Python matplotlib.Figure() Examples

The following are 7 code examples for showing how to use matplotlib.Figure(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.

You may check out the related API usage on the sidebar.

You may also want to check out all available functions/classes of the module matplotlib , or try the search function .

Example 1
Project: mplexporter   Author: mpld3   File: exporter.py    License: BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def run(self, fig):
        """
        Run the exporter on the given figure

        Parmeters
        ---------
        fig : matplotlib.Figure instance
            The figure to export
        """
        # Calling savefig executes the draw() command, putting elements
        # in the correct place.
        if fig.canvas is None:
            canvas = FigureCanvasAgg(fig)
        fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi)
        if self.close_mpl:
            import matplotlib.pyplot as plt
            plt.close(fig)
        self.crawl_fig(fig) 
Example 2
Project: lddmm-ot   Author: jeanfeydy   File: exporter.py    License: MIT License 6 votes vote down vote up
def run(self, fig):
        """
        Run the exporter on the given figure

        Parmeters
        ---------
        fig : matplotlib.Figure instance
            The figure to export
        """
        # Calling savefig executes the draw() command, putting elements
        # in the correct place.
        fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi)
        if self.close_mpl:
            import matplotlib.pyplot as plt
            plt.close(fig)
        self.crawl_fig(fig) 
Example 3
Project: chemml   Author: hachmannlab   File: visualization.py    License: BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def fit(self, figure):
        """
        the main function to fit the parameters to the input figure

        Parameters
        ----------
        figure: matplotlib.figure.Figure object or matplotlib.AxesSubplot object
            this function only proceed with one set of axes in the figure.

        Returns
        -------
        matplotlib.figure.Figure object

        """
        if str(type(figure)) == "<class 'matplotlib.axes._subplots.AxesSubplot'>":
            ax = figure
            figure = figure.figure
        elif str(type(figure)) == "<class 'matplotlib.figure.Figure'>":
            ax = figure.axes[0]
        else:
            msg = 'object must be a matplotlib.AxesSubplot or matplotlib.Figure object'
            raise TypeError(msg)
        if len(figure.axes) != 1:
            msg = 'matplotlib.figure object includes more than one axes'
            raise TypeError(msg)
        ax.set_title(self.title)
        ax.set_xlabel(self.xlabel)
        ax.set_ylabel(self.ylabel)
        ax.set_xlim(self.xlim[0], self.xlim[1])
        ax.set_ylim(self.ylim[0], self.ylim[1])
        ax.grid(color=self.grid_color, linestyle=self.grid_linestyle, linewidth=self.grid_linewidth)
        ax.grid(self.grid)
        return figure 
Example 4
Project: chemml   Author: hachmannlab   File: visualization.py    License: BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def plot(self, dfx, x):
        """
        the main function to plot based on the input dataframe and its header

        Parameters
        ----------
        dfx: pandas dataframe
            the x axis data
        x: string or integer, optional (default=0)
            header or position of data in the dfx

        Returns
        -------
        matplotlib.figure.Figure object

        """
        # check data
        if isinstance(x, str):
            X = dfx[x].values
        elif isinstance(x, int):
            X = dfx.iloc[:, x].values
        else:
            msg = 'x must be string for the header or integer for the postion of data in the dfx'
            raise TypeError(msg)

        # instantiate figure
        fig = plt.figure()
        ax = fig.add_subplot(111)
        tash = ax.hist(X, bins= self.bins, color=self.color, **self.kwargs)
        return fig 
Example 5
Project: TriFusion   Author: ODiogoSilva   File: plotter.py    License: GNU General Public License v3.0 4 votes vote down vote up
def interpolation_plot(data, title=None, ax_names=None):
    """Creates black and white interpolation plot

    Creates a black and white interpolation plot from data, which must consist
    of a 0/1 matrix for absence/presence of taxa in genes.

    Parameters
    ----------
    data : numpy.array
        Single or multi-dimensional array with plot data.
    title : str
        Title of the plot.
    ax_names : list
        List with the labels for the x-axis (first element) and y-axis
        (second element).

    Returns
    -------
    fig : matplotlib.pyplot.Figure
        Figure object of the plot.
    _ : None
        Placeholder for the legend object. Not used here but assures
        consistency across other plotting methods.
    _ : None
        Placeholder for the table header list. Not used here but assures
        consistency across other plotting methods.
    """

    plt.rcParams["figure.figsize"] = (8, 6)

    # Use ggpot style
    plt.style.use("ggplot")

    fig, ax = plt.subplots()

    # Setting the aspect ratio proportional to the data
    ar = float(len(data[0])) / float(len(data)) * .2

    ax.imshow(data, interpolation="none", cmap="Greys", aspect=ar)

    ax.grid(False)

    return fig, None, None 
Example 6
Project: TriFusion   Author: ODiogoSilva   File: plotter.py    License: GNU General Public License v3.0 4 votes vote down vote up
def outlier_densisty_dist(data, outliers, outliers_labels=None, ax_names=None,
                          title=None):
    """Creates a density distribution for outlier plots.

    Parameters
    ----------
    data : numpy.array
        1D array containing data points.
    outliers : numpy.array
        1D array containing the outliers.
    outliers_labels : list or numpy.array
        1D array containing the labels for each outlier.
    title : str
        Title of the plot.

    Returns
    -------
    fig : matplotlib.Figure
        Figure object of the plot.
    lgd : matplotlib.Legend
        Legend object of the plot.
    table : list
        Table data in list format. Each item in the list corresponds to a
        table row.
    """

    plt.rcParams["figure.figsize"] = (8, 6)

    fig, ax = plt.subplots()

    # Create density function
    sns.distplot(data, rug=True, hist=False, color="black")

    # Plot outliers
    ax.plot(outliers, np.zeros_like(outliers), "ro", clip_on=False,
            label="Outliers")

    # Create legend
    lgd = ax.legend(frameon=True, loc=2, fancybox=True, shadow=True,
                    framealpha=.8, prop={"weight": "bold"})

    if outliers_labels:
        table = [[os.path.basename(x)] for x in outliers_labels]
    else:
        table = None

    return fig, lgd, table 
Example 7
Project: chemml   Author: hachmannlab   File: visualization.py    License: BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def plot(self,dfx,dfy,x,y):
        """
        the main function to plot based on the input dataframes and their headers

        Parameters
        ----------
        dfx: pandas dataframe
            the x axis data
        dfy: pandas dataframe
            the y axis data
        x: string or integer, optional (default=0)
            header or position of data in the dfx
        y: string or integer, optional (default=0)
            header or position of data in the dfy

        Returns
        -------
        matplotlib.figure.Figure object

        """
        # check data
        if isinstance(x,str):
            X = dfx[x].values
        elif isinstance(x,int):
            X = dfx.iloc[:,x].values
        else:
            msg = 'x must be string for the header or integer for the postion of data in the dfx'
            raise TypeError(msg)
        
        if isinstance(y, str):
            Y = dfy[y].values
        elif isinstance(y, int):
            Y = dfy.iloc[:, y].values
        else:
            msg = 'y must be string for the header or integer for the postion of data in the dfy'
            raise TypeError(msg)

        # instantiate figure
        fig = plt.figure()
        ax = fig.add_subplot(111)
        trash = ax.plot(X,Y,color=self.color, marker=self.marker, linestyle=self.linestyle, linewidth= self.linewidth)
        return fig