Python matplotlib.pyplot() Examples
The following are 30
code examples of matplotlib.pyplot().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib
, or try the search function
.
Example #1
Source File: pylabtools.py From Computable with MIT License | 6 votes |
def activate_matplotlib(backend): """Activate the given backend and set interactive to True.""" import matplotlib matplotlib.interactive(True) # Matplotlib had a bug where even switch_backend could not force # the rcParam to update. This needs to be set *before* the module # magic of switch_backend(). matplotlib.rcParams['backend'] = backend import matplotlib.pyplot matplotlib.pyplot.switch_backend(backend) # This must be imported last in the matplotlib series, after # backend/interactivity choices have been made import matplotlib.pylab as pylab pylab.show._needmain = False # We need to detect at runtime whether show() is called by the user. # For this, we wrap it into a decorator which adds a 'called' flag. pylab.draw_if_interactive = flag_calls(pylab.draw_if_interactive)
Example #2
Source File: SpectraLearnPredict.py From SpectralMachine with GNU General Public License v3.0 | 6 votes |
def plotProb(clf, R): prob = clf.predict_proba(R)[0].tolist() print(' Probabilities of this sample within each class: \n') for i in range(0,clf.classes_.shape[0]): print(' ' + str(clf.classes_[i]) + ': ' + str(round(100*prob[i],2)) + '%') import matplotlib.pyplot as plt print('\n Stand by: Plotting probabilities for each class... \n') plt.title('Probability density per class') for i in range(0, clf.classes_.shape[0]): plt.scatter(clf.classes_[i], round(100*prob[i],2), label='probability', c = 'red') plt.grid(True) plt.xlabel('Class') plt.ylabel('Probability [%]') plt.show() #************************************
Example #3
Source File: dynamical_imaging.py From eht-imaging with GNU General Public License v3.0 | 6 votes |
def Cont(imG): #This is meant to create plots similar to the ones from #https://www.bu.edu/blazars/VLBA_GLAST/3c454.html #for the visual comparison import matplotlib.pyplot as plt plt.figure() Z = np.reshape(imG.imvec,(imG.xdim,imG.ydim)) pov = imG.xdim*imG.psize pov_mas = pov/(RADPERUAS*1.e3) Zmax = np.amax(Z) print(Zmax) levels = np.array((-0.00125*Zmax,0.00125*Zmax,0.0025*Zmax, 0.005*Zmax, 0.01*Zmax, 0.02*Zmax, 0.04*Zmax, 0.08*Zmax, 0.16*Zmax, 0.32*Zmax, 0.64*Zmax)) CS = plt.contour(Z, levels, origin='lower', linewidths=2, extent=(-pov_mas/2., pov_mas/2., -pov_mas/2., pov_mas/2.)) plt.show()
Example #4
Source File: core.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def cortex_cmap_plot_2D(the_map, zs, cmap, vmin=None, vmax=None, axes=None, triangulation=None): ''' cortex_cmap_plot_2D(map, zs, cmap, axes) plots the given cortical map values zs on the given axes using the given given color map and yields the resulting polygon collection object. cortex_cmap_plot_2D(map, zs, cmap) uses matplotlib.pyplot.gca() for the axes. The following options may be passed: * triangulation (None) may specify the triangularion object for the mesh if it has already been created; otherwise it is generated fresh. * axes (None) specify the axes on which to plot; if None, then matplotlib.pyplot.gca() is used. If Ellipsis, then a tuple (triangulation, z, cmap) is returned; to recreate the plot, one would call: axes.tripcolor(triangulation, z, cmap, shading='gouraud', vmin=vmin, vmax=vmax) * vmin (default: None) specifies the minimum value for scaling the property when one is passed as the color option. None means to use the min value of the property. * vmax (default: None) specifies the maximum value for scaling the property when one is passed as the color option. None means to use the max value of the property. ''' if triangulation is None: triangulation = matplotlib.tri.Triangulation(the_map.coordinates[0], the_map.coordinates[1], triangles=the_map.tess.indexed_faces.T) if axes is Ellipsis: return (triangulation, zs, cmap) return axes.tripcolor(triangulation, zs, cmap=cmap, shading='gouraud', vmin=vmin, vmax=vmax)
Example #5
Source File: simple_functions.py From Ensemble-Bayesian-Optimization with MIT License | 6 votes |
def plot_f(f, filenm='test_function.eps'): # only for 2D functions import matplotlib.pyplot as plt import matplotlib font = {'size': 20} matplotlib.rc('font', **font) delta = 0.005 x = np.arange(0.0, 1.0, delta) y = np.arange(0.0, 1.0, delta) nx = len(x) X, Y = np.meshgrid(x, y) xx = np.array((X.ravel(), Y.ravel())).T yy = f(xx) plt.figure() plt.contourf(X, Y, yy.reshape(nx, nx), levels=np.linspace(yy.min(), yy.max(), 40)) plt.xlim([0, 1]) plt.ylim([0, 1]) plt.colorbar() plt.scatter(f.argmax[0], f.argmax[1], s=180, color='k', marker='+') plt.savefig(filenm)
Example #6
Source File: Flight Analysis.py From Cheapest-Flights-bot with MIT License | 6 votes |
def task_3_IQR(flight_data): plot=plt.boxplot(flight_data['Price'],patch_artist=True) for median in plot['medians']: median.set(color='#fc0004', linewidth=2) for flier in plot['fliers']: flier.set(marker='+', color='#e7298a') for whisker in plot['whiskers']: whisker.set(color='#7570b3', linewidth=2) for cap in plot['caps']: cap.set(color='#7570b3', linewidth=2) for box in plot['boxes']: box.set(color='#7570b3', linewidth=2) box.set(facecolor='#1b9e77') plt.matplotlib.pyplot.savefig('task_3_iqr.png') clean_data=[] for index,row in flight_data.loc[flight_data['Price'].isin(plot['fliers'][0].get_ydata())].iterrows(): clean_data.append([row['Price'],row['Date_of_Flight']]) return pd.DataFrame(clean_data, columns=['Price', 'Date_of_Flight'])
Example #7
Source File: SpectraLearnPredict.py From SpectralMachine with GNU General Public License v3.0 | 6 votes |
def plotMaps(X, Y, A, label): print(' Plotting ' + label + ' Map...\n') import scipy.interpolate xi = np.linspace(min(X), max(X)) yi = np.linspace(min(Y), max(Y)) xi, yi = np.meshgrid(xi, yi) rbf = scipy.interpolate.Rbf(Y, -X, A, function='linear') zi = rbf(xi, yi) import matplotlib.pyplot as plt plt.imshow(zi, vmin=A.min(), vmax=A.max(), origin='lower',label='data', extent=[X.min(), X.max(), Y.min(), Y.max()]) plt.title(label) plt.xlabel('X [um]') plt.ylabel('Y [um]') plt.show() ####################################################################
Example #8
Source File: tsne_visualizer.py From linguistic-style-transfer with Apache License 2.0 | 6 votes |
def plot_coordinates(coordinates, plot_path, markers, label_names, fig_num): matplotlib.use('svg') import matplotlib.pyplot as plt plt.figure(fig_num) for i in range(len(markers) - 1): plt.scatter(x=coordinates[markers[i]:markers[i + 1], 0], y=coordinates[markers[i]:markers[i + 1], 1], marker=plot_markers[i % len(plot_markers)], c=colors[i % len(colors)], label=label_names[i], alpha=0.75) plt.legend(loc='upper right', fontsize='x-large') plt.axis('off') plt.savefig(fname=plot_path, format="svg", bbox_inches='tight', transparent=True) plt.close()
Example #9
Source File: pyplot.py From Computable with MIT License | 6 votes |
def polar(*args, **kwargs): """ Make a polar plot. call signature:: polar(theta, r, **kwargs) Multiple *theta*, *r* arguments are supported, with format strings, as in :func:`~matplotlib.pyplot.plot`. """ ax = gca(polar=True) ret = ax.plot(*args, **kwargs) draw_if_interactive() return ret
Example #10
Source File: pyplot.py From Computable with MIT License | 6 votes |
def xlabel(s, *args, **kwargs): """ Set the *x* axis label of the current axis. Default override is:: override = { 'fontsize' : 'small', 'verticalalignment' : 'top', 'horizontalalignment' : 'center' } .. seealso:: :func:`~matplotlib.pyplot.text` For information on how override and the optional args work """ l = gca().set_xlabel(s, *args, **kwargs) draw_if_interactive() return l
Example #11
Source File: test_plot.py From mars with Apache License 2.0 | 6 votes |
def assert_is_valid_plot_return_object(objs): # pragma: no cover import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ( "one of 'objs' is not a matplotlib Axes instance, " "type encountered {}".format(repr(type(el).__name__)) ) assert isinstance(el, (plt.Axes, dict)), msg else: msg = ( "objs is neither an ndarray of Artist instances nor a single " "ArtistArtist instance, tuple, or dict, 'objs' is a {}".format( repr(type(objs).__name__)) ) assert isinstance(objs, (plt.Artist, tuple, dict)), msg
Example #12
Source File: pyplot.py From Computable with MIT License | 6 votes |
def draw(): """ Redraw the current figure. This is used in interactive mode to update a figure that has been altered using one or more plot object method calls; it is not needed if figure modification is done entirely with pyplot functions, if a sequence of modifications ends with a pyplot function, or if matplotlib is in non-interactive mode and the sequence of modifications ends with :func:`show` or :func:`savefig`. A more object-oriented alternative, given any :class:`~matplotlib.figure.Figure` instance, :attr:`fig`, that was created using a :mod:`~matplotlib.pyplot` function, is:: fig.canvas.draw() """ get_current_fig_manager().canvas.draw()
Example #13
Source File: utils.py From nussl with MIT License | 6 votes |
def visualize_waveform(audio_signal, ch=0, do_mono=False, x_axis='time', **kwargs): """ Wrapper around `librosa.display.waveplot` for usage with AudioSignals. Args: audio_signal (AudioSignal): AudioSignal to plot ch (int, optional): Which channel to plot. Defaults to 0. do_mono (bool, optional): Make the AudioSignal mono. Defaults to False. x_axis (str, optional): x_axis argument to librosa.display.waveplot. Defaults to 'time'. kwargs: Additional keyword arguments to librosa.display.waveplot. """ import librosa.display import matplotlib.pyplot as plt if do_mono: audio_signal = audio_signal.to_mono(overwrite=False) data = np.asfortranarray(audio_signal.audio_data[ch]) librosa.display.waveplot(data, sr=audio_signal.sample_rate, x_axis=x_axis, **kwargs) plt.ylabel('Amplitude')
Example #14
Source File: loading_utils.py From Dropout_BBalpha with MIT License | 6 votes |
def plot_images(ax, images, shape, color = False): # finally save to file import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt # flip 0 to 1 images = 1.0 - images images = reshape_and_tile_images(images, shape, n_cols=len(images)) if color: from matplotlib import cm plt.imshow(images, cmap=cm.Greys_r, interpolation='nearest') else: plt.imshow(images, cmap='Greys') ax.axis('off')
Example #15
Source File: renderer.py From btgym with GNU Lesser General Public License v3.0 | 6 votes |
def initialize_pyplot(self): """ Call me before use! [Supposed to be done inside already running server process] """ if not self.ready: from multiprocessing import Pipe self.out_pipe, self.in_pipe = Pipe() if self.plt is None: import matplotlib matplotlib.use(self.plt_backend, force=True) import matplotlib.pyplot as plt self.plt = plt self.ready = True
Example #16
Source File: test_var.py From vnpy_crypto with MIT License | 6 votes |
def test_plot_irf(self): import matplotlib.pyplot as plt self.irf.plot() plt.close('all') self.irf.plot(plot_stderr=False) plt.close('all') self.irf.plot(impulse=0, response=1) plt.close('all') self.irf.plot(impulse=0) plt.close('all') self.irf.plot(response=0) plt.close('all') self.irf.plot(orth=True) plt.close('all') self.irf.plot(impulse=0, response=1, orth=True) close_plots()
Example #17
Source File: utils.py From ngraph-python with Apache License 2.0 | 6 votes |
def save_plot(niters, loss, args): print('Saving training loss-iteration figure...') try: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt name = 'Train-{}_hs-{}_lr-{}_bs-{}'.format(args.train_file, args.hs, args.lr, args.batch_size) plt.title(name) plt.plot(niters, loss) plt.xlabel('iteration') plt.ylabel('loss') plt.savefig(name + '.jpg') print('{} saved!'.format(name + '.jpg')) except ImportError: print('matplotlib not installed and no figure is saved.')
Example #18
Source File: starwarps.py From eht-imaging with GNU General Public License v3.0 | 5 votes |
def movie(im_List, out='movie.mp4', fps=10, dpi=120): import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import matplotlib.animation as animation fig = plt.figure() frame = im_List[0].imvec #read_auto(filelist[len(filelist)/2]) fov = im_List[0].psize*im_List[0].xdim extent = fov * np.array((1,-1,-1,1)) / 2. maxi = np.max(frame) im = plt.imshow( np.reshape(frame,[im_List[0].xdim, im_List[0].xdim]) , cmap='hot', extent=extent) #inferno plt.colorbar() im.set_clim([0,maxi]) fig.set_size_inches([5,5]) plt.tight_layout() def update_img(n): sys.stdout.write('\rprocessing image %i of %i ...' % (n,len(im_List)) ) sys.stdout.flush() im.set_data(np.reshape(im_List[n].imvec, [im_List[n].xdim, im_List[n].xdim]) ) return im ani = animation.FuncAnimation(fig,update_img,len(im_List),interval=1e3/fps) writer = animation.writers['ffmpeg'](fps=max(20, fps), bitrate=1e6) ani.save(out,writer=writer,dpi=dpi)
Example #19
Source File: ipython_directive.py From Computable with MIT License | 5 votes |
def ensure_pyplot(self): if self._pyplot_imported: return self.process_input_line('import matplotlib.pyplot as plt', store_history=False)
Example #20
Source File: scrapers.py From sphinx-gallery with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _import_matplotlib(): """Import matplotlib safely.""" # make sure that the Agg backend is set before importing any # matplotlib import matplotlib matplotlib.use('agg') matplotlib_backend = matplotlib.get_backend().lower() filterwarnings("ignore", category=UserWarning, message='Matplotlib is currently using agg, which is a' ' non-GUI backend, so cannot show the figure.') if matplotlib_backend != 'agg': raise ExtensionError( "Sphinx-Gallery relies on the matplotlib 'agg' backend to " "render figures and write them to files. You are " "currently using the {} backend. Sphinx-Gallery will " "terminate the build now, because changing backends is " "not well supported by matplotlib. We advise you to move " "sphinx_gallery imports before any matplotlib-dependent " "import. Moving sphinx_gallery imports at the top of " "your conf.py file should fix this issue" .format(matplotlib_backend)) import matplotlib.pyplot as plt return matplotlib, plt
Example #21
Source File: deep_autoencoder.py From WannaPark with GNU General Public License v3.0 | 5 votes |
def plot_helper(x): import matplotlib import matplotlib.pyplot as plt x = np.reshape(x, (-1, 28)) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.matshow(x, cmap = matplotlib.cm.binary) plt.xticks(np.array([])) plt.yticks(np.array([])) plt.show()
Example #22
Source File: backend_template.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def show(*, block=None): """ For image backends - is not required. For GUI backends - show() is usually the last line of a pyplot script and tells the backend that it is time to draw. In interactive mode, this should do nothing. """ for manager in Gcf.get_all_fig_managers(): # do something to display the GUI pass
Example #23
Source File: utils.py From nussl with MIT License | 5 votes |
def visualize_gradient_flow(named_parameters, n_bins=50): """ Visualize the gradient flow through the named parameters of a PyTorch model. Plots the gradients flowing through different layers in the net during training. Can be used for checking for possible gradient vanishing / exploding problems. Usage: Plug this function in Trainer class after loss.backwards() as "visualize_gradient_flow(self.model.named_parameters())" to visualize the gradient flow Args: named_parameters (generator): Generator object yielding name and parameters for each layer in a PyTorch model. n_bins (int): Number of bins to use for each histogram. Defaults to 50. """ import matplotlib.pyplot as plt data = [] for n, p in named_parameters: if p.requires_grad and "bias" not in n: if p.grad is not None: _data = p.grad.cpu().data.numpy().flatten() lower = np.percentile(_data, 10) upper = np.percentile(_data, 90) _data = _data[_data >= lower] _data = _data[_data <= upper] n = n.split('layers.')[-1] data.append((n, _data, np.abs(_data).mean())) _data = [d[1] for d in sorted(data, key=lambda x: x[-1])] _names = [d[0] for d in sorted(data, key=lambda x: x[-1])] plt.hist(_data, len(_data) * n_bins, histtype='step', fill=False, stacked=True, label=_names) plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2)
Example #24
Source File: wl_fig.py From Wordless with GNU General Public License v3.0 | 5 votes |
def show_fig(): if platform.system() in ['Windows', 'Linux']: matplotlib.pyplot.get_current_fig_manager().window.showMaximized() # Do not maximize the window to avoid segfault on macOS elif platform.system() == 'Darwin': matplotlib.pyplot.show()
Example #25
Source File: testing.py From cesiumpy with Apache License 2.0 | 5 votes |
def _skip_if_no_matplotlib(): try: import matplotlib matplotlib.use('Agg') except ImportError: import nose raise nose.SkipTest("no matplotlib.pyplot module")
Example #26
Source File: SpectraLearnPredict.py From SpectralMachine with GNU General Public License v3.0 | 5 votes |
def plotTrainData(A, En, R, plotAllSpectra, learnFileRoot): import matplotlib.pyplot as plt if plotDef.plotAllSpectra == True: step = 1 learnFileRoot = learnFileRoot + '_full-set' else: step = plotDef.stepSpectraPlot learnFileRoot = learnFileRoot + '_partial-' + str(step) print(' Plotting Training dataset in: ' + learnFileRoot + '.png\n') if preprocDef.Ynorm ==True: plt.title('Normalized Training Data') else: plt.title('Training Data') for i in range(0,A.shape[0], step): plt.plot(En, A[i,:], label='Training data') plt.plot(En, R[0,:], linewidth = 4, label='Sample data') plt.xlabel('Raman shift [1/cm]') plt.ylabel('Raman Intensity [arb. units]') plt.savefig(learnFileRoot + '.png', dpi = 160, format = 'png') # Save plot if plotDef.showTrainingDataPlot == True: plt.show() plt.close() #************************************
Example #27
Source File: neuagent.py From dl4ir-webnav with BSD 3-Clause "New" or "Revised" License | 5 votes |
def vis_att(pages_idx, query, alpha, wiki, vocab, idx): rows = [prm.root_page.title()] for pageidx in pages_idx[:-1]: if pageidx != -1: rows.append(wiki.get_article_title(pageidx).decode('utf-8', 'ignore').title()) else: break #rows.append('Stop') rows = rows[::-1] columns = [] for word in wordpunct_tokenize(query): if word.lower() in vocab: columns.append(str(word)) columns = columns[:prm.max_words_query*prm.n_consec] alpha = alpha[:len(rows),:len(columns)] alpha = alpha[::-1] fig,ax=plt.subplots(figsize=(27,10)) #Advance color controls norm = matplotlib.colors.Normalize(0,1) im = ax.pcolor(alpha,cmap=plt.cm.gray,edgecolors='w',norm=norm) fig.colorbar(im) ax.set_xticks(np.arange(0,len(columns))+0.5) ax.set_yticks(np.arange(0,len(rows))+0.5) ax.tick_params(axis='x', which='minor', pad=15) # Here we position the tick labels for x and y axis ax.xaxis.tick_bottom() ax.yaxis.tick_left() ax.axis('tight') # correcting pyplot bug that add extra white columns. plt.xticks(rotation=90) fig.subplots_adjust(bottom=0.2) fig.subplots_adjust(left=0.2) #Values against each labels ax.set_xticklabels(columns,minor=False,fontsize=18) ax.set_yticklabels(rows,minor=False,fontsize=18) plt.savefig('vis' + str(idx) + '.svg') plt.close()
Example #28
Source File: SOMPlots.py From susi with BSD 3-Clause "New" or "Revised" License | 5 votes |
def plot_estimation_map(estimation_map, cbar_label="Variable in unit", cmap="viridis", fontsize=20): """[summary] Parameters ---------- estimation_map : np.array Estimation map of the size (n_rows, n_columns) cbar_label : str, optional Label of the colorbar, by default "Variable in unit" cmap : str, optional (default="viridis") Colormap fontsize : int, optional (default=20) Fontsize of the labels Returns ------- ax : pyplot.axis Plot axis """ _, ax = plt.subplots(1, 1, figsize=(7, 5)) img = ax.imshow(estimation_map, cmap=cmap) ax.set_xlabel("SOM columns", fontsize=fontsize) ax.set_ylabel("SOM rows", fontsize=fontsize) # ax.set_xticklabels(fontsize=fontsize) # ax.set_yticklabels(fontsize=fontsize) ax.tick_params(axis='both', which='major', labelsize=fontsize) # colorbar cbar = plt.colorbar(img, ax=ax) cbar.ax.tick_params(labelsize=fontsize) cbar.ax.set_ylabel(cbar_label, fontsize=fontsize, labelpad=10) for label in cbar.ax.xaxis.get_ticklabels()[::2]: label.set_visible(False) plt.grid(b=False) return ax
Example #29
Source File: viz.py From libTLDA with MIT License | 5 votes |
def plotc(parameters, ax=[], color='k', gridsize=(101, 101)): """ Plot a linear classifier in a 2D scatterplot. INPUT (1) tuple 'parameters': consists of a list of class proportions (1 by K classes), an array of class means (K classes by D features), an array of class-covariance matrices (D features by D features by K classes) (2) object 'ax': axes of a pyplot figure or subject (def: empty) (3) str 'colors': colors of the contours in the plot (def: 'k') (4) tuple 'gridsize': number of points in the grid (def: (101, 101)) OUTPUT None """ # Check for figure object if fig: ax = fig.gca() else: fig, ax = plt.subplots() # Get axes limits xl = ax.get_xlim() yl = ax.get_ylim() # Define grid gx = np.linspace(xl[0], xl[1], gridsize[0]) gy = np.linspace(yl[0], yl[1], gridsize[1]) x, y = np.meshgrid(gx, gy) xy = np.vstack((x.ravel(), y.ravel())).T # Values of grid z = np.dot(xy, parameters[:-1, :]) + parameters[-1, :] z = np.reshape(z[:, 0] - z[:, 1], gridsize) # Plot grid ax.contour(x, y, z, levels=0, colors=colors)
Example #30
Source File: pyplot.py From Computable with MIT License | 5 votes |
def rcdefaults(): matplotlib.rcdefaults() draw_if_interactive() # The current "image" (ScalarMappable) is retrieved or set # only via the pyplot interface using the following two # functions: