 5 votes |
def __init__(self, dataset, bucketing_field, batch_size=128, buckets=10, should_shuffle=True, ignore_last=False, should_trim=False, trim_side='right'): self.should_shuffle = should_shuffle self.bucketing_field = bucketing_field self.should_trim = should_trim self.trim_side = trim_side # store our dataset as well self.dataset = dataset field = dataset.get_dataset()[bucketing_field] field_lengths = np.apply_along_axis(lambda x: np.sign(x).sum(), 1, field) sorted_idcs = np.argsort(field_lengths) self.buckets_idcs = [] datapoints_per_bucket = len(field) // buckets for b in range(buckets): start = datapoints_per_bucket * b end = datapoints_per_bucket * (b + 1) if b < buckets - 1 else len( sorted_idcs) self.buckets_idcs.append(sorted_idcs[start:end]) if should_shuffle: self.shuffle(self.buckets_idcs) self.ignore_last = ignore_last self.batch_size = batch_size self.total_size = min(map(len, dataset.get_dataset().values())) self.bucket_sizes = np.array([x for x in map(len, self.buckets_idcs)]) self.steps_per_epoch = int( np.asscalar(np.sum(np.ceil(self.bucket_sizes / self.batch_size)))) self.indices = np.array([0] * buckets) self.step = 0 self.epoch = 0
Example 25
Project: scattertext Author: JasonKessler File: FeatureOuput.py License: Apache License 2.0 | 5 votes |
def output(self): # () -> list toret = [{} for i in range(self.num_docs)] X = self.X.tocoo() for row, col, val in zip(X.row, X.col, X.data): toret[row][self.idx_store.getval(col)] = np.asscalar(val) return toret
Example 26
Project: pase Author: santi-pdp File: knn.py License: MIT License | 5 votes |
def main(opts): # find npy files in data dir with open(opts.data_cfg, 'r') as cfg_f: # contains train and test files cfg = json.load(cfg_f) train_X, train_Y, spk2idx = load_train_files(opts.data_root, cfg, 'train') test_X, test_Y = load_test_files(opts.data_root, cfg) print('Loaded trainX: ', train_X.shape) print('Loaded trainY: ', train_Y.shape) neigh = KNeighborsClassifier(n_neighbors=opts.k, n_jobs=opts.n_jobs) neigh.fit(train_X, train_Y) accs = [] timings = [] beg_t = timeit.default_timer() for te_idx in range(len(test_X)): test_x = test_X[te_idx] facc = [] preds = [0.] * len(spk2idx) Y_ = neigh.predict(test_x) for ii in range(len(Y_)): preds[Y_[ii]] += 1 y_ = np.argmax(preds, axis=0) y = test_Y[te_idx] if y_ == y: accs.append(1) else: accs.append(0.) end_t = timeit.default_timer() timings.append(end_t - beg_t) beg_t = timeit.default_timer() print('Processing test utterance {}/{}, muttime: {:.3f} s' ''.format(te_idx + 1, len(test_X), np.mean(timings))) print('Score on {} samples: {}'.format(len(accs), np.mean(accs))) with open(opts.out_log, 'w') as out_f: out_f.write('{:.4f}'.format(np.asscalar(np.mean(accs))))
Example 27
Project: revrand Author: NICTA File: base.py License: Apache License 2.0 | 5 votes |
def scalar_reshape(a, newshape, order='C'): """ Reshape, but also return scalars or empty lists. Identical to `numpy.reshape` except in the case where `newshape` is the empty tuple, in which case we return a scalar instead of a 0-dimensional array. Examples -------- >>> a = np.arange(6) >>> np.array_equal(np.reshape(a, (3, 2)), scalar_reshape(a, (3, 2))) True >>> scalar_reshape(np.array([3.14]), newshape=()) 3.14 >>> scalar_reshape(np.array([2.71]), newshape=(1,)) array([ 2.71]) >>> scalar_reshape(np.array([]), newshape=(0,)) [] """ if newshape == (): return np.asscalar(a) if newshape == (0,): return [] return np.reshape(a, newshape, order)
Example 28
Project: lambda-packs Author: ryfeus File: tensor_util.py License: MIT License | 5 votes |
def ExtractBitsFromFloat16(x): return np.asscalar(np.asarray(x, dtype=np.float16).view(np.uint16))
Example 29
Project: lambda-packs Author: ryfeus File: tensor_util.py License: MIT License | 5 votes |
def SlowAppendFloat32ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.float_val.extend([np.asscalar(x) for x in proto_values])
Example 30
Project: lambda-packs Author: ryfeus File: tensor_util.py License: MIT License | 5 votes |
def SlowAppendFloat64ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.double_val.extend([np.asscalar(x) for x in proto_values])