Python numpy.s_() Examples
The following are 30 code examples for showing how to use numpy.s_(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: pycolab Author: deepmind File: tennnnnnnnnnnnnnnnnnnnnnnnis.py License: Apache License 2.0 | 6 votes |
def update(self, actions, board, layers, backdrop, things, the_plot): # Move up or down as directed if there is room. action = Actions.STAY if actions is None else actions[self.character] if action == Actions.UP: if self._paddle_top > 1: self._paddle_top -= 1 elif action == Actions.DOWN: if self._paddle_top < 7: self._paddle_top += 1 # Repaint the paddle. Note "blinking" effect if the ball slips past us. self.curtain[:, self._paddle_col] = False blink = (things['@'].position.col <= self._paddle_col # "past" us depends if self.character == '1' else # on which paddle things['@'].position.col >= self._paddle_col) # we are. if not blink or (the_plot.frame % 2 == 0): paddle_rows = np.s_[self._paddle_top:(self._paddle_top + 2)] self.curtain[paddle_rows, self._paddle_col] = True
Example 2
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_indexing.py License: MIT License | 6 votes |
def test_prepend_not_one(self): assign = self.assign s_ = np.s_ a = np.zeros(5) # Too large and not only ones. assert_raises(ValueError, assign, a, s_[...], np.ones((2, 1))) with warnings.catch_warnings(): # Will be a ValueError as well. warnings.simplefilter("error", DeprecationWarning) assert_raises(DeprecationWarning, assign, a, s_[[1, 2, 3],], np.ones((2, 1))) assert_raises(DeprecationWarning, assign, a, s_[[[1], [2]],], np.ones((2,2,1)))
Example 3
Project: vnpy_crypto Author: birforce File: dynamic_factor.py License: MIT License | 6 votes |
def _initialize_factor_transition(self): order = self.factor_order * self.k_factors k_factors = self.k_factors # Initialize the parameters self.parameters['factor_transition'] = ( self.factor_order * self.k_factors**2) # Setup fixed components of state space matrices # VAR(p) for factor transition if self.k_factors > 0: if self.factor_order > 0: self.ssm['transition', k_factors:order, :order - k_factors] = ( np.eye(order - k_factors)) self.ssm['selection', :k_factors, :k_factors] = np.eye(k_factors) # Identification requires constraining the state covariance to an # identity matrix self.ssm['state_cov', :k_factors, :k_factors] = np.eye(k_factors) # Setup indices of state space matrices self._idx_factor_transition = np.s_['transition', :k_factors, :order]
Example 4
Project: vnpy_crypto Author: birforce File: dynamic_factor.py License: MIT License | 6 votes |
def _initialize_error_transition_var(self): k_endog = self.k_endog _factor_order = self._factor_order _error_order = self._error_order # Initialize the parameters self.parameters['error_transition'] = _error_order * k_endog # Fixed components already setup above # Setup indices of state space matrices # Here we want to set all of the elements of the coefficient matrices, # the same as in a VAR specification self._idx_error_transition = np.s_[ 'transition', _factor_order:_factor_order + k_endog, _factor_order:_factor_order + _error_order]
Example 5
Project: SpectralMachine Author: feranick File: SpectraLearnPredict.py License: GNU General Public License v3.0 | 6 votes |
def readPredMap(mapFile): try: with open(mapFile, 'r') as f: En = np.array(f.readline().split(), dtype=np.dtype(float)) A = np.loadtxt(f, unpack =False) except: print('\033[1m' + ' Map data file not found \n' + '\033[0m') return X = A[:,0] Y = A[:,1] A = np.delete(A, np.s_[0:2], 1) print(' Shape map: ' + str(A.shape)) return X, Y, A, En ####################################################################
Example 6
Project: SpectralMachine Author: feranick File: SpectraLearnPredict.py License: GNU General Public License v3.0 | 6 votes |
def readPredMap(mapFile): try: with open(mapFile, 'r') as f: En = np.array(f.readline().split(), dtype=np.dtype(float)) A = np.loadtxt(f, unpack =False) except: print('\033[1m' + ' Map data file not found \n' + '\033[0m') return X = A[:,0] Y = A[:,1] A = np.delete(A, np.s_[0:2], 1) print(' Shape map: ' + str(A.shape)) return X, Y, A, En ####################################################################
Example 7
Project: SpectralMachine Author: feranick File: slp_preprocess.py License: GNU General Public License v3.0 | 6 votes |
def readPredMap(mapFile): try: with open(mapFile, 'r') as f: En = np.array(f.readline().split(), dtype=np.dtype(float)) A = np.loadtxt(f, unpack =False) except: print('\033[1m' + ' Map data file not found \n' + '\033[0m') return X = A[:,0] Y = A[:,1] A = np.delete(A, np.s_[0:2], 1) print(' Shape map: ' + str(A.shape)) return X, Y, A, En ####################################################################
Example 8
Project: SpectralMachine Author: feranick File: slp_preprocess.py License: GNU General Public License v3.0 | 6 votes |
def readPredMap(mapFile): try: with open(mapFile, 'r') as f: En = np.array(f.readline().split(), dtype=np.dtype(float)) A = np.loadtxt(f, unpack =False) except: print('\033[1m' + ' Map data file not found \n' + '\033[0m') return X = A[:,0] Y = A[:,1] A = np.delete(A, np.s_[0:2], 1) print(' Shape map: ' + str(A.shape)) return X, Y, A, En ####################################################################
Example 9
Project: SpectralMachine Author: feranick File: SplitCrossValidation._legacy1.py License: GNU General Public License v3.0 | 6 votes |
def readLearnFile(learnFile): try: with open(learnFile, 'r') as f: M = np.loadtxt(f, unpack =False) except: print('\033[1m' + ' Learn data file not found \n' + '\033[0m') return learnFileRoot = os.path.splitext(learnFile)[0] #En = np.delete(np.array(M[0,:]),np.s_[0:1],0) #M = np.delete(np.array(M[:,1:]),np.s_[0:1],0) En = np.delete(np.array(M[0,:]),np.s_[0:1],0) M = np.delete(M,np.s_[0:1],0) Cl = np.asarray(['{:.2f}'.format(x) for x in M[:,0]]).reshape(-1,1) M = np.delete(M,np.s_[0:1],1) print("En:",En.shape) print("M:",M.shape) return En, M, Cl, learnFileRoot ####################################################################
Example 10
Project: SpectralMachine Author: feranick File: SpectraLearnPredict_test-TF-new.py License: GNU General Public License v3.0 | 6 votes |
def readPredMap(mapFile): try: with open(mapFile, 'r') as f: En = np.array(f.readline().split(), dtype=np.dtype(float)) A = np.loadtxt(f, unpack =False) except: print('\033[1m' + ' Map data file not found \n' + '\033[0m') return X = A[:,0] Y = A[:,1] A = np.delete(A, np.s_[0:2], 1) print(' Shape map: ' + str(A.shape)) return X, Y, A, En ####################################################################
Example 11
Project: SpectralMachine Author: feranick File: SpectraLearnPredict.py License: GNU General Public License v3.0 | 6 votes |
def readPredMap(mapFile): try: with open(mapFile, 'r') as f: En = np.array(f.readline().split(), dtype=np.dtype(float)) A = np.loadtxt(f, unpack =False) except: print('\033[1m' + ' Map data file not found \n' + '\033[0m') return X = A[:,0] Y = A[:,1] A = np.delete(A, np.s_[0:2], 1) print(' Shape map: ' + str(A.shape)) return X, Y, A, En ####################################################################
Example 12
Project: harold Author: ilayn File: test_aux_linalg.py License: MIT License | 6 votes |
def test_e_i(): assert_almost_equal(e_i(7, 5, output='r'), array([[0., 0., 0., 0., 0., 1., 0.]]) ) assert_almost_equal(e_i(5, [0, 4, 4, 4, 1]), array([[1., 0., 0., 0., 0.], [0., 0., 0., 0., 1.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 1., 1., 1., 0.]]) ) assert_almost_equal(e_i(5, s_[1:3]), array([[0., 0.], [1., 0.], [0., 1.], [0., 0.], [0., 0.]]) ) assert_almost_equal(e_i(5, slice(1, 5, 2), output='r'), array([[0., 1., 0., 0., 0.], [0., 0., 0., 1., 0.]]) )
Example 13
Project: pyfive Author: jjhelmus File: test_high_level.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_read_direct(): with pyfive.File(EARLIEST_HDF5_FILE) as hfile: dset1 = hfile['dataset1'] arr = np.zeros(4) dset1.read_direct(arr) assert_array_equal(arr, [0, 1, 2, 3]) arr = np.zeros(4) dset1.read_direct(arr, np.s_[:2], np.s_[:2]) assert_array_equal(arr, [0, 1, 0, 0]) arr = np.zeros(4) dset1.read_direct(arr, np.s_[1:3], np.s_[2:]) assert_array_equal(arr, [0, 0, 1, 2])
Example 14
Project: evolution-strategies-starter Author: openai File: policies.py License: MIT License | 5 votes |
def initialize_from(self, filename, ob_stat=None): """ Initializes weights from another policy, which must have the same architecture (variable names), but the weight arrays can be smaller than the current policy. """ with h5py.File(filename, 'r') as f: f_var_names = [] f.visititems(lambda name, obj: f_var_names.append(name) if isinstance(obj, h5py.Dataset) else None) assert set(v.name for v in self.all_variables) == set(f_var_names), 'Variable names do not match' init_vals = [] for v in self.all_variables: shp = v.get_shape().as_list() f_shp = f[v.name].shape assert len(shp) == len(f_shp) and all(a >= b for a, b in zip(shp, f_shp)), \ 'This policy must have more weights than the policy to load' init_val = v.eval() # ob_mean and ob_std are initialized with nan, so set them manually if 'ob_mean' in v.name: init_val[:] = 0 init_mean = init_val elif 'ob_std' in v.name: init_val[:] = 0.001 init_std = init_val # Fill in subarray from the loaded policy init_val[tuple([np.s_[:s] for s in f_shp])] = f[v.name] init_vals.append(init_val) self.set_all_vars(*init_vals) if ob_stat is not None: ob_stat.set_from_init(init_mean, init_std, init_count=1e5)
Example 15
Project: VASPy Author: PytLab File: electro.py License: MIT License | 5 votes |
def plot_mcontour(self, ndim0, ndim1, z, show_mode): "use mayavi.mlab to plot contour." if not mayavi_installed: self.__logger.info("Mayavi is not installed on your device.") return #do 2d interpolation #get slice object s = np.s_[0:ndim0:1, 0:ndim1:1] x, y = np.ogrid[s] mx, my = np.mgrid[s] #use cubic 2d interpolation interpfunc = interp2d(x, y, z, kind='cubic') newx = np.linspace(0, ndim0, 600) newy = np.linspace(0, ndim1, 600) newz = interpfunc(newx, newy) #mlab face = mlab.surf(newx, newy, newz, warp_scale=2) mlab.axes(xlabel='x', ylabel='y', zlabel='z') mlab.outline(face) #save or show if show_mode == 'show': mlab.show() elif show_mode == 'save': mlab.savefig('mlab_contour3d.png') else: raise ValueError('Unrecognized show mode parameter : ' + show_mode) return
Example 16
Project: recruit Author: Frank-qlu File: test_indexing.py License: Apache License 2.0 | 5 votes |
def test_prepend_not_one(self): assign = self.assign s_ = np.s_ a = np.zeros(5) # Too large and not only ones. assert_raises(ValueError, assign, a, s_[...], np.ones((2, 1))) assert_raises(ValueError, assign, a, s_[[1, 2, 3],], np.ones((2, 1))) assert_raises(ValueError, assign, a, s_[[[1], [2]],], np.ones((2,2,1)))
Example 17
Project: recruit Author: Frank-qlu File: test_indexing.py License: Apache License 2.0 | 5 votes |
def test_simple_broadcasting_errors(self): assign = self.assign s_ = np.s_ a = np.zeros((5, 1)) assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 2))) assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 0))) assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 2))) assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 0))) assert_raises(ValueError, assign, a, s_[[0], :], np.zeros((2, 1)))
Example 18
Project: westpa Author: westpa File: w_trace.py License: MIT License | 5 votes |
def get_segment_data_slice(self, datafile, dsname, n_iter, seg_id, slice_=None, index_data=None, iter_prec=None): '''Return the data from the dataset named ``dsname`` within the given ``datafile`` (an open h5py.File object) for the given iteration and segment. By default, it is assumed that the dataset is stored in the iteration group for iteration ``n_iter``, but if ``index_data`` is provided, it must be an iterable (preferably a simple array) of (n_iter,seg_id) pairs, and the index in the ``index_data`` iterable of the matching n_iter/seg_id pair is used as the index of the data to retrieve. If an optional ``slice_`` is provided, then the given slicing tuple is appended to that used to retrieve the segment-specific data (i.e. it can be used to pluck a subset of the data that would otherwise be returned). ''' if slice_ is None: slice_ = numpy.s_[...] if index_data is not None: dataset = datafile[dsname] for i, (i_n_iter,i_seg_id) in enumerate(index_data): if (i_n_iter,i_seg_id) == (n_iter,seg_id): break else: raise KeyError((n_iter,seg_id)) itpl = (i,) + slice_ return dataset[itpl] else: if not iter_prec: iter_prec = datafile.attrs.get('west_iter_prec', self.data_manager.default_iter_prec) igname_tail = 'iter_{:0{iter_prec:d}d}'.format(int(n_iter),iter_prec=int(iter_prec)) try: iter_group = datafile['/iterations/' + igname_tail] except KeyError: iter_group = datafile[igname_tail] dataset = iter_group[dsname] itpl = (seg_id,) + slice_ return dataset[itpl]
Example 19
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_indexing.py License: MIT License | 5 votes |
def test_simple_broadcasting_errors(self): assign = self.assign s_ = np.s_ a = np.zeros((5, 1)) assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 2))) assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 0))) assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 2))) assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 0))) assert_raises(ValueError, assign, a, s_[[0], :], np.zeros((2, 1)))
Example 20
Project: vnpy_crypto Author: birforce File: test_indexing.py License: MIT License | 5 votes |
def test_prepend_not_one(self): assign = self.assign s_ = np.s_ a = np.zeros(5) # Too large and not only ones. assert_raises(ValueError, assign, a, s_[...], np.ones((2, 1))) assert_raises(ValueError, assign, a, s_[[1, 2, 3],], np.ones((2, 1))) assert_raises(ValueError, assign, a, s_[[[1], [2]],], np.ones((2,2,1)))
Example 21
Project: vnpy_crypto Author: birforce File: test_indexing.py License: MIT License | 5 votes |
def test_simple_broadcasting_errors(self): assign = self.assign s_ = np.s_ a = np.zeros((5, 1)) assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 2))) assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 0))) assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 2))) assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 0))) assert_raises(ValueError, assign, a, s_[[0], :], np.zeros((2, 1)))
Example 22
Project: vnpy_crypto Author: birforce File: dynamic_factor.py License: MIT License | 5 votes |
def _initialize_loadings(self): # Initialize the parameters self.parameters['factor_loadings'] = self.k_endog * self.k_factors # Setup fixed components of state space matrices if self.error_order > 0: start = self._factor_order end = self._factor_order + self.k_endog self.ssm['design', :, start:end] = np.eye(self.k_endog) # Setup indices of state space matrices self._idx_loadings = np.s_['design', :, :self.k_factors]
Example 23
Project: vnpy_crypto Author: birforce File: dynamic_factor.py License: MIT License | 5 votes |
def _initialize_exog(self): # Initialize the parameters self.parameters['exog'] = self.k_exog * self.k_endog # If we have exog effects, then the obs intercept needs to be # time-varying if self.k_exog > 0: self.ssm['obs_intercept'] = np.zeros((self.k_endog, self.nobs)) # Setup indices of state space matrices self._idx_exog = np.s_['obs_intercept', :self.k_endog, :]
Example 24
Project: vnpy_crypto Author: birforce File: dynamic_factor.py License: MIT License | 5 votes |
def _initialize_error_transition(self): # Initialize the appropriate situation if self.error_order == 0: self._initialize_error_transition_white_noise() else: # Generic setup fixed components of state space matrices # VAR(q) for error transition # (in the individual AR case, we still have the VAR(q) companion # matrix structure, but force the coefficient matrices to be # diagonal) k_endog = self.k_endog k_factors = self.k_factors _factor_order = self._factor_order _error_order = self._error_order _slice = np.s_['selection', _factor_order:_factor_order + k_endog, k_factors:k_factors + k_endog] self.ssm[_slice] = np.eye(k_endog) _slice = np.s_[ 'transition', _factor_order + k_endog:_factor_order + _error_order, _factor_order:_factor_order + _error_order - k_endog] self.ssm[_slice] = np.eye(_error_order - k_endog) # Now specialized setups if self.error_var: self._initialize_error_transition_var() else: self._initialize_error_transition_individual()
Example 25
Project: vnpy_crypto Author: birforce File: dynamic_factor.py License: MIT License | 5 votes |
def _initialize_error_transition_white_noise(self): # Initialize the parameters self.parameters['error_transition'] = 0 # No fixed components of state space matrices # Setup indices of state space matrices (just an empty slice) self._idx_error_transition = np.s_['transition', 0:0, 0:0]
Example 26
Project: vnpy_crypto Author: birforce File: dynamic_factor.py License: MIT License | 5 votes |
def _initialize_error_transition_individual(self): k_endog = self.k_endog _error_order = self._error_order # Initialize the parameters self.parameters['error_transition'] = _error_order # Fixed components already setup above # Setup indices of state space matrices # Here we want to set only the diagonal elements of the coefficient # matrices, and we want to set them in order by equation, not by # matrix (i.e. set the first element of the first matrix's diagonal, # then set the first element of the second matrix's diagonal, then...) # The basic setup is a tiled list of diagonal indices, one for each # coefficient matrix idx = np.tile(np.diag_indices(k_endog), self.error_order) # Now we need to shift the rows down to the correct location row_shift = self._factor_order # And we need to shift the columns in an increasing way col_inc = self._factor_order + np.repeat( [i * k_endog for i in range(self.error_order)], k_endog) idx[0] += row_shift idx[1] += col_inc # Make a copy (without the row shift) so that we can easily get the # diagonal parameters back out of a generic coefficients matrix array idx_diag = idx.copy() idx_diag[0] -= row_shift idx_diag[1] -= self._factor_order idx_diag = idx_diag[:, np.lexsort((idx_diag[1], idx_diag[0]))] self._idx_error_diag = (idx_diag[0], idx_diag[1]) # Finally, we want to fill the entries in in the correct order, which # is to say we want to fill in lexicographically, first by row then by # column idx = idx[:, np.lexsort((idx[1], idx[0]))] self._idx_error_transition = np.s_['transition', idx[0], idx[1]]
Example 27
Project: learning2run Author: AdamStelmaszczyk File: policies.py License: MIT License | 5 votes |
def initialize_from(self, filename, ob_stat=None): """ Initializes weights from another policy, which must have the same architecture (variable names), but the weight arrays can be smaller than the current policy. """ with h5py.File(filename, 'r') as f: f_var_names = [] f.visititems(lambda name, obj: f_var_names.append(name) if isinstance(obj, h5py.Dataset) else None) assert set(v.name for v in self.all_variables) == set(f_var_names), 'Variable names do not match' init_vals = [] for v in self.all_variables: shp = v.get_shape().as_list() f_shp = f[v.name].shape assert len(shp) == len(f_shp) and all(a >= b for a, b in zip(shp, f_shp)), \ 'This policy must have more weights than the policy to load' init_val = v.eval() # ob_mean and ob_std are initialized with nan, so set them manually if 'ob_mean' in v.name: init_val[:] = 0 init_mean = init_val elif 'ob_std' in v.name: init_val[:] = 0.001 init_std = init_val # Fill in subarray from the loaded policy init_val[tuple([np.s_[:s] for s in f_shp])] = f[v.name] init_vals.append(init_val) self.set_all_vars(*init_vals) if ob_stat is not None: ob_stat.set_from_init(init_mean, init_std, init_count=1e5)
Example 28
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_indexing.py License: MIT License | 5 votes |
def test_prepend_not_one(self): assign = self.assign s_ = np.s_ a = np.zeros(5) # Too large and not only ones. assert_raises(ValueError, assign, a, s_[...], np.ones((2, 1))) assert_raises(ValueError, assign, a, s_[[1, 2, 3],], np.ones((2, 1))) assert_raises(ValueError, assign, a, s_[[[1], [2]],], np.ones((2,2,1)))
Example 29
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_indexing.py License: MIT License | 5 votes |
def test_simple_broadcasting_errors(self): assign = self.assign s_ = np.s_ a = np.zeros((5, 1)) assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 2))) assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 0))) assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 2))) assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 0))) assert_raises(ValueError, assign, a, s_[[0], :], np.zeros((2, 1)))
Example 30
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: __init__.py License: MIT License | 5 votes |
def _array_perimeter(arr): """ Get the elements on the perimeter of ``arr``, Parameters ---------- arr : ndarray, shape (M, N) The input array Returns ------- perimeter : ndarray, shape (2*(M - 1) + 2*(N - 1),) The elements on the perimeter of the array:: [arr[0,0] ... arr[0,-1] ... arr[-1, -1] ... arr[-1,0] ...] Examples -------- >>> i, j = np.ogrid[:3,:4] >>> a = i*10 + j >>> a array([[ 0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23]]) >>> _array_perimeter(a) array([ 0, 1, 2, 3, 13, 23, 22, 21, 20, 10]) """ # note we use Python's half-open ranges to avoid repeating # the corners forward = np.s_[0:-1] # [0 ... -1) backward = np.s_[-1:0:-1] # [-1 ... 0) return np.concatenate(( arr[0, forward], arr[forward, -1], arr[-1, backward], arr[backward, 0], ))