Python sklearn.linear_model.LogisticRegression() Examples
The following are 30
code examples of sklearn.linear_model.LogisticRegression().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.linear_model
, or try the search function
.

Example #1
Source File: create_ngrams.py From rasa_lookup_demo with Apache License 2.0 | 8 votes |
def run_logreg(X_train, y_train, selection_threshold=0.2): print("\nrunning logistic regression...") print("using a selection threshold of {}".format(selection_threshold)) pipe = Pipeline( [ ( "feature_selection", RandomizedLogisticRegression(selection_threshold=selection_threshold), ), ("classification", LogisticRegression()), ] ) pipe.fit(X_train, y_train) print("training accuracy : {}".format(pipe.score(X_train, y_train))) print("testing accuracy : {}".format(pipe.score(X_test, y_test))) return pipe
Example #2
Source File: classifier.py From Video-Highlight-Detection with MIT License | 7 votes |
def _build_model(self,model_name,params=None): if params==None: if model_name=='xgb': self.model=XGBClassifier(n_estimators=100,learning_rate=0.02) elif model_name=='svm': kernel_function=chi2_kernel if not (self.model_kernel=='linear' or self.model_kernel=='rbf') else self.model_kernel self.model=SVC(C=1,kernel=kernel_function,gamma=1,probability=True) elif model_name=='lr': self.model=LR(C=1,penalty='l1',tol=1e-6) else: if model_name=='xgb': self.model=XGBClassifier(n_estimators=1000,learning_rate=0.02,**params) elif model_name=='svm': self.model=SVC(C=1,kernel=kernel_function,gamma=1,probability=True) elif model_name=='lr': self.model=LR(C=1,penalty='l1',tol=1e-6) log.l.info('=======> built the model {} done'.format(self.model_name))
Example #3
Source File: utils.py From contextualbandits with BSD 2-Clause "Simplified" License | 6 votes |
def _check_autograd_supported(base_algorithm): supported = ['LogisticRegression', 'SGDClassifier', 'RidgeClassifier', 'StochasticLogisticRegression', 'LinearRegression'] if not base_algorithm.__class__.__name__ in supported: raise ValueError("Automatic gradients only implemented for the following classes: " + ", ".join(supported)) if base_algorithm.__class__.__name__ == 'LogisticRegression': if base_algorithm.penalty != 'l2': raise ValueError("Automatic gradients only defined for LogisticRegression with l2 regularization.") if base_algorithm.intercept_scaling != 1: raise ValueError("Automatic gradients for LogisticRegression not implemented with 'intercept_scaling'.") if base_algorithm.__class__.__name__ == 'RidgeClassifier': if base_algorithm.normalize: raise ValueError("Automatic gradients for LogisticRegression only implemented without 'normalize'.") if base_algorithm.__class__.__name__ == 'SGDClassifier': if base_algorithm.loss != 'log': raise ValueError("Automatic gradients for LogisticRegression only implemented with logistic loss.") if base_algorithm.penalty != 'l2': raise ValueError("Automatic gradients only defined for LogisticRegression with l2 regularization.") try: if base_algorithm.class_weight is not None: raise ValueError("Automatic gradients for LogisticRegression not supported with 'class_weight'.") except: pass
Example #4
Source File: utils.py From contextualbandits with BSD 2-Clause "Simplified" License | 6 votes |
def __init__(self, lambda_=1., fit_intercept=True, alpha=0.95, m=1.0, ts=False, ts_from_ci=True, sample_unique=False, random_state=1): self.conf_coef = alpha self.m = m self.fit_intercept = fit_intercept self.lambda_ = lambda_ self.ts = ts self.ts_from_ci = ts_from_ci self.warm_start = True self.sample_unique = bool(sample_unique) self.random_state = _check_random_state(random_state) self.is_fitted = False self.model = LogisticRegression(C=1./lambda_, penalty="l2", fit_intercept=fit_intercept, solver='lbfgs', max_iter=15000, warm_start=True) self.Sigma = np.empty((0,0), dtype=np.float64)
Example #5
Source File: test_LogisticRegression.py From differential-privacy-library with MIT License | 6 votes |
def test_bad_params(self): X = [[1]] y = [0] with self.assertRaises(ValueError): LogisticRegression(data_norm=1, C=-1).fit(X, y) with self.assertRaises(ValueError): LogisticRegression(data_norm=1, C=1.2).fit(X, y) with self.assertRaises(ValueError): LogisticRegression(data_norm=1, max_iter=-1).fit(X, y) with self.assertRaises(ValueError): LogisticRegression(data_norm=1, max_iter="100").fit(X, y) with self.assertRaises(ValueError): LogisticRegression(data_norm=1, tol=-1).fit(X, y) with self.assertRaises(ValueError): LogisticRegression(data_norm=1, tol="1").fit(X, y)
Example #6
Source File: test_LogisticRegression.py From differential-privacy-library with MIT License | 6 votes |
def test_same_results(self): from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn import linear_model dataset = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(dataset.data, dataset.target, test_size=0.2) clf = LogisticRegression(data_norm=12, epsilon=float("inf")) clf.fit(X_train, y_train) predict1 = clf.predict(X_test) clf = linear_model.LogisticRegression(solver="lbfgs", multi_class="ovr") clf.fit(X_train, y_train) predict2 = clf.predict(X_test) self.assertTrue(np.all(predict1 == predict2))
Example #7
Source File: test_LogisticRegression.py From differential-privacy-library with MIT License | 6 votes |
def test_accountant(self): from diffprivlib.accountant import BudgetAccountant acc = BudgetAccountant() X = np.array( [0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50]) y = np.array([0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1]) X = X[:, np.newaxis] X -= 3.0 X /= 2.5 clf = LogisticRegression(epsilon=2, data_norm=1.0, accountant=acc) clf.fit(X, y) self.assertEqual((2, 0), acc.total()) with BudgetAccountant(3, 0) as acc2: clf = LogisticRegression(epsilon=2, data_norm=1.0) clf.fit(X, y) self.assertEqual((2, 0), acc2.total()) with self.assertRaises(BudgetError): clf.fit(X, y)
Example #8
Source File: common_utils.py From interpret-text with MIT License | 6 votes |
def create_logistic_vectorizer(): vectorizer = CountVectorizer(lowercase=False, min_df=0.0, binary=True) lr = LogisticRegression(random_state=777) return Pipeline([("vectorizer", vectorizer), ("lr", lr)])
Example #9
Source File: top_factors.py From healthcareai-py with MIT License | 6 votes |
def prepare_fit_model_for_factors(model_type, x_train, y_train): """ Given a model type, train and test data Args: model_type (str): 'classification' or 'regression' x_train: y_train: Returns: (sklearn.base.BaseEstimator): A fit model. """ if model_type == 'classification': algorithm = LogisticRegression() elif model_type == 'regression': algorithm = LinearRegression() else: algorithm = None if algorithm is not None: algorithm.fit(x_train, y_train) return algorithm
Example #10
Source File: maximum_margin_reduction.py From libact with BSD 2-Clause "Simplified" License | 6 votes |
def __init__(self, *args, **kwargs): super(MaximumLossReductionMaximalConfidence, self).__init__(*args, **kwargs) # self.n_labels = len(self.dataset.get_labeled_entries()[0][1]) self.n_labels = len(self.dataset.get_labeled_entries()[1][0]) random_state = kwargs.pop('random_state', None) self.random_state_ = seed_random_state(random_state) self.logreg_param = kwargs.pop('logreg_param', {'multi_class': 'multinomial', 'solver': 'newton-cg', 'random_state': random_state}) self.logistic_regression_ = LogisticRegression(**self.logreg_param) self.br_base = kwargs.pop('br_base', SklearnProbaAdapter(SVC(kernel='linear', probability=True, gamma="auto", random_state=random_state)))
Example #11
Source File: train_sampling_unsupervised.py From dgl with Apache License 2.0 | 6 votes |
def compute_acc(emb, labels, train_nids, val_nids, test_nids): """ Compute the accuracy of prediction given the labels. """ emb = emb.cpu().numpy() train_nids = train_nids.cpu().numpy() train_labels = labels[train_nids].cpu().numpy() val_nids = val_nids.cpu().numpy() val_labels = labels[val_nids].cpu().numpy() test_nids = test_nids.cpu().numpy() test_labels = labels[test_nids].cpu().numpy() emb = (emb - emb.mean(0, keepdims=True)) / emb.std(0, keepdims=True) lr = lm.LogisticRegression(multi_class='multinomial', max_iter=10000) lr.fit(emb[train_nids], labels[train_nids]) pred = lr.predict(emb) f1_micro_eval = skm.f1_score(labels[val_nids], pred[val_nids], average='micro') f1_micro_test = skm.f1_score(labels[test_nids], pred[test_nids], average='micro') f1_macro_eval = skm.f1_score(labels[val_nids], pred[val_nids], average='macro') f1_macro_test = skm.f1_score(labels[test_nids], pred[test_nids], average='macro') return f1_micro_eval, f1_micro_test
Example #12
Source File: stability_selection.py From stability-selection with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, base_estimator=LogisticRegression(penalty='l1'), lambda_name='C', lambda_grid=np.logspace(-5, -2, 25), n_bootstrap_iterations=100, sample_fraction=0.5, threshold=0.6, bootstrap_func=bootstrap_without_replacement, bootstrap_threshold=None, verbose=0, n_jobs=1, pre_dispatch='2*n_jobs', random_state=None): self.base_estimator = base_estimator self.lambda_name = lambda_name self.lambda_grid = lambda_grid self.n_bootstrap_iterations = n_bootstrap_iterations self.sample_fraction = sample_fraction self.threshold = threshold self.bootstrap_func = bootstrap_func self.bootstrap_threshold = bootstrap_threshold self.verbose = verbose self.n_jobs = n_jobs self.pre_dispatch = pre_dispatch self.random_state = random_state
Example #13
Source File: test_run.py From nyaggle with MIT License | 6 votes |
def test_experiment_sklearn_classifier(tmpdir_name): X, y = make_classification_df(n_samples=1024, n_num_features=10, n_cat_features=0, class_sep=0.98, random_state=0, id_column='user_id') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) params = { 'C': 0.1 } result = run_experiment(params, X_train, y_train, X_test, tmpdir_name, eval_func=roc_auc_score, algorithm_type=LogisticRegression, with_auto_prep=False) assert len(np.unique(result.oof_prediction)) > 5 # making sure prediction is not binarized assert len(np.unique(result.test_prediction)) > 5 assert roc_auc_score(y_train, result.oof_prediction) >= 0.8 assert roc_auc_score(y_test, result.test_prediction) >= 0.8 _check_file_exists(tmpdir_name)
Example #14
Source File: test_iw.py From libTLDA with MIT License | 5 votes |
def test_regularization(): """Test for fitting the model.""" X = rnd.randn(10, 2) y = np.hstack((-np.ones((5,)), np.ones((5,)))) Z = rnd.randn(10, 2) + 1 clf = ImportanceWeightedClassifier(loss_function='lr', l2_regularization=None) assert isinstance(clf.clf, LogisticRegressionCV) clf = ImportanceWeightedClassifier(loss_function='lr', l2_regularization=1.0) assert isinstance(clf.clf, LogisticRegression)
Example #15
Source File: test_LogisticRegression.py From differential-privacy-library with MIT License | 5 votes |
def test_not_none(self): self.assertIsNotNone(LogisticRegression)
Example #16
Source File: test_LogisticRegression.py From differential-privacy-library with MIT License | 5 votes |
def test_one_class(self): X = [[1]] y = [0] clf = LogisticRegression(data_norm=1) with self.assertRaises(ValueError): clf.fit(X, y)
Example #17
Source File: test_LogisticRegression.py From differential-privacy-library with MIT License | 5 votes |
def test_no_params(self): clf = LogisticRegression() X = np.array( [0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50]) y = np.array([0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1]) X = X[:, np.newaxis] with self.assertWarns(PrivacyLeakWarning): clf.fit(X, y)
Example #18
Source File: test_LogisticRegression.py From differential-privacy-library with MIT License | 5 votes |
def test_large_norm(self): X = np.array( [0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50]) y = np.array([0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1]) X = X[:, np.newaxis] clf = LogisticRegression(data_norm=1.0) self.assertIsNotNone(clf.fit(X, y))
Example #19
Source File: test_LogisticRegression.py From differential-privacy-library with MIT License | 5 votes |
def test_trinomial(self): X = np.array( [0.50, 0.75, 1.00]) y = np.array([0, 1, 2]) X = X[:, np.newaxis] clf = LogisticRegression(data_norm=1.0) self.assertIsNotNone(clf.fit(X, y))
Example #20
Source File: test_LogisticRegression.py From differential-privacy-library with MIT License | 5 votes |
def test_solver_warning(self): with self.assertWarns(DiffprivlibCompatibilityWarning): LogisticRegression(solver="newton-cg")
Example #21
Source File: test_LogisticRegression.py From differential-privacy-library with MIT License | 5 votes |
def test_multi_class_warning(self): with self.assertWarns(DiffprivlibCompatibilityWarning): LogisticRegression(multi_class="multinomial")
Example #22
Source File: test_LogisticRegression.py From differential-privacy-library with MIT License | 5 votes |
def test_different_results(self): from sklearn import datasets from sklearn import linear_model from sklearn.model_selection import train_test_split dataset = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(dataset.data, dataset.target, test_size=0.2) clf = LogisticRegression(data_norm=12) clf.fit(X_train, y_train) predict1 = clf.predict(X_test) clf = LogisticRegression(data_norm=12) clf.fit(X_train, y_train) predict2 = clf.predict(X_test) clf = linear_model.LogisticRegression(solver="lbfgs", multi_class="ovr") clf.fit(X_train, y_train) predict3 = clf.predict(X_test) self.assertFalse(np.all(predict1 == predict2)) self.assertFalse(np.all(predict3 == predict1) and np.all(predict3 == predict2))
Example #23
Source File: common_utils.py From interpret-text with MIT License | 5 votes |
def create_sklearn_logistic_regressor(X, y, pipeline=False): lin = linear_model.LogisticRegression() if pipeline: lin = Pipeline([("lin", lin)]) model = lin.fit(X, y) return model
Example #24
Source File: simulation_exp4p.py From striatum with BSD 2-Clause "Simplified" License | 5 votes |
def train_expert(history_context, history_action): n_round = len(history_context) history_context = np.array([history_context[t] for t in range(n_round)]) history_action = np.array([history_action[t] for t in range(n_round)]) logreg = OneVsRestClassifier(LogisticRegression()) mnb = OneVsRestClassifier(MultinomialNB()) logreg.fit(history_context, history_action) mnb.fit(history_context, history_action) return [logreg, mnb]
Example #25
Source File: movielens_bandit.py From striatum with BSD 2-Clause "Simplified" License | 5 votes |
def train_expert(action_context): logreg = OneVsRestClassifier(LogisticRegression()) mnb = OneVsRestClassifier(MultinomialNB(), ) logreg.fit(action_context.iloc[:, 2:], action_context.iloc[:, 1]) mnb.fit(action_context.iloc[:, 2:], action_context.iloc[:, 1]) return [logreg, mnb]
Example #26
Source File: classifiers.py From recordlinkage with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, coefficients=None, intercept=None, **kwargs): super(LogisticRegressionClassifier, self).__init__() self.kernel = linear_model.LogisticRegression(**kwargs) self.coefficients = coefficients self.intercept = intercept
Example #27
Source File: classifiers.py From seizure-prediction with MIT License | 5 votes |
def make_lr(C): cls = sklearn.pipeline.make_pipeline(StandardScaler(), LogisticRegression(C=C)) name = 'ss-lr-C%.4f' % C return (cls, name)
Example #28
Source File: model_loop.py From fake-news-detection with MIT License | 5 votes |
def define_clfs_params(self): ''' Defines all relevant parameters and classes for classfier objects. Edit these if you wish to change parameters. ''' # These are the classifiers self.clfs = { 'RF': RandomForestClassifier(n_estimators = 50, n_jobs = -1), 'ET': ExtraTreesClassifier(n_estimators = 10, n_jobs = -1, criterion = 'entropy'), 'AB': AdaBoostClassifier(DecisionTreeClassifier(max_depth = [1, 5, 10, 15]), algorithm = "SAMME", n_estimators = 200), 'LR': LogisticRegression(penalty = 'l1', C = 1e5), 'SVM': svm.SVC(kernel = 'linear', probability = True, random_state = 0), 'GB': GradientBoostingClassifier(learning_rate = 0.05, subsample = 0.5, max_depth = 6, n_estimators = 10), 'NB': GaussianNB(), 'DT': DecisionTreeClassifier(), 'SGD': SGDClassifier(loss = 'log', penalty = 'l2'), 'KNN': KNeighborsClassifier(n_neighbors = 3) } # These are the parameters which will be run through self.params = { 'RF':{'n_estimators': [1,10,100,1000], 'max_depth': [10, 15,20,30,40,50,60,70,100], 'max_features': ['sqrt','log2'],'min_samples_split': [2,5,10], 'random_state': [1]}, 'LR': {'penalty': ['l1','l2'], 'C': [0.00001,0.0001,0.001,0.01,0.1,1,10], 'random_state': [1]}, 'SGD': {'loss': ['log'], 'penalty': ['l2','l1','elasticnet'], 'random_state': [1]}, 'ET': {'n_estimators': [1,10,100,1000], 'criterion' : ['gini', 'entropy'], 'max_depth': [1,3,5,10,15], 'max_features': ['sqrt','log2'],'min_samples_split': [2,5,10], 'random_state': [1]}, 'AB': {'algorithm': ['SAMME', 'SAMME.R'], 'n_estimators': [1,10,100,1000], 'random_state': [1]}, 'GB': {'n_estimators': [1,10,100,1000], 'learning_rate' : [0.001,0.01,0.05,0.1,0.5],'subsample' : [0.1,0.5,1.0], 'max_depth': [1,3,5,10,20,50,100], 'random_state': [1]}, 'NB': {}, 'DT': {'criterion': ['gini', 'entropy'], 'max_depth': [1,2,15,20,30,40,50], 'max_features': ['sqrt','log2'],'min_samples_split': [2,5,10], 'random_state': [1]}, 'SVM' :{'C' :[0.00001,0.0001,0.001,0.01,0.1,1,10],'kernel':['linear'], 'random_state': [1]}, 'KNN' :{'n_neighbors': [1,5,10,25,50,100],'weights': ['uniform','distance'],'algorithm': ['auto','ball_tree','kd_tree']} }
Example #29
Source File: test_stacker.py From xcessiv with Apache License 2.0 | 5 votes |
def setUp(self): bl1 = RandomForestClassifier(random_state=8) bl2 = LogisticRegression() bl3 = RandomForestClassifier(max_depth=10, random_state=10) meta_est = LogisticRegression() skf = StratifiedKFold(random_state=8).split self.stacked_ensemble = stacker.XcessivStackedEnsemble( [bl1, bl2, bl3], ['predict', 'predict_proba', 'predict_proba'], meta_est, skf )
Example #30
Source File: main.py From spotify-tensorflow with Apache License 2.0 | 5 votes |
def main(): # Enable eager execution for DataFrame endpoint import tensorflow as tf tf.enable_eager_execution() # Set up training data train_data_dir = get_data_dir("train") train_data = os.path.join(train_data_dir, "part-*") schema_path = os.path.join(train_data_dir, "_inferred_schema.pb") df_train_data = next(Datasets.dataframe.examples_via_schema(train_data, schema_path, batch_size=1024)) # the feature keys are ordered alphabetically for determinism label_keys = sorted([l for l in set(df_train_data.columns) if l.startswith("class_name")]) feature_keys = sorted(set(df_train_data.columns).difference(label_keys)) label = df_train_data[label_keys].apply(transform_labels, axis=1) features = df_train_data[feature_keys] # Build model from sklearn.linear_model import LogisticRegression model = LogisticRegression(multi_class="multinomial", solver="newton-cg") model.fit(features, label) # Set up eval data eval_data_dir = get_data_dir("eval") eval_data = os.path.join(eval_data_dir, "part-*") df_eval_data = next(Datasets.dataframe.examples_via_schema(eval_data, schema_path, batch_size=1024)) eval_label = df_eval_data[label_keys].apply(transform_labels, axis=1) eval_features = df_eval_data[feature_keys] # Evaluate model score = model.score(eval_features, eval_label) print("Score is %f" % score)