Python numpy.var() Examples
The following are 30 code examples for showing how to use numpy.var(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: python-- Author: Leezhen2014 File: BlurDetection.py License: GNU General Public License v3.0 | 10 votes |
def _lapulaseDetection(self, imgName): """ :param strdir: 文件所在的目录 :param name: 文件名称 :return: 检测模糊后的分数 """ # step1: 预处理 img2gray, reImg = self.preImgOps(imgName) # step2: laplacian算子 获取评分 resLap = cv2.Laplacian(img2gray, cv2.CV_64F) score = resLap.var() print("Laplacian %s score of given image is %s", str(score)) # strp3: 绘制图片并保存 不应该写在这里 抽象出来 这是共有的部分 newImg = self._drawImgFonts(reImg, str(score)) newDir = self.strDir + "/_lapulaseDetection_/" if not os.path.exists(newDir): os.makedirs(newDir) newPath = newDir + imgName # 显示 cv2.imwrite(newPath, newImg) # 保存图片 cv2.imshow(imgName, newImg) cv2.waitKey(0) # step3: 返回分数 return score
Example 2
Project: TradzQAI Author: kkuette File: standard_variance.py License: Apache License 2.0 | 6 votes |
def standard_variance(data, period): """ Standard Variance. Formula: (Ct - AVGt)^2 / N """ check_for_period_error(data, period) sv = list(map( lambda idx: np.var(data[idx+1-period:idx+1], ddof=1), range(period-1, len(data)) )) sv = fill_for_noncomputable_vals(data, sv) return sv
Example 3
Project: lirpg Author: Hwhitetooth File: running_mean_std.py License: MIT License | 6 votes |
def test_runningmeanstd(): for (x1, x2, x3) in [ (np.random.randn(3), np.random.randn(4), np.random.randn(5)), (np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)), ]: rms = RunningMeanStd(epsilon=0.0, shape=x1.shape[1:]) x = np.concatenate([x1, x2, x3], axis=0) ms1 = [x.mean(axis=0), x.var(axis=0)] rms.update(x1) rms.update(x2) rms.update(x3) ms2 = [rms.mean, rms.var] assert np.allclose(ms1, ms2)
Example 4
Project: HardRLWithYoutube Author: MaxSobolMark File: running_mean_std.py License: MIT License | 6 votes |
def test_tf_runningmeanstd(): for (x1, x2, x3) in [ (np.random.randn(3), np.random.randn(4), np.random.randn(5)), (np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)), ]: rms = TfRunningMeanStd(epsilon=0.0, shape=x1.shape[1:], scope='running_mean_std' + str(np.random.randint(0, 128))) x = np.concatenate([x1, x2, x3], axis=0) ms1 = [x.mean(axis=0), x.var(axis=0)] rms.update(x1) rms.update(x2) rms.update(x3) ms2 = [rms.mean, rms.var] np.testing.assert_allclose(ms1, ms2)
Example 5
Project: python-- Author: Leezhen2014 File: BlurDetection.py License: GNU General Public License v3.0 | 6 votes |
def _Variance(self, imgName): """ 灰度方差乘积 :param imgName: :return: """ # step 1 图像的预处理 img2gray, reImg = self.preImgOps(imgName) f = self._imageToMatrix(img2gray) # strp3: 绘制图片并保存 不应该写在这里 抽象出来 这是共有的部分 score = np.var(f) newImg = self._drawImgFonts(reImg, str(score)) newDir = self.strDir + "/_Variance_/" if not os.path.exists(newDir): os.makedirs(newDir) newPath = newDir + imgName cv2.imwrite(newPath, newImg) # 保存图片 cv2.imshow(imgName, newImg) cv2.waitKey(0) return score
Example 6
Project: NeuroKit Author: neuropsychology File: signal_changepoints.py License: MIT License | 6 votes |
def _signal_changepoints_cost_mean(signal): """Cost function for a normally distributed signal with a changing mean.""" i_variance_2 = 1 / (np.var(signal) ** 2) cmm = [0.0] cmm.extend(np.cumsum(signal)) cmm2 = [0.0] cmm2.extend(np.cumsum(np.abs(signal))) def cost(start, end): cmm2_diff = cmm2[end] - cmm2[start] cmm_diff = pow(cmm[end] - cmm[start], 2) i_diff = end - start diff = cmm2_diff - cmm_diff return (diff / i_diff) * i_variance_2 return cost
Example 7
Project: discomll Author: romanorac File: naivebayes.py License: Apache License 2.0 | 5 votes |
def map_fit(interface, state, label, inp): """ Function counts occurrences of feature values for every row in given data chunk. For continuous features it returns number of values and it calculates mean and variance for every feature. For discrete features it counts occurrences of labels and values for every feature. It returns occurrences of pairs: label, feature index, feature values. """ import numpy as np combiner = {} # combiner used for joining of intermediate pairs out = interface.output(0) # all outputted pairs have the same output label for row in inp: # for every row in data chunk row = row.strip().split(state["delimiter"]) # split row if len(row) > 1: # check if row is empty for i, j in enumerate(state["X_indices"]): # for defined features if row[j] not in state["missing_vals"]: # check missing values # creates a pair - label, feature index pair = row[state["y_index"]] + state["delimiter"] + str(j) if state["X_meta"][i] == "c": # continuous features if pair in combiner: # convert to float and store value combiner[pair].append(np.float32(row[j])) else: combiner[pair] = [np.float32(row[j])] else: # discrete features # add feature value to pair pair += state["delimiter"] + row[j] # increase counts of current pair combiner[pair] = combiner.get(pair, 0) + 1 # increase label counts combiner[row[state["y_index"]]] = combiner.get(row[state["y_index"]], 0) + 1 for k, v in combiner.iteritems(): # all pairs in combiner are output if len(k.split(state["delimiter"])) == 2: # continous features # number of elements, partial mean and variance out.add(k, (np.size(v), np.mean(v, dtype=np.float32), np.var(v, dtype=np.float32))) else: # discrete features and labels out.add(k, v)
Example 8
Project: DOTA_models Author: ringringyi File: ops_test.py License: Apache License 2.0 | 5 votes |
def testComputeMovingVars(self): height, width = 3, 3 with self.test_session() as sess: image_shape = (10, height, width, 3) image_values = np.random.rand(*image_shape) expected_mean = np.mean(image_values, axis=(0, 1, 2)) expected_var = np.var(image_values, axis=(0, 1, 2)) images = tf.constant(image_values, shape=image_shape, dtype=tf.float32) output = ops.batch_norm(images, decay=0.1) update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION) with tf.control_dependencies(update_ops): output = tf.identity(output) # Initialize all variables sess.run(tf.global_variables_initializer()) moving_mean = variables.get_variables('BatchNorm/moving_mean')[0] moving_variance = variables.get_variables('BatchNorm/moving_variance')[0] mean, variance = sess.run([moving_mean, moving_variance]) # After initialization moving_mean == 0 and moving_variance == 1. self.assertAllClose(mean, [0] * 3) self.assertAllClose(variance, [1] * 3) for _ in range(10): sess.run([output]) mean = moving_mean.eval() variance = moving_variance.eval() # After 10 updates with decay 0.1 moving_mean == expected_mean and # moving_variance == expected_var. self.assertAllClose(mean, expected_mean) self.assertAllClose(variance, expected_var)
Example 9
Project: DOTA_models Author: ringringyi File: ops_test.py License: Apache License 2.0 | 5 votes |
def testEvalMovingVars(self): height, width = 3, 3 with self.test_session() as sess: image_shape = (10, height, width, 3) image_values = np.random.rand(*image_shape) expected_mean = np.mean(image_values, axis=(0, 1, 2)) expected_var = np.var(image_values, axis=(0, 1, 2)) images = tf.constant(image_values, shape=image_shape, dtype=tf.float32) output = ops.batch_norm(images, decay=0.1, is_training=False) update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION) with tf.control_dependencies(update_ops): output = tf.identity(output) # Initialize all variables sess.run(tf.global_variables_initializer()) moving_mean = variables.get_variables('BatchNorm/moving_mean')[0] moving_variance = variables.get_variables('BatchNorm/moving_variance')[0] mean, variance = sess.run([moving_mean, moving_variance]) # After initialization moving_mean == 0 and moving_variance == 1. self.assertAllClose(mean, [0] * 3) self.assertAllClose(variance, [1] * 3) # Simulate assigment from saver restore. init_assigns = [tf.assign(moving_mean, expected_mean), tf.assign(moving_variance, expected_var)] sess.run(init_assigns) for _ in range(10): sess.run([output], {images: np.random.rand(*image_shape)}) mean = moving_mean.eval() variance = moving_variance.eval() # Although we feed different images, the moving_mean and moving_variance # shouldn't change. self.assertAllClose(mean, expected_mean) self.assertAllClose(variance, expected_var)
Example 10
Project: DOTA_models Author: ringringyi File: ops_test.py License: Apache License 2.0 | 5 votes |
def testReuseVars(self): height, width = 3, 3 with self.test_session() as sess: image_shape = (10, height, width, 3) image_values = np.random.rand(*image_shape) expected_mean = np.mean(image_values, axis=(0, 1, 2)) expected_var = np.var(image_values, axis=(0, 1, 2)) images = tf.constant(image_values, shape=image_shape, dtype=tf.float32) output = ops.batch_norm(images, decay=0.1, is_training=False) update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION) with tf.control_dependencies(update_ops): output = tf.identity(output) # Initialize all variables sess.run(tf.global_variables_initializer()) moving_mean = variables.get_variables('BatchNorm/moving_mean')[0] moving_variance = variables.get_variables('BatchNorm/moving_variance')[0] mean, variance = sess.run([moving_mean, moving_variance]) # After initialization moving_mean == 0 and moving_variance == 1. self.assertAllClose(mean, [0] * 3) self.assertAllClose(variance, [1] * 3) # Simulate assigment from saver restore. init_assigns = [tf.assign(moving_mean, expected_mean), tf.assign(moving_variance, expected_var)] sess.run(init_assigns) for _ in range(10): sess.run([output], {images: np.random.rand(*image_shape)}) mean = moving_mean.eval() variance = moving_variance.eval() # Although we feed different images, the moving_mean and moving_variance # shouldn't change. self.assertAllClose(mean, expected_mean) self.assertAllClose(variance, expected_var)
Example 11
Project: DOTA_models Author: ringringyi File: hyperparams_builder_test.py License: Apache License 2.0 | 5 votes |
def _assert_variance_in_range(self, initializer, shape, variance, tol=1e-2): with tf.Graph().as_default() as g: with self.test_session(graph=g) as sess: var = tf.get_variable( name='test', shape=shape, dtype=tf.float32, initializer=initializer) sess.run(tf.global_variables_initializer()) values = sess.run(var) self.assertAllClose(np.var(values), variance, tol, tol)
Example 12
Project: soccer-matlab Author: utra-robosoccer File: filter.py License: BSD 2-Clause "Simplified" License | 5 votes |
def var(self): return 1
Example 13
Project: soccer-matlab Author: utra-robosoccer File: filter.py License: BSD 2-Clause "Simplified" License | 5 votes |
def var(self): return self._S / (self._n - 1) if self._n > 1 else np.square(self._M)
Example 14
Project: soccer-matlab Author: utra-robosoccer File: filter.py License: BSD 2-Clause "Simplified" License | 5 votes |
def std(self): return np.sqrt(self.var)
Example 15
Project: soccer-matlab Author: utra-robosoccer File: filter.py License: BSD 2-Clause "Simplified" License | 5 votes |
def test_running_stat(): for shp in ((), (3,), (3, 4)): li = [] rs = RunningStat(shp) for _ in range(5): val = np.random.randn(*shp) rs.push(val) li.append(val) m = np.mean(li, axis=0) assert np.allclose(rs.mean, m) v = np.square(m) if (len(li) == 1) else np.var(li, ddof=1, axis=0) assert np.allclose(rs.var, v)
Example 16
Project: lirpg Author: Hwhitetooth File: running_stat.py License: MIT License | 5 votes |
def var(self): return self._S/(self._n - 1) if self._n > 1 else np.square(self._M)
Example 17
Project: lirpg Author: Hwhitetooth File: running_stat.py License: MIT License | 5 votes |
def std(self): return np.sqrt(self.var)
Example 18
Project: lirpg Author: Hwhitetooth File: running_stat.py License: MIT License | 5 votes |
def test_running_stat(): for shp in ((), (3,), (3,4)): li = [] rs = RunningStat(shp) for _ in range(5): val = np.random.randn(*shp) rs.push(val) li.append(val) m = np.mean(li, axis=0) assert np.allclose(rs.mean, m) v = np.square(m) if (len(li) == 1) else np.var(li, ddof=1, axis=0) assert np.allclose(rs.var, v)
Example 19
Project: lirpg Author: Hwhitetooth File: math_util.py License: MIT License | 5 votes |
def explained_variance(ypred,y): """ Computes fraction of variance that ypred explains about y. Returns 1 - Var[y-ypred] / Var[y] interpretation: ev=0 => might as well have predicted zero ev=1 => perfect prediction ev<0 => worse than just predicting zero """ assert y.ndim == 1 and ypred.ndim == 1 vary = np.var(y) return np.nan if vary==0 else 1 - np.var(y-ypred)/vary
Example 20
Project: lirpg Author: Hwhitetooth File: math_util.py License: MIT License | 5 votes |
def explained_variance_2d(ypred, y): assert y.ndim == 2 and ypred.ndim == 2 vary = np.var(y, axis=0) out = 1 - np.var(y-ypred)/vary out[vary < 1e-10] = 0 return out
Example 21
Project: lirpg Author: Hwhitetooth File: running_mean_std.py License: MIT License | 5 votes |
def update(self, x): batch_mean = np.mean(x, axis=0) batch_var = np.var(x, axis=0) batch_count = x.shape[0] self.update_from_moments(batch_mean, batch_var, batch_count)
Example 22
Project: lirpg Author: Hwhitetooth File: running_mean_std.py License: MIT License | 5 votes |
def update_from_moments(self, batch_mean, batch_var, batch_count): delta = batch_mean - self.mean tot_count = self.count + batch_count new_mean = self.mean + delta * batch_count / tot_count m_a = self.var * (self.count) m_b = batch_var * (batch_count) M2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count) new_var = M2 / (self.count + batch_count) new_count = batch_count + self.count self.mean = new_mean self.var = new_var self.count = new_count
Example 23
Project: trees Author: gdanezis File: malware.py License: Apache License 2.0 | 5 votes |
def graph_ROC(max_ACC, TP, FP, name="STD"): aTP = np.vstack(TP) n = len(TP) mean_TP = np.mean(aTP, axis=0) stderr_TP = np.std(aTP, axis=0) / (n ** 0.5) var_TP = np.var(aTP, axis=0) max_TP = mean_TP + 3 * stderr_TP min_TP = mean_TP - 3 * stderr_TP # sTP = sum(TP) / len(TP) sFP = FP[0] print len(sFP), len(mean_TP), len(TP[0]) smax_ACC = np.mean(max_ACC) plt.cla() plt.clf() plt.close() plt.plot(sFP, mean_TP) plt.fill_between(sFP, min_TP, max_TP, color='black', alpha=0.2) plt.xlim((0,0.1)) plt.ylim((0,1)) plt.title('ROC Curve (accuracy=%.3f)' % smax_ACC) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.savefig(r"../scratch/"+name+"_ROC_curve.pdf", bbox_inches='tight') # Write the data to the file f = file(r"../scratch/"+name+"_ROC_curve.csv", "w") f.write("FalsePositive,TruePositive,std_err, var, n\n") for fp, tp, err, var in zip(sFP, mean_TP, stderr_TP, var_TP): f.write("%s, %s, %s, %s, %s\n" % (fp, tp, err, var, n)) f.close()
Example 24
Project: HardRLWithYoutube Author: MaxSobolMark File: math_util.py License: MIT License | 5 votes |
def explained_variance(ypred,y): """ Computes fraction of variance that ypred explains about y. Returns 1 - Var[y-ypred] / Var[y] interpretation: ev=0 => might as well have predicted zero ev=1 => perfect prediction ev<0 => worse than just predicting zero """ assert y.ndim == 1 and ypred.ndim == 1 vary = np.var(y) return np.nan if vary==0 else 1 - np.var(y-ypred)/vary
Example 25
Project: HardRLWithYoutube Author: MaxSobolMark File: math_util.py License: MIT License | 5 votes |
def explained_variance_2d(ypred, y): assert y.ndim == 2 and ypred.ndim == 2 vary = np.var(y, axis=0) out = 1 - np.var(y-ypred)/vary out[vary < 1e-10] = 0 return out
Example 26
Project: HardRLWithYoutube Author: MaxSobolMark File: running_stat.py License: MIT License | 5 votes |
def var(self): return self._S/(self._n - 1) if self._n > 1 else np.square(self._M)
Example 27
Project: HardRLWithYoutube Author: MaxSobolMark File: running_stat.py License: MIT License | 5 votes |
def std(self): return np.sqrt(self.var)
Example 28
Project: HardRLWithYoutube Author: MaxSobolMark File: running_stat.py License: MIT License | 5 votes |
def test_running_stat(): for shp in ((), (3,), (3,4)): li = [] rs = RunningStat(shp) for _ in range(5): val = np.random.randn(*shp) rs.push(val) li.append(val) m = np.mean(li, axis=0) assert np.allclose(rs.mean, m) v = np.square(m) if (len(li) == 1) else np.var(li, ddof=1, axis=0) assert np.allclose(rs.var, v)
Example 29
Project: HardRLWithYoutube Author: MaxSobolMark File: running_mean_std.py License: MIT License | 5 votes |
def update(self, x): batch_mean = np.mean(x, axis=0) batch_var = np.var(x, axis=0) batch_count = x.shape[0] self.update_from_moments(batch_mean, batch_var, batch_count)
Example 30
Project: HardRLWithYoutube Author: MaxSobolMark File: running_mean_std.py License: MIT License | 5 votes |
def update_from_moments(self, batch_mean, batch_var, batch_count): self.mean, self.var, self.count = update_mean_var_count_from_moments( self.mean, self.var, self.count, batch_mean, batch_var, batch_count)