Python numpy.int() Examples
The following are 30
code examples of numpy.int().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_masks.py From mmdetection with Apache License 2.0 | 7 votes |
def test_bitmap_mask_crop(): # crop with empty bitmap masks dummy_bbox = np.array([0, 10, 10, 27], dtype=np.int) raw_masks = dummy_raw_bitmap_masks((0, 28, 28)) bitmap_masks = BitmapMasks(raw_masks, 28, 28) cropped_masks = bitmap_masks.crop(dummy_bbox) assert len(cropped_masks) == 0 assert cropped_masks.height == 17 assert cropped_masks.width == 10 # crop with bitmap masks contain 3 instances raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) bitmap_masks = BitmapMasks(raw_masks, 28, 28) cropped_masks = bitmap_masks.crop(dummy_bbox) assert len(cropped_masks) == 3 assert cropped_masks.height == 17 assert cropped_masks.width == 10 x1, y1, x2, y2 = dummy_bbox assert (cropped_masks.masks == raw_masks[:, y1:y2, x1:x2]).all() # crop with invalid bbox with pytest.raises(AssertionError): dummy_bbox = dummy_bboxes(2, 28, 28) bitmap_masks.crop(dummy_bbox)
Example #2
Source File: custom.py From mmdetection with Apache License 2.0 | 6 votes |
def __getitem__(self, idx): """Get training/test data after pipeline. Args: idx (int): Index of data. Returns: dict: Training/test data (with annotation if `test_mode` is set True). """ if self.test_mode: return self.prepare_test_img(idx) while True: data = self.prepare_train_img(idx) if data is None: idx = self._rand_another(idx) continue return data
Example #3
Source File: images.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def to_image_spec(img, **kw): ''' to_image_spec(img) yields a dictionary of meta-data for the given nibabel image object img. to_image_spec(hdr) yields the equivalent meta-data for the given nibabel image header. Note that obj may also be a mapping object, in which case it is returned verbatim. ''' if pimms.is_vector(img,'int') and is_tuple(img) and len(img) < 5: r = image_array_to_spec(np.zeros(img)) elif pimms.is_map(img): r = img elif is_image_header(img): r = image_header_to_spec(img) elif is_image(img): r = image_to_spec(img) elif is_image_array(img): r = image_array_to_spec(img) else: raise ValueError('cannot convert object of type %s to image-spec' % type(img)) if len(kw) > 0: r = {k:v for m in (r,kw) for (k,v) in six.iteritems(m)} # normalize the entries for (k,aliases) in six.iteritems(imspec_aliases): if k in r: continue for al in aliases: if al in r: val = r[al] r = pimms.assoc(pimms.dissoc(r, al), k, val) break return r
Example #4
Source File: synthetic_model.py From DOTA_models with Apache License 2.0 | 6 votes |
def GenerateSingleCode(code_shape): code = np.zeros(code_shape, dtype=np.int) keep_value_proba = 0.8 height = code_shape[0] width = code_shape[1] depth = code_shape[2] for d in xrange(depth): for y in xrange(height): for x in xrange(width): v1 = ComputeLineCrc(code, width, y, x, d) v2 = ComputeDepthCrc(code, y, x, d) v = 1 if (v1 + v2 >= 6) else 0 if np.random.rand() < keep_value_proba: code[y, x, d] = v else: code[y, x, d] = 1 - v return code
Example #5
Source File: core.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def curve_length(self, start=None, end=None, precision=0.01): ''' Calculates the length of the curve by dividing the curve up into pieces of parameterized-length <precision>. ''' if start is None: start = self.t[0] if end is None: end = self.t[-1] from scipy import interpolate if self.order == 1: # we just want to add up along the steps... ii = [ii for (ii,t) in enumerate(self.t) if start < t and t < end] ts = np.concatenate([[start], self.t[ii], [end]]) xy = np.vstack([[self(start)], self.coordinates[:,ii].T, [self(end)]]) return np.sum(np.sqrt(np.sum((xy[1:] - xy[:-1])**2, axis=1))) else: t = np.linspace(start, end, int(np.ceil((end-start)/precision))) dt = t[1] - t[0] dx = interpolate.splev(t, self.splrep[0], der=1) dy = interpolate.splev(t, self.splrep[1], der=1) return np.sum(np.sqrt(dx**2 + dy**2)) * dt
Example #6
Source File: test_utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def gen_buckets_probs_with_ppf(ppf, nbuckets): """Generate the buckets and probabilities for chi_square test when the ppf (Quantile function) is specified. Parameters ---------- ppf : function The Quantile function that takes a probability and maps it back to a value. It's the inverse of the cdf function nbuckets : int size of the buckets Returns ------- buckets : list of tuple The generated buckets probs : list The generate probabilities """ assert nbuckets > 0 probs = [1.0 / nbuckets for _ in range(nbuckets)] buckets = [(ppf(i / float(nbuckets)), ppf((i + 1) / float(nbuckets))) for i in range(nbuckets)] return buckets, probs
Example #7
Source File: models.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def cleaned_visual_areas(visual_areas, faces): ''' mdl.cleaned_visual_areas is the same as mdl.visual_areas except that vertices with visual area values of 0 (boundary values) are given the mode of their neighbors. ''' area_ids = np.array(visual_areas) boundaryNeis = {} for (b,inside) in [(b, set(inside)) for t in faces.T for (bound, inside) in [([i for i in t if area_ids[i] == 0], [i for i in t if area_ids[i] != 0])] if len(bound) > 0 and len(inside) > 0 for b in bound]: if b in boundaryNeis: boundaryNeis[b] |= inside else: boundaryNeis[b] = inside for (b,neis) in six.iteritems(boundaryNeis): area_ids[b] = np.argmax(np.bincount(area_ids[list(neis)])) return pimms.imm_array(np.asarray(area_ids, dtype=np.int))
Example #8
Source File: test.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def _project_im_rois(im_rois, scales): """Project image RoIs into the image pyramid built by _get_image_blob. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates scales (list): scale factors as returned by _get_image_blob Returns: rois (ndarray): R x 4 matrix of projected RoI coordinates levels (list): image pyramid levels used by each projected RoI """ im_rois = im_rois.astype(np.float, copy=False) if len(scales) > 1: widths = im_rois[:, 2] - im_rois[:, 0] + 1 heights = im_rois[:, 3] - im_rois[:, 1] + 1 areas = widths * heights scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2) diff_areas = np.abs(scaled_areas - 224 * 224) levels = diff_areas.argmin(axis=1)[:, np.newaxis] else: levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) rois = im_rois * scales[levels] return rois, levels
Example #9
Source File: map_utils.py From DOTA_models with Apache License 2.0 | 6 votes |
def _project_to_map(map, vertex, wt=None, ignore_points_outside_map=False): """Projects points to map, returns how many points are present at each location.""" num_points = np.zeros((map.size[1], map.size[0])) vertex_ = vertex[:, :2] - map.origin vertex_ = np.round(vertex_ / map.resolution).astype(np.int) if ignore_points_outside_map: good_ind = np.all(np.array([vertex_[:,1] >= 0, vertex_[:,1] < map.size[1], vertex_[:,0] >= 0, vertex_[:,0] < map.size[0]]), axis=0) vertex_ = vertex_[good_ind, :] if wt is not None: wt = wt[good_ind, :] if wt is None: np.add.at(num_points, (vertex_[:, 1], vertex_[:, 0]), 1) else: assert(wt.shape[0] == vertex.shape[0]), \ 'number of weights should be same as vertices.' np.add.at(num_points, (vertex_[:, 1], vertex_[:, 0]), wt) return num_points
Example #10
Source File: test_train.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def _project_im_rois(im_rois, scales): """Project image RoIs into the image pyramid built by _get_image_blob. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates scales (list): scale factors as returned by _get_image_blob Returns: rois (ndarray): R x 4 matrix of projected RoI coordinates levels (list): image pyramid levels used by each projected RoI """ im_rois = im_rois.astype(np.float, copy=False) if len(scales) > 1: widths = im_rois[:, 2] - im_rois[:, 0] + 1 heights = im_rois[:, 3] - im_rois[:, 1] + 1 areas = widths * heights scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2) diff_areas = np.abs(scaled_areas - 224 * 224) levels = diff_areas.argmin(axis=1)[:, np.newaxis] else: levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) rois = im_rois * scales[levels] return rois, levels
Example #11
Source File: test_utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def _validate_csr_generation_inputs(num_rows, num_cols, density, distribution="uniform"): """Validates inputs for csr generation helper functions """ total_nnz = int(num_rows * num_cols * density) if density < 0 or density > 1: raise ValueError("density has to be between 0 and 1") if num_rows <= 0 or num_cols <= 0: raise ValueError("num_rows or num_cols should be greater than 0") if distribution == "powerlaw": if total_nnz < 2 * num_rows: raise ValueError("not supported for this density: %s" " for this shape (%s, %s)" " Please keep :" " num_rows * num_cols * density >= 2 * num_rows" % (density, num_rows, num_cols))
Example #12
Source File: synthetic_data_utils.py From DOTA_models with Apache License 2.0 | 6 votes |
def spikify_data(data_e, rng, dt=1.0, max_firing_rate=100): """ Apply spikes to a continuous dataset whose values are between 0.0 and 1.0 Args: data_e: nexamples length list of NxT trials dt: how often the data are sampled max_firing_rate: the firing rate that is associated with a value of 1.0 Returns: spikified_data_e: a list of length b of the data represented as spikes, sampled from the underlying poisson process. """ spikifies_data_e = [] E = len(data_e) spikes_e = [] for e in range(E): data = data_e[e] N,T = data.shape data_s = np.zeros([N,T]).astype(np.int) for n in range(N): f = data[n,:] s = rng.poisson(f*max_firing_rate*dt, size=T) data_s[n,:] = s spikes_e.append(data_s) return spikes_e
Example #13
Source File: operators.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def dqn_sym_nips(action_num, data=None, name='dqn'): """Structure of the Deep Q Network in the NIPS 2013 workshop paper: Playing Atari with Deep Reinforcement Learning (https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) Parameters ---------- action_num : int data : mxnet.sym.Symbol, optional name : str, optional """ if data is None: net = mx.symbol.Variable('data') else: net = data net = mx.symbol.Convolution(data=net, name='conv1', kernel=(8, 8), stride=(4, 4), num_filter=16) net = mx.symbol.Activation(data=net, name='relu1', act_type="relu") net = mx.symbol.Convolution(data=net, name='conv2', kernel=(4, 4), stride=(2, 2), num_filter=32) net = mx.symbol.Activation(data=net, name='relu2', act_type="relu") net = mx.symbol.Flatten(data=net) net = mx.symbol.FullyConnected(data=net, name='fc3', num_hidden=256) net = mx.symbol.Activation(data=net, name='relu3', act_type="relu") net = mx.symbol.FullyConnected(data=net, name='fc4', num_hidden=action_num) net = mx.symbol.Custom(data=net, name=name, op_type='DQNOutput') return net
Example #14
Source File: custom.py From mmdetection with Apache License 2.0 | 6 votes |
def prepare_test_img(self, idx): """Get testing data after pipeline. Args: idx (int): Index of data. Returns: dict: Testing data after pipeline with new keys intorduced by piepline. """ img_info = self.data_infos[idx] results = dict(img_info=img_info) if self.proposals is not None: results['proposals'] = self.proposals[idx] self.pre_pipeline(results) return self.pipeline(results)
Example #15
Source File: test_utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def var_check(generator, sigma, nsamples=1000000): """Test the generator by matching the variance. It will need a large number of samples and is not recommended to use We test the sample variance by checking if it falls inside the range (sigma^2 - 3 * sqrt(2 * sigma^4 / (n-1)), sigma^2 + 3 * sqrt(2 * sigma^4 / (n-1))) References:: @incollection{goucher2009beautiful, title={Beautiful Testing: Leading Professionals Reveal How They Improve Software}, author={Goucher, Adam and Riley, Tim}, year={2009}, chapter=10 } Examples:: generator = lambda x: np.random.normal(0, 1.0, size=x) var_check_ret = var_check(generator, 0, 1.0) Parameters ---------- generator : function The generator function. It's expected to generate N i.i.d samples by calling generator(N). sigma : float nsamples : int Returns ------- ret : bool Whether the variance test succeeds """ samples = np.array(generator(nsamples)) sample_var = samples.var(ddof=1) ret = (sample_var > sigma ** 2 - 3 * np.sqrt(2 * sigma ** 4 / (nsamples - 1))) and\ (sample_var < sigma ** 2 + 3 * np.sqrt(2 * sigma ** 4 / (nsamples - 1))) return ret
Example #16
Source File: dataset.py From PolarSeg with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __getitem__(self, index): raw_data = np.fromfile(self.im_idx[index], dtype=np.float32).reshape((-1, 4)) if self.imageset == 'test': annotated_data = np.expand_dims(np.zeros_like(raw_data[:,0],dtype=int),axis=1) else: annotated_data = np.fromfile(self.im_idx[index].replace('velodyne','labels')[:-3]+'label', dtype=np.int32).reshape((-1,1)) annotated_data = annotated_data & 0xFFFF #delete high 16 digits binary annotated_data = np.vectorize(self.learning_map.__getitem__)(annotated_data) data_tuple = (raw_data[:,:3], annotated_data.astype(np.uint8)) if self.return_ref: data_tuple += (raw_data[:,3],) return data_tuple
Example #17
Source File: tf_utils.py From DOTA_models with Apache License 2.0 | 5 votes |
def setup_training(loss_op, initial_learning_rate, steps_per_decay, learning_rate_decay, momentum, max_steps, sync=False, adjust_lr_sync=True, num_workers=1, replica_id=0, vars_to_optimize=None, clip_gradient_norm=0, typ=None, momentum2=0.999, adam_eps=1e-8): if sync and adjust_lr_sync: initial_learning_rate = initial_learning_rate * num_workers max_steps = np.int(max_steps / num_workers) steps_per_decay = np.int(steps_per_decay / num_workers) global_step_op = slim.get_or_create_global_step() lr_op = tf.train.exponential_decay(initial_learning_rate, global_step_op, steps_per_decay, learning_rate_decay, staircase=True) if typ == 'sgd': optimizer = tf.train.MomentumOptimizer(lr_op, momentum) elif typ == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate=lr_op, beta1=momentum, beta2=momentum2, epsilon=adam_eps) if sync: sync_optimizer = tf.train.SyncReplicasOptimizer(optimizer, replicas_to_aggregate=num_workers, replica_id=replica_id, total_num_replicas=num_workers) train_op = slim.learning.create_train_op(loss_op, sync_optimizer, variables_to_train=vars_to_optimize, clip_gradient_norm=clip_gradient_norm) else: sync_optimizer = None train_op = slim.learning.create_train_op(loss_op, optimizer, variables_to_train=vars_to_optimize, clip_gradient_norm=clip_gradient_norm) should_stop_op = tf.greater_equal(global_step_op, max_steps) return lr_op, global_step_op, train_op, should_stop_op, optimizer, sync_optimizer
Example #18
Source File: numpy_softmax.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def backward(self, out_grad, in_data, out_data, in_grad): l = in_data[1] l = l.reshape((l.size,)).astype(np.int) y = out_data[0] dx = in_grad[0] dx[:] = y dx[np.arange(l.shape[0]), l] -= 1.0 # define mlp
Example #19
Source File: test_utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def mean_check(generator, mu, sigma, nsamples=1000000): """Test the generator by matching the mean. We test the sample mean by checking if it falls inside the range (mu - 3 * sigma / sqrt(n), mu + 3 * sigma / sqrt(n)) References:: @incollection{goucher2009beautiful, title={Beautiful Testing: Leading Professionals Reveal How They Improve Software}, author={Goucher, Adam and Riley, Tim}, year={2009}, chapter=10 } Examples:: generator = lambda x: np.random.normal(0, 1.0, size=x) mean_check_ret = mean_check(generator, 0, 1.0) Parameters ---------- generator : function The generator function. It's expected to generate N i.i.d samples by calling generator(N). mu : float sigma : float nsamples : int Returns ------- ret : bool Whether the mean test succeeds """ samples = np.array(generator(nsamples)) sample_mean = samples.mean() ret = (sample_mean > mu - 3 * sigma / np.sqrt(nsamples)) and\ (sample_mean < mu + 3 * sigma / np.sqrt(nsamples)) return ret
Example #20
Source File: build_mscoco_data.py From DOTA_models with Apache License 2.0 | 5 votes |
def main(unused_argv): def _is_valid_num_shards(num_shards): """Returns True if num_shards is compatible with FLAGS.num_threads.""" return num_shards < FLAGS.num_threads or not num_shards % FLAGS.num_threads assert _is_valid_num_shards(FLAGS.train_shards), ( "Please make the FLAGS.num_threads commensurate with FLAGS.train_shards") assert _is_valid_num_shards(FLAGS.val_shards), ( "Please make the FLAGS.num_threads commensurate with FLAGS.val_shards") assert _is_valid_num_shards(FLAGS.test_shards), ( "Please make the FLAGS.num_threads commensurate with FLAGS.test_shards") if not tf.gfile.IsDirectory(FLAGS.output_dir): tf.gfile.MakeDirs(FLAGS.output_dir) # Load image metadata from caption files. mscoco_train_dataset = _load_and_process_metadata(FLAGS.train_captions_file, FLAGS.train_image_dir) mscoco_val_dataset = _load_and_process_metadata(FLAGS.val_captions_file, FLAGS.val_image_dir) # Redistribute the MSCOCO data as follows: # train_dataset = 100% of mscoco_train_dataset + 85% of mscoco_val_dataset. # val_dataset = 5% of mscoco_val_dataset (for validation during training). # test_dataset = 10% of mscoco_val_dataset (for final evaluation). train_cutoff = int(0.85 * len(mscoco_val_dataset)) val_cutoff = int(0.90 * len(mscoco_val_dataset)) train_dataset = mscoco_train_dataset + mscoco_val_dataset[0:train_cutoff] val_dataset = mscoco_val_dataset[train_cutoff:val_cutoff] test_dataset = mscoco_val_dataset[val_cutoff:] # Create vocabulary from the training captions. train_captions = [c for image in train_dataset for c in image.captions] vocab = _create_vocab(train_captions) _process_dataset("train", train_dataset, vocab, FLAGS.train_shards) _process_dataset("val", val_dataset, vocab, FLAGS.val_shards) _process_dataset("test", test_dataset, vocab, FLAGS.test_shards)
Example #21
Source File: dec.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def cluster_acc(Y_pred, Y): from sklearn.utils.linear_assignment_ import linear_assignment assert Y_pred.size == Y.size D = max(Y_pred.max(), Y.max())+1 w = np.zeros((D,D), dtype=np.int64) for i in range(Y_pred.size): w[Y_pred[i], int(Y[i])] += 1 ind = linear_assignment(w.max() - w) return sum([w[i,j] for i,j in ind])*1.0/Y_pred.size, w
Example #22
Source File: custom_softmax.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def backward(self, req, out_grad, in_data, out_data, in_grad, aux): l = in_data[1].asnumpy().ravel().astype(np.int) y = out_data[0].asnumpy() y[np.arange(l.shape[0]), l] -= 1.0 self.assign(in_grad[0], req[0], mx.nd.array(y))
Example #23
Source File: cmp_summary.py From DOTA_models with Apache License 2.0 | 5 votes |
def _vis_readout_maps(outputs, global_step, output_dir, metric_summary, N): # outputs is [gt_map, pred_map]: if N >= 0: outputs = outputs[:N] N = len(outputs) plt.set_cmap('jet') fig, axes = utils.subplot(plt, (N, outputs[0][0].shape[4]*2), (5,5)) axes = axes.ravel()[::-1].tolist() for i in range(N): gt_map, pred_map = outputs[i] for j in [0]: for k in range(gt_map.shape[4]): # Display something like the midpoint of the trajectory. id = np.int(gt_map.shape[1]/2) ax = axes.pop(); ax.imshow(gt_map[j,id,:,:,k], origin='lower', interpolation='none', vmin=0., vmax=1.) ax.set_axis_off(); if i == 0: ax.set_title('gt_map') ax = axes.pop(); ax.imshow(pred_map[j,id,:,:,k], origin='lower', interpolation='none', vmin=0., vmax=1.) ax.set_axis_off(); if i == 0: ax.set_title('pred_map') file_name = os.path.join(output_dir, 'readout_map_{:d}.png'.format(global_step)) with fu.fopen(file_name, 'w') as f: fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0) plt.close(fig)
Example #24
Source File: cmp_summary.py From DOTA_models with Apache License 2.0 | 5 votes |
def _summary_readout_maps(m, num_steps, arop_full_summary_iters): arop = []; arop_summary_iters = []; arop_eval_fns = []; id = np.int(num_steps-1) vis_readout_maps_gt = m.readout_maps_gt vis_readout_maps_prob = tf.reshape(m.readout_maps_probs, shape=tf.shape(vis_readout_maps_gt)) vis_readout_maps_gt = tf.expand_dims(vis_readout_maps_gt[:,id,:,:,:], 1) vis_readout_maps_prob = tf.expand_dims(vis_readout_maps_prob[:,id,:,:,:], 1) arop += [[vis_readout_maps_gt, vis_readout_maps_prob]] arop_summary_iters += [arop_full_summary_iters] arop_eval_fns += [_vis_readout_maps] return arop, arop_summary_iters, arop_eval_fns
Example #25
Source File: test_utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def np_reduce(dat, axis, keepdims, numpy_reduce_func): """Compatible reduce for old version of NumPy. Parameters ---------- dat : np.ndarray Same as NumPy. axis : None or int or list-like Same as NumPy. keepdims : bool Same as NumPy. numpy_reduce_func : function A NumPy reducing function like ``np.sum`` or ``np.max``. """ if isinstance(axis, int): axis = [axis] else: axis = list(axis) if axis is not None else range(len(dat.shape)) ret = dat for i in reversed(sorted(axis)): ret = numpy_reduce_func(ret, axis=i) if keepdims: keepdims_shape = list(dat.shape) for i in axis: keepdims_shape[i] = 1 ret = ret.reshape(tuple(keepdims_shape)) return ret
Example #26
Source File: core.py From neuropythy with GNU Affero General Public License v3.0 | 5 votes |
def simplex_summation_matrix(simplices, weight=None, inverse=False): ''' simplex_summation_matrix(mtx) yields a scipy sparse array matrix that, when dotted with a column vector of length m (where m is the number of simplices described in the simplex matrix, mtx), yields a vector of length n (where n is the number of vertices in the simplex mesh); the returned vetor is the sum over each vertex, of the faces to which it belongs. The matrix mtx must be oriented such that the first dimension (rows) corresponds to the vertices of the simplices and the second dimension (columns) corresponds to simplices themselves. The optional argument weight may specify a weight for each face, in which case the summation is a weighted sum instead of a flat sum. The optional argument inverse=True may be given to indicate that the inverse summation matrix (summation of the vertices onto the simplices) should be returned. ''' simplices = np.asarray(simplices) n = np.max(simplices) + 1 (d,m) = simplices.shape rng = range(m) if inverse: if weight is None: f = sps.csr_matrix else: nrng = range(n) ww = sps.csr_matrix((weight, (nrng, nrng)), shape=(n,n), dtype=np.float) f = lambda *args,**kwargs: ww.dot(sps.csc_matrix(*args,**kwargs)) s = f((np.ones(d*m, dtype=np.int), (np.concatenate([rng for _ in range(d)]), np.concatenate(simplices))), shape=(m,n), dtype=np.int) else: s = sps.csr_matrix( (np.ones(d*m, dtype=np.int), (np.concatenate(simplices), np.concatenate([rng for _ in range(d)]))), shape=(n,m), dtype=np.int) if weight is not None: s = s.dot(sps.csc_matrix((weight, (rng, rng)), shape=(m,m), dtype=np.float)) return s
Example #27
Source File: cmag.py From neuropythy with GNU Affero General Public License v3.0 | 5 votes |
def _cmag_coord_idcs(coordinates): return [i for (i,(x,y)) in enumerate(zip(*coordinates)) if (np.issubdtype(type(x), np.float) or np.issubdtype(type(x), np.int)) if (np.issubdtype(type(y), np.float) or np.issubdtype(type(y), np.int)) if not np.isnan(x) and not np.isnan(y)]
Example #28
Source File: models.py From neuropythy with GNU Affero General Public License v3.0 | 5 votes |
def faces(tris): 'mdl.faces is the triangle matrix for the given retinotopy mesh model mdl.' tris = np.asarray(tris, dtype=np.int) if tris.shape[0] != 3: tris = tris.T if tris.shape[0] != 3: raise ValueError('triangle matrix must have 3 rows or columns') return pimms.imm_array(tris)
Example #29
Source File: images.py From neuropythy with GNU Affero General Public License v3.0 | 5 votes |
def image_shape(arg): ''' image_shape(im) yields the image shape for the given image im. The argument im may be an image, an array, an image header, or an image spec. ''' if is_image(arg): sh = arg.shape elif pimms.is_vector(arg, 'int') and len(arg) < 5: sh = tuple(arg) elif is_image_spec(arg): sh = imspec_lookup(arg, 'image_shape') elif is_image_header(arg): sh = image_header_to_spec(arg)['image_shape'] elif is_image_array(arg): sh = np.shape(arg) else: raise VelueError('Bad argument of type %s given to image_shape()' % type(arg)) sh = tuple(sh) if len(sh) == 2: sh = (sh[0], 1, 1, sh[1]) elif len(sh) == 1: sh = (sh[0], 1, 1) return sh
Example #30
Source File: functions.py From deep-learning-note with MIT License | 5 votes |
def step_function(x): return np.array(x > 0, dtype=np.int)