Python cv2.IMREAD_COLOR Examples
The following are 30 code examples for showing how to use cv2.IMREAD_COLOR(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example 1
Project: ICDAR-2019-SROIE Author: zzzDavid File: main.py License: MIT License | 6 votes |
def draw(): filenames = [os.path.splitext(f)[0] for f in glob.glob("for_task3/*.txt")] txt_files = [s + ".txt" for s in filenames] for txt in txt_files: image = cv2.imread('test_original/'+ txt.split('/')[1].split('.')[0]+'.jpg', cv2.IMREAD_COLOR) with open(txt, 'r') as txt_file: for line in csv.reader(txt_file): box = [int(string, 10) for string in line[0:8]] if len(line) < 9: print(txt) cv2.rectangle(image, (box[0], box[1]), (box[4], box[5]), (0,255,0), 2) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(image, line[8].upper(), (box[0],box[1]), font, 0.5, (0, 0, 255), 1, cv2.LINE_AA) cv2.imwrite('task2_result_draw/'+ txt.split('/')[1].split('.')[0]+'.jpg', image)
Example 2
Project: pytorch-segmentation-toolbox Author: speedinghzl File: datasets.py License: MIT License | 6 votes |
def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) size = image.shape name = osp.splitext(osp.basename(datafiles["img"]))[0] image = np.asarray(image, np.float32) image -= self.mean img_h, img_w, _ = image.shape pad_h = max(self.crop_h - img_h, 0) pad_w = max(self.crop_w - img_w, 0) if pad_h > 0 or pad_w > 0: image = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(0.0, 0.0, 0.0)) image = image.transpose((2, 0, 1)) return image, name, size
Example 3
Project: pytorch-segmentation-toolbox Author: speedinghzl File: datasets.py License: MIT License | 6 votes |
def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) size = image.shape name = osp.splitext(osp.basename(datafiles["img"]))[0] image = np.asarray(image, np.float32) image -= self.mean img_h, img_w, _ = image.shape pad_h = max(self.crop_h - img_h, 0) pad_w = max(self.crop_w - img_w, 0) if pad_h > 0 or pad_w > 0: image = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(0.0, 0.0, 0.0)) image = image.transpose((2, 0, 1)) return image, name, size
Example 4
Project: pytorch-segmentation-toolbox Author: speedinghzl File: datasets.py License: MIT License | 6 votes |
def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) image = cv2.resize(image, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_LINEAR) size = image.shape name = osp.splitext(osp.basename(datafiles["img"]))[0] image = np.asarray(image, np.float32) image = (image - image.min()) / (image.max() - image.min()) img_h, img_w, _ = image.shape pad_h = max(self.crop_h - img_h, 0) pad_w = max(self.crop_w - img_w, 0) if pad_h > 0 or pad_w > 0: image = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(0.0, 0.0, 0.0)) image = image.transpose((2, 0, 1)) return image, np.array(size), name
Example 5
Project: dataflow Author: tensorpack File: image.py License: Apache License 2.0 | 6 votes |
def __init__(self, files, channel=3, resize=None, shuffle=False): """ Args: files (list): list of file paths. channel (int): 1 or 3. Will convert grayscale to RGB images if channel==3. Will produce (h, w, 1) array if channel==1. resize (tuple): int or (h, w) tuple. If given, resize the image. """ assert len(files), "No image files given to ImageFromFile!" self.files = files self.channel = int(channel) assert self.channel in [1, 3], self.channel self.imread_mode = cv2.IMREAD_GRAYSCALE if self.channel == 1 else cv2.IMREAD_COLOR if resize is not None: resize = shape2d(resize) self.resize = resize self.shuffle = shuffle
Example 6
Project: Fast_Seg Author: lxtGH File: camvid.py License: Apache License 2.0 | 6 votes |
def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE) size = image.shape name = datafiles["name"] if self.f_scale != 1: image = cv2.resize(image, None, fx=self.f_scale, fy=self.f_scale, interpolation=cv2.INTER_LINEAR) label = cv2.resize(label, None, fx=self.f_scale, fy=self.f_scale, interpolation = cv2.INTER_NEAREST) label[label == 11] = self.ignore_label image = np.asarray(image, np.float32) if self.rgb: image = image[:, :, ::-1] ## BGR -> RGB image /= 255 ## using pytorch pretrained models image -= self.mean image /= self.vars image = image.transpose((2, 0, 1)) # HWC -> CHW # print('image.shape:',image.shape) return image.copy(), label.copy(), np.array(size), name
Example 7
Project: PoseWarper Author: facebookresearch File: zipreader.py License: Apache License 2.0 | 6 votes |
def imread(filename, flags=cv2.IMREAD_COLOR): global _im_zfile path = filename pos_at = path.index('@') if pos_at == -1: print("character '@' is not found from the given path '%s'"%(path)) assert 0 path_zip = path[0: pos_at] path_img = path[pos_at + 2:] if not os.path.isfile(path_zip): print("zip file '%s' is not found"%(path_zip)) assert 0 for i in range(len(_im_zfile)): if _im_zfile[i]['path'] == path_zip: data = _im_zfile[i]['zipfile'].read(path_img) return cv2.imdecode(np.frombuffer(data, np.uint8), flags) _im_zfile.append({ 'path': path_zip, 'zipfile': zipfile.ZipFile(path_zip, 'r') }) data = _im_zfile[-1]['zipfile'].read(path_img) return cv2.imdecode(np.frombuffer(data, np.uint8), flags)
Example 8
Project: ssds.pytorch Author: ShuangXieIrene File: voc.py License: MIT License | 6 votes |
def __getitem__(self, index): img_id = self.ids[index] target = ET.parse(self._annopath % img_id).getroot() img = cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR) height, width, _ = img.shape if self.target_transform is not None: target = self.target_transform(target) if self.preproc is not None: img, target = self.preproc(img, target) #print(img.size()) # target = self.target_transform(target, width, height) #print(target.shape) return img, target
Example 9
Project: ssds.pytorch Author: ShuangXieIrene File: voc.py License: MIT License | 6 votes |
def pull_img_anno(self, index): '''Returns the original annotation of image at index Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to get annotation of Return: list: [img_id, [(label, bbox coords),...]] eg: ('001718', [('dog', (96, 13, 438, 332))]) ''' img_id = self.ids[index] img = cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR) anno = ET.parse(self._annopath % img_id).getroot() gt = self.target_transform(anno) height, width, _ = img.shape boxes = gt[:,:-1] labels = gt[:,-1] boxes[:, 0::2] /= width boxes[:, 1::2] /= height labels = np.expand_dims(labels,1) targets = np.hstack((boxes,labels)) return img, targets
Example 10
Project: Parsing-R-CNN Author: soeaver File: coco.py License: MIT License | 6 votes |
def pull_image(self, index): """Returns the original image object at index in PIL form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: img """ img_id = self.id_to_img_map[index] path = self.coco.loadImgs(img_id)[0]['file_name'] return cv2.imread(os.path.join(self.root, path), cv2.IMREAD_COLOR)
Example 11
Project: DeblurGAN-tf Author: LeeDoYup File: data_loader.py License: MIT License | 6 votes |
def read_image_pair(pair_path, resize_or_crop=None, image_size=(256,256)): image_blur = cv2.imread(pair_path[0], cv2.IMREAD_COLOR) image_blur = image_blur / 255.0 * 2.0 - 1.0 image_real = cv2.imread(pair_path[1], cv2.IMREAD_COLOR) image_real = image_real / 255.0 * 2.0 - 1.0 if resize_or_crop != None: assert image_size != None if resize_or_crop == 'resize': image_blur = cv2.resize(image_blur, image_size, interpolation=cv2.INTER_AREA) image_real = cv2.resize(image_real, image_size, interpolation=cv2.INTER_AREA) elif resize_or_crop == 'crop': image_blur = cv2.crop(image_blur, image_size) image_real = cv2.crop(image_real, image_size) else: raise if np.size(np.shape(image_blur)) == 3: image_blur = np.expand_dims(image_blur, axis=0) if np.size(np.shape(image_real)) == 3: image_real = np.expand_dims(image_real, axis=0) image_blur = np.array(image_blur, dtype=np.float32) image_real = np.array(image_real, dtype=np.float32) return image_blur, image_real
Example 12
Project: DeblurGAN-tf Author: LeeDoYup File: data_loader.py License: MIT License | 6 votes |
def read_image(path, resize_or_crop=None, image_size=(256,256)): image = cv2.imread(path, cv2.IMREAD_COLOR) image = image/255.0 * 2.0 - 1.0 assert resize_or_crop != None assert image_size != None if resize_or_crop == 'resize': image = cv2.resize(image, image_size, interpolation=cv2.INTER_AREA) elif resize_or_crop == 'crop': image = cv2.crop(image, image_size) if np.size(np.shape(image)) == 3: image = np.expand_dims(image, axis=0) image = np.array(image, dtype=np.float32) return image
Example 13
Project: benchmarks Author: tensorpack File: benchmark-dataflow.py License: The Unlicense | 6 votes |
def test_lmdb_inference(db, augs, batch): ds = LMDBData(db, shuffle=False) # ds = LocallyShuffleData(ds, 50000) augs = AugmentorList(augs) def mapper(data): im, label = loads(data[1]) im = cv2.imdecode(im, cv2.IMREAD_COLOR) im = augs.augment(im) return im, label ds = MultiProcessMapData(ds, 40, mapper, buffer_size=200) # ds = MultiThreadMapData(ds, 40, mapper, buffer_size=2000) ds = BatchData(ds, batch) ds = MultiProcessRunnerZMQ(ds, 1) return ds
Example 14
Project: tf-lcnn Author: ildoonet File: data_feeder.py License: GNU General Public License v3.0 | 6 votes |
def get_data(self): idxs = np.arange(len(self.train_list)) if self.shuffle: self.rng.shuffle(idxs) caches = {} for i, k in enumerate(idxs): path = self.train_list[k] label = self.lb_list[k] if i % self.preload == 0: try: caches = ILSVRCTenth._read_tenth_batch(self.train_list[idxs[i:i+self.preload]]) except Exception as e: logging.warning('tenth local cache failed, err=%s' % str(e)) content = caches.get(path, '') if not content: content = ILSVRCTenth._read_tenth(path) img = cv2.imdecode(np.fromstring(content, dtype=np.uint8), cv2.IMREAD_COLOR) yield [img, label]
Example 15
Project: closed-form-matting Author: MarcoForte File: test_matting.py License: MIT License | 6 votes |
def test_solution_close_to_original_implementation(self): image = cv2.imread('testdata/source.png', cv2.IMREAD_COLOR) / 255.0 scribles = cv2.imread('testdata/scribbles.png', cv2.IMREAD_COLOR) / 255.0 alpha = closed_form_matting.closed_form_matting_with_scribbles(image, scribles) foreground, background = solve_foreground_background(image, alpha) matlab_alpha = cv2.imread('testdata/matlab_alpha.png', cv2.IMREAD_GRAYSCALE) / 255.0 matlab_foreground = cv2.imread('testdata/matlab_foreground.png', cv2.IMREAD_COLOR) / 255.0 matlab_background = cv2.imread('testdata/matlab_background.png', cv2.IMREAD_COLOR) / 255.0 sad_alpha = np.mean(np.abs(alpha - matlab_alpha)) sad_foreground = np.mean(np.abs(foreground - matlab_foreground)) sad_background = np.mean(np.abs(background - matlab_background)) self.assertLess(sad_alpha, 1e-2) self.assertLess(sad_foreground, 1e-2) self.assertLess(sad_background, 1e-2)
Example 16
Project: ASFF Author: ruinmessi File: vocdataset.py License: GNU General Public License v3.0 | 6 votes |
def __getitem__(self, index): img_id = self.ids[index] target = ET.parse(self._annopath % img_id).getroot() img = cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR) #img = Image.open(self._imgpath % img_id).convert('RGB') height, width, _ = img.shape if self.target_transform is not None: target = self.target_transform(target) if self.preproc is not None: img, target = self.preproc(img, target, self.input_dim) #print(img.size()) img_info = (width, height) return img, target, img_info, img_id
Example 17
Project: ASFF Author: ruinmessi File: vocdataset.py License: GNU General Public License v3.0 | 6 votes |
def pull_item(self, index): '''Returns the original image and target at an index for mixup Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: img, target ''' img_id = self.ids[index] target = ET.parse(self._annopath % img_id).getroot() img = cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR) height, width, _ = img.shape img_info = (width, height) if self.target_transform is not None: target = self.target_transform(target) return img, target, img_info, img_id
Example 18
Project: ReolinkCameraAPI Author: Benehiko File: RtspClient.py License: GNU General Public License v3.0 | 6 votes |
def get_frame(self) -> bytearray: try: self.sockt.send(str.encode(self.url)) data = b'' while True: try: r = self.sockt.recv(90456) if len(r) == 0: break a = r.find(b'END!') if a != -1: data += r[:a] break data += r except Exception as e: print(e) continue nparr = numpy.fromstring(data, numpy.uint8) frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR) return frame except Exception as e: print(e)
Example 19
Project: Tensorflow-Cookbook Author: taki0112 File: utils.py License: MIT License | 6 votes |
def load_test_image(image_path, img_width, img_height, img_channel): if img_channel == 1 : img = cv2.imread(image_path, flags=cv2.IMREAD_GRAYSCALE) else : img = cv2.imread(image_path, flags=cv2.IMREAD_COLOR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, dsize=(img_width, img_height)) if img_channel == 1 : img = np.expand_dims(img, axis=0) img = np.expand_dims(img, axis=-1) else : img = np.expand_dims(img, axis=0) img = img/127.5 - 1 return img
Example 20
Project: gabriel Author: cmusatyalab File: opencv_adapter.py License: Apache License 2.0 | 6 votes |
def consumer(self, result_wrapper): if len(result_wrapper.results) != 1: logger.error('Got %d results from server', len(result_wrapper.results)) return result = result_wrapper.results[0] if result.payload_type != gabriel_pb2.PayloadType.IMAGE: type_name = gabriel_pb2.PayloadType.Name(result.payload_type) logger.error('Got result of type %s', type_name) return np_data = np.fromstring(result.payload, dtype=np.uint8) frame = cv2.imdecode(np_data, cv2.IMREAD_COLOR) self._consume_frame(frame, result_wrapper.extras)
Example 21
Project: fgo-bot Author: will7101 File: device.py License: MIT License | 6 votes |
def capture(self, method=FROM_SHELL) -> Union[np.ndarray, None]: """ Capture the screen. :return: a cv2 image as numpy ndarray """ if method == self.FROM_SHELL: self.logger.debug('Capturing screen from shell...') img = self.__run_cmd(['shell', 'screencap -p'], raw=True) img = self.__png_sanitize(img) img = np.frombuffer(img, np.uint8) img = cv.imdecode(img, cv.IMREAD_COLOR) return img elif method == self.SDCARD_PULL: self.logger.debug('Capturing screen from sdcard pull...') self.__run_cmd(['shell', 'screencap -p /sdcard/sc.png']) self.__run_cmd(['pull', '/sdcard/sc.png', './sc.png']) img = cv.imread('./sc.png', cv.IMREAD_COLOR) return img else: self.logger.error('Unsupported screen capturing method.') return None
Example 22
Project: PanopticSegmentation Author: dmechea File: cocostuff.py License: MIT License | 6 votes |
def _load_data(self, image_id): # Set paths image_path = osp.join(self.root, "images", image_id + ".jpg") label_path = osp.join(self.root, "annotations", image_id + ".mat") # Load an image image = cv2.imread(image_path, cv2.IMREAD_COLOR).astype(np.float32) # Load a label map if self.version == "1.1": label = sio.loadmat(label_path)["S"].astype(np.int64) label -= 1 # unlabeled (0 -> -1) elif self.version == "1.0": label = np.array(h5py.File(label_path, "r")["S"], dtype=np.int64) label = label.transpose(1, 0) label -= 2 # unlabeled (1 -> -1) else: raise NotImplementedError( "1.0 or 1.1 expected, but got: {}".format(self.version) ) return image, label
Example 23
Project: Adversarial-Face-Attack Author: ppwwyyxx File: face_attack.py License: GNU General Public License v3.0 | 5 votes |
def compute_victim(self, lfw_160_path, name): imgfolder = os.path.join(lfw_160_path, name) assert os.path.isdir(imgfolder), imgfolder images = glob.glob(os.path.join(imgfolder, '*.png')) + glob.glob(os.path.join(imgfolder, '*.jpg')) image_batch = [cv2.imread(f, cv2.IMREAD_COLOR)[:, :, ::-1] for f in images] for img in image_batch: assert img.shape[0] == 160 and img.shape[1] == 160, \ "--data should only contain 160x160 images. Please read the README carefully." embeddings = self.eval_embeddings(image_batch) self.victim_embeddings = embeddings return embeddings
Example 24
Project: Adversarial-Face-Attack Author: ppwwyyxx File: face_attack.py License: GNU General Public License v3.0 | 5 votes |
def validate_on_lfw(model, lfw_160_path): # Read the file containing the pairs used for testing pairs = lfw.read_pairs('validation-LFW-pairs.txt') # Get the paths for the corresponding images paths, actual_issame = lfw.get_paths(lfw_160_path, pairs) num_pairs = len(actual_issame) all_embeddings = np.zeros((num_pairs * 2, 512), dtype='float32') for k in tqdm.trange(num_pairs): img1 = cv2.imread(paths[k * 2], cv2.IMREAD_COLOR)[:, :, ::-1] img2 = cv2.imread(paths[k * 2 + 1], cv2.IMREAD_COLOR)[:, :, ::-1] batch = np.stack([img1, img2], axis=0) embeddings = model.eval_embeddings(batch) all_embeddings[k * 2: k * 2 + 2, :] = embeddings tpr, fpr, accuracy, val, val_std, far = lfw.evaluate( all_embeddings, actual_issame, distance_metric=1, subtract_mean=True) print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy))) print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) auc = metrics.auc(fpr, tpr) print('Area Under Curve (AUC): %1.3f' % auc) eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.) print('Equal Error Rate (EER): %1.3f' % eer)
Example 25
Project: pytorch-segmentation-toolbox Author: speedinghzl File: datasets.py License: MIT License | 5 votes |
def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE) size = image.shape name = datafiles["name"] if self.scale: image, label = self.generate_scale_label(image, label) image = np.asarray(image, np.float32) image -= self.mean img_h, img_w = label.shape pad_h = max(self.crop_h - img_h, 0) pad_w = max(self.crop_w - img_w, 0) if pad_h > 0 or pad_w > 0: img_pad = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(0.0, 0.0, 0.0)) label_pad = cv2.copyMakeBorder(label, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(self.ignore_label,)) else: img_pad, label_pad = image, label img_h, img_w = label_pad.shape h_off = random.randint(0, img_h - self.crop_h) w_off = random.randint(0, img_w - self.crop_w) # roi = cv2.Rect(w_off, h_off, self.crop_w, self.crop_h); image = np.asarray(img_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) label = np.asarray(label_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) #image = image[:, :, ::-1] # change to BGR image = image.transpose((2, 0, 1)) if self.is_mirror: flip = np.random.choice(2) * 2 - 1 image = image[:, :, ::flip] label = label[:, ::flip] return image.copy(), label.copy(), np.array(size), name
Example 26
Project: pytorch-segmentation-toolbox Author: speedinghzl File: datasets.py License: MIT License | 5 votes |
def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE) label = self.id2trainId(label) size = image.shape name = datafiles["name"] if self.scale: image, label = self.generate_scale_label(image, label) image = np.asarray(image, np.float32) image -= self.mean img_h, img_w = label.shape pad_h = max(self.crop_h - img_h, 0) pad_w = max(self.crop_w - img_w, 0) if pad_h > 0 or pad_w > 0: img_pad = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(0.0, 0.0, 0.0)) label_pad = cv2.copyMakeBorder(label, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(self.ignore_label,)) else: img_pad, label_pad = image, label img_h, img_w = label_pad.shape h_off = random.randint(0, img_h - self.crop_h) w_off = random.randint(0, img_w - self.crop_w) # roi = cv2.Rect(w_off, h_off, self.crop_w, self.crop_h); image = np.asarray(img_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) label = np.asarray(label_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32) #image = image[:, :, ::-1] # change to BGR image = image.transpose((2, 0, 1)) if self.is_mirror: flip = np.random.choice(2) * 2 - 1 image = image[:, :, ::flip] label = label[:, ::flip] return image.copy(), label.copy(), np.array(size), name
Example 27
Project: CSD-SSD Author: soo89 File: voc0712.py License: MIT License | 5 votes |
def pull_image(self, index): '''Returns the original image object at index in PIL form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: PIL img ''' img_id = self.ids[index] return cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR)
Example 28
Project: CSD-SSD Author: soo89 File: coco.py License: MIT License | 5 votes |
def pull_image(self, index): '''Returns the original image object at index in PIL form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: cv2 img ''' img_id = self.ids[index] path = self.coco.loadImgs(img_id)[0]['file_name'] return cv2.imread(osp.join(self.root, path), cv2.IMREAD_COLOR)
Example 29
Project: CSD-SSD Author: soo89 File: voc07_consistency.py License: MIT License | 5 votes |
def pull_image(self, index): '''Returns the original image object at index in PIL form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: PIL img ''' img_id = self.ids[index] return cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR)
Example 30
Project: CSD-SSD Author: soo89 File: voc07_consistency_init.py License: MIT License | 5 votes |
def pull_image(self, index): '''Returns the original image object at index in PIL form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: PIL img ''' img_id = self.ids[index] return cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR)