Python numpy.c_() Examples
The following are 30 code examples for showing how to use numpy.c_(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: Python-ELM Author: masaponto File: elm.py License: MIT License | 6 votes |
def _add_bias(self, X): """add bias to list Args: x_vs [[float]] Array: vec to add bias Returns: [float]: added vec Examples: >>> e = ELM(10, 3) >>> e._add_bias(np.array([[1,2,3], [1,2,3]])) array([[1., 2., 3., 1.], [1., 2., 3., 1.]]) """ return np.c_[X, np.ones(X.shape[0])]
Example 2
Project: sgd-influence Author: sato9hara File: DataModule.py License: MIT License | 6 votes |
def fetch(self, n_tr, n_val, n_test, seed=0): x, y = self.load() # split data x_tr, x_val, y_tr, y_val = train_test_split( x, y, train_size=n_tr, test_size=n_val+n_test, random_state=seed) x_val, x_test, y_val, y_test = train_test_split( x_val, y_val, train_size=n_val, test_size=n_test, random_state=seed+1) # process x if self.normalize: scaler = StandardScaler() scaler.fit(x_tr) x_tr = scaler.transform(x_tr) x_val = scaler.transform(x_val) x_test = scaler.transform(x_test) if self.append_one: x_tr = np.c_[x_tr, np.ones(n_tr)] x_val = np.c_[x_val, np.ones(n_val)] x_test = np.c_[x_test, np.ones(n_test)] return (x_tr, y_tr), (x_val, y_val), (x_test, y_test)
Example 3
Project: Fundamentals-of-Machine-Learning-with-scikit-learn Author: PacktPublishing File: 1logistic_regression.py License: MIT License | 6 votes |
def show_classification_areas(X, Y, lr): x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02)) Z = lr.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.figure(1, figsize=(30, 25)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=np.abs(Y - 1), edgecolors='k', cmap=plt.cm.coolwarm) plt.xlabel('X') plt.ylabel('Y') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
Example 4
Project: sprocket Author: k2kobayashi File: test_diagGMM.py License: MIT License | 6 votes |
def test_blockdiag_GMM_train_and_convert(self): jnt = np.random.rand(100, 20) gmm_tr = GMMTrainer(n_mix=4, n_iter=100, covtype='block_diag') gmm_tr.train(jnt) gmm_cv = GMMConvertor( n_mix=4, covtype='block_diag', gmmmode=None) gmm_cv.open_from_param(gmm_tr.param) data = np.random.rand(200, 5) sddata = np.c_[data, delta(data)] odata = gmm_cv.convert(sddata, cvtype='mlpg') odata = gmm_cv.convert(sddata, cvtype='mmse') assert data.shape == odata.shape # test for singlepath Ajnt = np.random.rand(100, 120) Bjnt = np.random.rand(100, 140) gmm_tr.estimate_responsibility(jnt) Aparam = gmm_tr.train_singlepath(Ajnt) Bparam = gmm_tr.train_singlepath(Bjnt) assert np.allclose(Aparam.weights_, Bparam.weights_)
Example 5
Project: sprocket Author: k2kobayashi File: test_GMM.py License: MIT License | 6 votes |
def test_GMM_train_and_convert(self): jnt = np.random.rand(100, 20) gmm_tr = GMMTrainer(n_mix=4, n_iter=100, covtype='full') gmm_tr.train(jnt) data = np.random.rand(200, 5) sddata = np.c_[data, delta(data)] gmm_cv = GMMConvertor( n_mix=4, covtype='full', gmmmode=None) gmm_cv.open_from_param(gmm_tr.param) odata = gmm_cv.convert(sddata, cvtype='mlpg') odata = gmm_cv.convert(sddata, cvtype='mmse') assert data.shape == odata.shape # test for singlepath Ajnt = np.random.rand(100, 120) Bjnt = np.random.rand(100, 140) gmm_tr.estimate_responsibility(jnt) Aparam = gmm_tr.train_singlepath(Ajnt) Bparam = gmm_tr.train_singlepath(Bjnt) assert np.allclose(Aparam.weights_, Bparam.weights_)
Example 6
Project: sprocket Author: k2kobayashi File: twf.py License: MIT License | 6 votes |
def align_data(org_data, tar_data, twf): """Get aligned joint feature vector Paramters --------- orgdata : array, shape (`T_org`, `dim_org`) Acoustic feature vector of original speaker tardata : array, shape (`T_tar`, `dim_tar`) Acoustic feature vector of target speaker twf : array, shape (`2`, `T`) Time warping function between original and target Returns ------- jdata : array, shape (`T_new` `dim_org + dim_tar`) Joint feature vector between source and target """ jdata = np.c_[org_data[twf[0]], tar_data[twf[1]]] return jdata
Example 7
Project: sprocket Author: k2kobayashi File: delta.py License: MIT License | 6 votes |
def static_delta(data, win=[-1.0, 1.0, 0]): """Calculate static and delta component Parameters ---------- data : array, shape (`T`, `dim`) Array of static matrix sequence. win: array, optional, shape (`3`) The shape of window matrix. Default set to [-1.0, 1.0, 0]. Returns ------- sddata: array, shape (`T`, `dim*2`) Array static and delta matrix sequence. """ sddata = np.c_[data, delta(data, win)] return sddata
Example 8
Project: mars Author: mars-project File: test_index_tricks.py License: Apache License 2.0 | 6 votes |
def testC_(self): r = mt.c_[mt.array([1, 2, 3]), mt.array([4, 5, 6])] result = self.executor.execute_tensor(r, concat=True)[0] expected = np.c_[np.array([1, 2, 3]), np.array([4, 5, 6])] np.testing.assert_array_equal(result, expected) r = mt.c_[mt.array([[1, 2, 3]]), 0, 0, mt.array([[4, 5, 6]])] result = self.executor.execute_tensor(r, concat=True)[0] expected = np.c_[np.array([[1, 2, 3]]), 0, 0, np.array([[4, 5, 6]])] np.testing.assert_array_equal(result, expected) r = mt.c_[:3, 1:4] result = self.executor.execute_tensor(r, concat=True)[0] expected = np.c_[:3, 1:4] np.testing.assert_array_equal(result, expected)
Example 9
Project: pybids Author: bids-standard File: test_transformations.py License: MIT License | 6 votes |
def test_orthogonalize_dense(collection): transform.Factor(collection, 'trial_type', sep=sep) sampling_rate = collection.sampling_rate # Store pre-orth variables needed for tests pg_pre = collection['trial_type/parametric gain'].to_dense(sampling_rate) rt = collection['RT'].to_dense(sampling_rate) # Orthogonalize and store result transform.Orthogonalize(collection, variables='trial_type/parametric gain', other='RT', dense=True, groupby=['run', 'subject']) pg_post = collection['trial_type/parametric gain'] # Verify that the to_dense() calls result in identical indexing ent_cols = ['subject', 'run'] assert pg_pre.to_df()[ent_cols].equals(rt.to_df()[ent_cols]) assert pg_post.to_df()[ent_cols].equals(rt.to_df()[ent_cols]) vals = np.c_[rt.values, pg_pre.values, pg_post.values] df = pd.DataFrame(vals, columns=['rt', 'pre', 'post']) groupby = rt.get_grouper(['run', 'subject']) pre_r = df.groupby(groupby).apply(lambda x: x.corr().iloc[0, 1]) post_r = df.groupby(groupby).apply(lambda x: x.corr().iloc[0, 2]) assert (pre_r > 0.2).any() assert (post_r < 0.0001).all()
Example 10
Project: LipReading Author: joseph-zhong File: estimate_pose.py License: MIT License | 6 votes |
def compute_similarity_transform(points_static, points_to_transform): #http://nghiaho.com/?page_id=671 p0 = np.copy(points_static).T p1 = np.copy(points_to_transform).T t0 = -np.mean(p0, axis=1).reshape(3,1) t1 = -np.mean(p1, axis=1).reshape(3,1) t_final = t1 -t0 p0c = p0+t0 p1c = p1+t1 covariance_matrix = p0c.dot(p1c.T) U,S,V = np.linalg.svd(covariance_matrix) R = U.dot(V) if np.linalg.det(R) < 0: R[:,2] *= -1 rms_d0 = np.sqrt(np.mean(np.linalg.norm(p0c, axis=0)**2)) rms_d1 = np.sqrt(np.mean(np.linalg.norm(p1c, axis=0)**2)) s = (rms_d0/rms_d1) P = np.c_[s*np.eye(3).dot(R), t_final] return P
Example 11
Project: centerpose Author: tensorboy File: estimate_pose.py License: MIT License | 6 votes |
def compute_similarity_transform(points_static, points_to_transform): # http://nghiaho.com/?page_id=671 p0 = np.copy(points_static).T p1 = np.copy(points_to_transform).T t0 = -np.mean(p0, axis=1).reshape(3, 1) t1 = -np.mean(p1, axis=1).reshape(3, 1) t_final = t1 - t0 p0c = p0 + t0 p1c = p1 + t1 covariance_matrix = p0c.dot(p1c.T) U, S, V = np.linalg.svd(covariance_matrix) R = U.dot(V) if np.linalg.det(R) < 0: R[:, 2] *= -1 rms_d0 = np.sqrt(np.mean(np.linalg.norm(p0c, axis=0) ** 2)) rms_d1 = np.sqrt(np.mean(np.linalg.norm(p1c, axis=0) ** 2)) s = (rms_d0 / rms_d1) P = np.c_[s * np.eye(3).dot(R), t_final] return P
Example 12
Project: ocelot Author: ocelot-collab File: astra2ocelot.py License: GNU General Public License v3.0 | 6 votes |
def exact_xp_2_xxstg_mad(xp, gamref): # to mad format N = xp.shape[0] xxstg = np.zeros((N, 6)) pref = m_e_eV * np.sqrt(gamref ** 2 - 1) u = np.c_[xp[:, 3], xp[:, 4], xp[:, 5] + pref] gamma = np.sqrt(1 + np.sum(u * u, 1) / m_e_eV ** 2) beta = np.sqrt(1 - gamma ** -2) betaref = np.sqrt(1 - gamref ** -2) if np.__version__ > "1.8": p0 = np.linalg.norm(u, 2, 1).reshape((N, 1)) else: p0 = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1)) u = u / p0 cdt = -xp[:, 2] / (beta * u[:, 2]) xxstg[:, 0] = xp[:, 0] + beta * u[:, 0] * cdt xxstg[:, 2] = xp[:, 1] + beta * u[:, 1] * cdt xxstg[:, 4] = cdt xxstg[:, 1] = xp[:, 3] / pref xxstg[:, 3] = xp[:, 4] / pref xxstg[:, 5] = (gamma / gamref - 1) / betaref return xxstg
Example 13
Project: ocelot Author: ocelot-collab File: astra2ocelot.py License: GNU General Public License v3.0 | 6 votes |
def exact_xxstg_2_xp_mad(xxstg, gamref): # from mad format N = int(xxstg.size / 6) xp = np.zeros((N, 6)) pref = m_e_eV * np.sqrt(gamref ** 2 - 1) betaref = np.sqrt(1 - gamref ** -2) gamma = (betaref * xxstg[5] + 1) * gamref beta = np.sqrt(1 - gamma ** -2) pz2pref = np.sqrt(((gamma * beta) / (gamref * betaref)) ** 2 - xxstg[1] ** 2 - xxstg[3] ** 2) u = np.c_[xxstg[1] / pz2pref, xxstg[3] / pz2pref, np.ones(N)] if np.__version__ > "1.8": norm = np.linalg.norm(u, 2, 1).reshape((N, 1)) else: norm = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1)) u = u / norm xp[:, 0] = xxstg[0] - u[:, 0] * beta * xxstg[4] xp[:, 1] = xxstg[2] - u[:, 1] * beta * xxstg[4] xp[:, 2] = -u[:, 2] * beta * xxstg[4] xp[:, 3] = u[:, 0] * gamma * beta * m_e_eV xp[:, 4] = u[:, 1] * gamma * beta * m_e_eV xp[:, 5] = u[:, 2] * gamma * beta * m_e_eV - pref return xp
Example 14
Project: ocelot Author: ocelot-collab File: astra2ocelot.py License: GNU General Public License v3.0 | 6 votes |
def exact_xp_2_xxstg_dp(xp, gamref): # dp/p0 N = xp.shape[0] xxstg = np.zeros((N, 6)) pref = m_e_eV * np.sqrt(gamref ** 2 - 1) u = np.c_[xp[:, 3], xp[:, 4], xp[:, 5] + pref] gamma = np.sqrt(1 + np.sum(u * u, 1) / m_e_eV ** 2) beta = np.sqrt(1 - gamma ** -2) if np.__version__ > "1.8": p0 = np.linalg.norm(u, 2, 1).reshape((N, 1)) else: p0 = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1)) u = u / p0 cdt = -xp[:, 2] / (beta * u[:, 2]) xxstg[:, 0] = xp[:, 0] + beta * u[:, 0] * cdt xxstg[:, 2] = xp[:, 1] + beta * u[:, 1] * cdt xxstg[:, 4] = cdt xxstg[:, 1] = u[:, 0] / u[:, 2] xxstg[:, 3] = u[:, 1] / u[:, 2] xxstg[:, 5] = p0.reshape(N) / pref - 1 return xxstg
Example 15
Project: ocelot Author: ocelot-collab File: astra2ocelot.py License: GNU General Public License v3.0 | 6 votes |
def exact_xp_2_xxstg_de(xp, gamref): # dE/E0 N = xp.shape[0] xxstg = np.zeros((N, 6)) pref = m_e_eV * np.sqrt(gamref ** 2 - 1) u = np.c_[xp[:, 3], xp[:, 4], xp[:, 5] + pref] gamma = np.sqrt(1 + np.sum(u * u, 1) / m_e_eV ** 2) beta = np.sqrt(1 - gamma ** -2) if np.__version__ > "1.8": p0 = np.linalg.norm(u, 2, 1).reshape((N, 1)) else: p0 = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1)) u = u / p0 cdt = -xp[:, 2] / (beta * u[:, 2]) xxstg[:, 0] = xp[:, 0] + beta * u[:, 0] * cdt xxstg[:, 2] = xp[:, 1] + beta * u[:, 1] * cdt xxstg[:, 4] = cdt xxstg[:, 1] = u[:, 0] / u[:, 2] xxstg[:, 3] = u[:, 1] / u[:, 2] xxstg[:, 5] = gamma / gamref - 1 return xxstg
Example 16
Project: ocelot Author: ocelot-collab File: astra2ocelot.py License: GNU General Public License v3.0 | 6 votes |
def exact_xxstg_2_xp_de(xxstg, gamref): # dE/E0 N = len(xxstg) / 6 xp = np.zeros((N, 6)) pref = m_e_eV * np.sqrt(gamref ** 2 - 1) gamma = gamref * (1 + xxstg[5::6]) beta = np.sqrt(1 - gamma ** -2) u = np.c_[xxstg[1::6], xxstg[3::6], np.ones(N)] if np.__version__ > "1.8": norm = np.linalg.norm(u, 2, 1).reshape((N, 1)) else: norm = np.sqrt(u[:, 0] ** 2 + u[:, 1] ** 2 + u[:, 2] ** 2).reshape((N, 1)) u = u / norm xp[:, 0] = xxstg[0::6] - u[:, 0] * beta * xxstg[4::6] xp[:, 1] = xxstg[2::6] - u[:, 1] * beta * xxstg[4::6] xp[:, 2] = -u[:, 2] * beta * xxstg[4::6] xp[:, 3] = u[:, 0] * gamma * beta * m_e_eV xp[:, 4] = u[:, 1] * gamma * beta * m_e_eV xp[:, 5] = u[:, 2] * gamma * beta * m_e_eV - pref return xp
Example 17
Project: vnpy_crypto Author: birforce File: test_representation.py License: MIT License | 6 votes |
def setup_class(cls, dtype=float, nforecast=100, conserve_memory=0): super(Clark1989Forecast, cls).setup_class( dtype=dtype, conserve_memory=conserve_memory ) cls.nforecast = nforecast # Add missing observations to the end (to forecast) cls.model.endog = np.array( np.c_[ cls.model.endog, np.r_[[np.nan, np.nan]*nforecast].reshape(2, nforecast) ], ndmin=2, dtype=dtype, order="F" ) cls.model.nobs = cls.model.endog.shape[1] cls.results = cls.run_filter()
Example 18
Project: vnpy_crypto Author: birforce File: test_tools.py License: MIT License | 6 votes |
def test_cases(self): # Basic cases for series, diff, seasonal_diff, seasonal_periods, result in self.cases: # Test numpy array x = tools.diff(series, diff, seasonal_diff, seasonal_periods) assert_almost_equal(x, result) # Test as Pandas Series series = pd.Series(series) # Rewrite to test as n-dimensional array series = np.c_[series, series] result = np.c_[result, result] # Test Numpy array x = tools.diff(series, diff, seasonal_diff, seasonal_periods) assert_almost_equal(x, result) # Test as Pandas Dataframe series = pd.DataFrame(series) x = tools.diff(series, diff, seasonal_diff, seasonal_periods) assert_almost_equal(x, result)
Example 19
Project: vnpy_crypto Author: birforce File: test_kalman.py License: MIT License | 6 votes |
def setup_class(cls, dtype=float, nforecast=100, conserve_memory=0): super(Clark1989Forecast, cls).setup_class(dtype, conserve_memory) cls.nforecast = nforecast # Add missing observations to the end (to forecast) cls._obs = cls.obs cls.obs = np.array( np.c_[ cls._obs, np.r_[[np.nan, np.nan]*nforecast].reshape(2, nforecast) ], ndmin=2, dtype=dtype, order="F" ) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter()
Example 20
Project: contextualbandits Author: david-cortes File: utils.py License: BSD 2-Clause "Simplified" License | 5 votes |
def _get_logistic_grads_norms(base_algorithm, X, pred): return np.c_[_logistic_grad_norm(X, 0, pred, base_algorithm), _logistic_grad_norm(X, 1, pred, base_algorithm)]
Example 21
Project: contextualbandits Author: david-cortes File: utils.py License: BSD 2-Clause "Simplified" License | 5 votes |
def _gen_random_grad_norms(X, n_pos, n_neg, random_state): ### Note: there isn't any theoretical reason behind these chosen distributions and numbers. ### A custom function might do a lot better. magic_number = np.log10(X.shape[1]) smooth_prop = (n_pos + 1.0) / (n_pos + n_neg + 2.0) return np.c_[random_state.gamma(magic_number / smooth_prop, magic_number, size=X.shape[0]), random_state.gamma(magic_number * smooth_prop, magic_number, size=X.shape[0])]
Example 22
Project: contextualbandits Author: david-cortes File: utils.py License: BSD 2-Clause "Simplified" License | 5 votes |
def predict_proba(self, X): preds = self.random_state.beta(self.a, self.b, size = X.shape[0]).reshape((-1, 1)) return np.c_[1.0 - preds, preds]
Example 23
Project: contextualbandits Author: david-cortes File: utils.py License: BSD 2-Clause "Simplified" License | 5 votes |
def predict_proba(self, X): return np.c_[np.ones((X.shape[0], 1)), np.zeros((X.shape[0], 1))]
Example 24
Project: contextualbandits Author: david-cortes File: utils.py License: BSD 2-Clause "Simplified" License | 5 votes |
def predict_proba(self, X): return np.c_[np.zeros((X.shape[0], 1)), np.ones((X.shape[0], 1))]
Example 25
Project: deep_sort Author: nwojke File: iou_matching.py License: GNU General Public License v3.0 | 5 votes |
def iou(bbox, candidates): """Computer intersection over union. Parameters ---------- bbox : ndarray A bounding box in format `(top left x, top left y, width, height)`. candidates : ndarray A matrix of candidate bounding boxes (one per row) in the same format as `bbox`. Returns ------- ndarray The intersection over union in [0, 1] between the `bbox` and each candidate. A higher score means a larger fraction of the `bbox` is occluded by the candidate. """ bbox_tl, bbox_br = bbox[:2], bbox[:2] + bbox[2:] candidates_tl = candidates[:, :2] candidates_br = candidates[:, :2] + candidates[:, 2:] tl = np.c_[np.maximum(bbox_tl[0], candidates_tl[:, 0])[:, np.newaxis], np.maximum(bbox_tl[1], candidates_tl[:, 1])[:, np.newaxis]] br = np.c_[np.minimum(bbox_br[0], candidates_br[:, 0])[:, np.newaxis], np.minimum(bbox_br[1], candidates_br[:, 1])[:, np.newaxis]] wh = np.maximum(0., br - tl) area_intersection = wh.prod(axis=1) area_bbox = bbox[2:].prod() area_candidates = candidates[:, 2:].prod(axis=1) return area_intersection / (area_bbox + area_candidates - area_intersection)
Example 26
Project: me-ica Author: ME-ICA File: test_dicomwrappers.py License: GNU Lesser General Public License v2.1 | 5 votes |
def test_use_csa_sign(): #Test that we get the same slice normal, even after swapping the iop #directions dw = didw.wrapper_from_file(DATA_FILE_SLC_NORM) iop = dw.image_orient_patient dw.image_orient_patient = np.c_[iop[:,1], iop[:,0]] dw2 = didw.wrapper_from_file(DATA_FILE_SLC_NORM) assert np.allclose(dw.slice_normal, dw2.slice_normal)
Example 27
Project: me-ica Author: ME-ICA File: test_dicomwrappers.py License: GNU Lesser General Public License v2.1 | 5 votes |
def test_assert_parallel(): #Test that we get an AssertionError if the cross product and the CSA #slice normal are not parallel dw = didw.wrapper_from_file(DATA_FILE_SLC_NORM) dw.image_orient_patient = np.c_[[1., 0., 0.], [0., 1., 0.]] assert_raises(AssertionError, dw.__getattribute__, 'slice_normal')
Example 28
Project: kaggle-code Author: CNuge File: ml_munging_functions.py License: MIT License | 5 votes |
def transform(self, X, y=None): if self.alter_df: """ code in aterations to df here """ return np.c_[X, #THINGS you've added ] else: """ if alter_df=False, then just return the df """ return np.c_[X] #list the numeric and then list the categoricals
Example 29
Project: 2D-Motion-Retargeting Author: ChrisWu1997 File: motion.py License: MIT License | 5 votes |
def trans_motion2d(motion2d): # subtract centers to local coordinates centers = motion2d[8, :, :] motion_proj = motion2d - centers # adding velocity velocity = np.c_[np.zeros((2, 1)), centers[:, 1:] - centers[:, :-1]].reshape(1, 2, -1) motion_proj = np.r_[motion_proj[:8], motion_proj[9:], velocity] return motion_proj
Example 30
Project: yatsm Author: ceholden File: test_regression_robust_fit.py License: MIT License | 5 votes |
def X_y_intercept_slope(request): np.random.seed(0) slope, intercept = 2., 5. X = np.c_[np.ones(10), np.arange(10)] y = slope * X[:, 1] + intercept # Add noise y[9] = 0 return X, y, intercept, slope