Python numpy.index_exp() Examples
The following are 30 code examples for showing how to use numpy.index_exp(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: arrayprint.py License: Apache License 2.0 | 6 votes |
def _leading_trailing(a, edgeitems, index=()): """ Keep only the N-D corners (leading and trailing edges) of an array. Should be passed a base-class ndarray, since it makes no guarantees about preserving subclasses. """ axis = len(index) if axis == a.ndim: return a[index] if a.shape[axis] > 2*edgeitems: return concatenate(( _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) ), axis=axis) else: return _leading_trailing(a, edgeitems, index + np.index_exp[:])
Example 2
Project: westpa Author: westpa File: w_pdist.py License: MIT License | 6 votes |
def process_args(self, args): self.progress.process_args(args) self.data_reader.process_args(args) self.input_dssynth.h5filename = self.data_reader.we_h5filename self.input_dssynth.process_args(args) self.dsspec = self.input_dssynth.dsspec # Carrying an open HDF5 file across a fork() seems to corrupt the entire HDF5 library # Open the WEST HDF5 file just long enough to process our iteration range, then close # and reopen in go() [which executes after the fork] with self.data_reader: self.iter_range.process_args(args) self.wt_dsspec = SingleIterDSSpec(self.data_reader.we_h5filename, 'seg_index', slice=numpy.index_exp['weight']) self.binspec = args.bins self.output_filename = args.output self.ignore_out_of_range = bool(args.ignore_out_of_range) self.compress_output = args.compress or False
Example 3
Project: westpa Author: westpa File: h5io.py License: MIT License | 6 votes |
def get_iteration_slice(h5object, iter_start, iter_stop=None, iter_stride=None): '''Create a slice for data corresponding to iterations [iter_start,iter_stop), with stride iter_step, in the given ``h5object``.''' obj_iter_start, obj_iter_stop = get_iter_range(h5object) if iter_stop is None: iter_stop = iter_start+1 if iter_stride is None: iter_stride = 1 if iter_start < obj_iter_start: raise IndexError('data for iteration {} not available in dataset {!r}'.format(iter_start, h5object)) elif iter_start > obj_iter_stop: raise IndexError('data for iteration {} not available in dataset {!r}'.format(iter_stop, h5object)) start_index = iter_start - obj_iter_start stop_index = iter_stop - obj_iter_start return numpy.index_exp[start_index:stop_index:iter_stride] ### # Axis label metadata ###
Example 4
Project: westpa Author: westpa File: h5io.py License: MIT License | 6 votes |
def from_string(cls, dsspec_string, default_h5file): alias = None h5file = default_h5file fields = dsspec_string.split(',') dsname = fields[0] slice = None for field in (field.strip() for field in fields[1:]): k,v = field.split('=') k = k.lower() if k == 'alias': alias = v elif k == 'slice': try: slice = eval('numpy.index_exp' + v) except SyntaxError: raise SyntaxError('invalid index expression {!r}'.format(v)) elif k == 'file': h5file = v else: raise ValueError('invalid dataset option {!r}'.format(k)) return cls(h5file, dsname, alias, slice)
Example 5
Project: lambda-packs Author: ryfeus File: arrayprint.py License: MIT License | 6 votes |
def _leading_trailing(a, edgeitems, index=()): """ Keep only the N-D corners (leading and trailing edges) of an array. Should be passed a base-class ndarray, since it makes no guarantees about preserving subclasses. """ axis = len(index) if axis == a.ndim: return a[index] if a.shape[axis] > 2*edgeitems: return concatenate(( _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) ), axis=axis) else: return _leading_trailing(a, edgeitems, index + np.index_exp[:])
Example 6
Project: vnpy_crypto Author: birforce File: arrayprint.py License: MIT License | 6 votes |
def _leading_trailing(a, edgeitems, index=()): """ Keep only the N-D corners (leading and trailing edges) of an array. Should be passed a base-class ndarray, since it makes no guarantees about preserving subclasses. """ axis = len(index) if axis == a.ndim: return a[index] if a.shape[axis] > 2*edgeitems: return concatenate(( _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) ), axis=axis) else: return _leading_trailing(a, edgeitems, index + np.index_exp[:])
Example 7
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: arrayprint.py License: MIT License | 6 votes |
def _leading_trailing(a, edgeitems, index=()): """ Keep only the N-D corners (leading and trailing edges) of an array. Should be passed a base-class ndarray, since it makes no guarantees about preserving subclasses. """ axis = len(index) if axis == a.ndim: return a[index] if a.shape[axis] > 2*edgeitems: return concatenate(( _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) ), axis=axis) else: return _leading_trailing(a, edgeitems, index + np.index_exp[:])
Example 8
Project: nata Author: GoLP-IST File: axes.py License: MIT License | 6 votes |
def __getitem__( self, key: Union[int, slice, Tuple[Union[int, slice]]] ) -> "GridAxis": if not is_basic_indexing(key): raise IndexError("Only basic indexing is supported!") key = np.index_exp[key] requires_new_axis = False # first index corresponds to temporal slicing if ndim == axis_dim + 1 # or alternatively -> check len of the axis -> number of temporal slices if len(self) != 1: # revert dimensionality reduction if isinstance(key[0], int): requires_new_axis = True else: requires_new_axis = True return self.__class__( self.data[key][np.newaxis] if requires_new_axis else self.data[key], name=self.name, label=self.label, unit=self.unit, axis_type=self.axis_type, )
Example 9
Project: nata Author: GoLP-IST File: types.py License: MIT License | 6 votes |
def is_basic_indexing(key: Any): indexing = np.index_exp[key] passes = [] for ind in indexing: if isinstance(ind, (int, slice)): passes.append(True) elif ind is Ellipsis: passes.append(True) elif ind is np.newaxis: passes.append(True) else: passes.append(False) if all(passes): return True return False
Example 10
Project: GraphicDesignPatternByPython Author: Relph1119 File: arrayprint.py License: MIT License | 6 votes |
def _leading_trailing(a, edgeitems, index=()): """ Keep only the N-D corners (leading and trailing edges) of an array. Should be passed a base-class ndarray, since it makes no guarantees about preserving subclasses. """ axis = len(index) if axis == a.ndim: return a[index] if a.shape[axis] > 2*edgeitems: return concatenate(( _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) ), axis=axis) else: return _leading_trailing(a, edgeitems, index + np.index_exp[:])
Example 11
Project: predictive-maintenance-using-machine-learning Author: awslabs File: arrayprint.py License: Apache License 2.0 | 6 votes |
def _leading_trailing(a, edgeitems, index=()): """ Keep only the N-D corners (leading and trailing edges) of an array. Should be passed a base-class ndarray, since it makes no guarantees about preserving subclasses. """ axis = len(index) if axis == a.ndim: return a[index] if a.shape[axis] > 2*edgeitems: return concatenate(( _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) ), axis=axis) else: return _leading_trailing(a, edgeitems, index + np.index_exp[:])
Example 12
Project: pySINDy Author: luckystarufo File: arrayprint.py License: MIT License | 6 votes |
def _leading_trailing(a, edgeitems, index=()): """ Keep only the N-D corners (leading and trailing edges) of an array. Should be passed a base-class ndarray, since it makes no guarantees about preserving subclasses. """ axis = len(index) if axis == a.ndim: return a[index] if a.shape[axis] > 2*edgeitems: return concatenate(( _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) ), axis=axis) else: return _leading_trailing(a, edgeitems, index + np.index_exp[:])
Example 13
Project: plat Author: dribnet File: canvas.py License: MIT License | 6 votes |
def additive_composite(src, src_mask, dst): ''' Return the additive composite of src and dst. ''' out = np.empty(dst.shape, dtype = 'float') alpha = np.index_exp[3:, :, :] rgb = np.index_exp[:3, :, :] if src_mask is not None: out[alpha] = np.maximum(src_mask,dst[alpha]) else: out[alpha] = 1.0 out[rgb] = np.maximum(src[rgb],dst[rgb]) np.clip(out,0,1.0) return out # gsize = 64 # gsize2 = gsize/2
Example 14
Project: RC-experiments Author: cairoHy File: rc_dataset.py License: GNU General Public License v3.0 | 6 votes |
def get_next_batch(self, mode, idx): """ return next batch of data samples """ batch_size = self.args.batch_size if mode == "train": dataset = self.train_data sample_num = self.train_sample_num elif mode == "valid": dataset = self.valid_data sample_num = self.valid_sample_num else: dataset = self.test_data sample_num = self.test_sample_num if mode == "train": start = self.train_idx[idx] * batch_size stop = (self.train_idx[idx] + 1) * batch_size else: start = idx * batch_size stop = (idx + 1) * batch_size if start < sample_num and (idx + 1) * batch_size < sample_num else -1 samples = batch_size if stop != -1 else len(dataset[0]) - start _slice = np.index_exp[start:stop] return self.next_batch_feed_dict_by_dataset(dataset, _slice, samples)
Example 15
Project: coffeegrindsize Author: jgagneastro File: arrayprint.py License: MIT License | 6 votes |
def _leading_trailing(a, edgeitems, index=()): """ Keep only the N-D corners (leading and trailing edges) of an array. Should be passed a base-class ndarray, since it makes no guarantees about preserving subclasses. """ axis = len(index) if axis == a.ndim: return a[index] if a.shape[axis] > 2*edgeitems: return concatenate(( _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) ), axis=axis) else: return _leading_trailing(a, edgeitems, index + np.index_exp[:])
Example 16
Project: Carnets Author: holzschu File: arrayprint.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _leading_trailing(a, edgeitems, index=()): """ Keep only the N-D corners (leading and trailing edges) of an array. Should be passed a base-class ndarray, since it makes no guarantees about preserving subclasses. """ axis = len(index) if axis == a.ndim: return a[index] if a.shape[axis] > 2*edgeitems: return concatenate(( _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) ), axis=axis) else: return _leading_trailing(a, edgeitems, index + np.index_exp[:])
Example 17
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: arrayprint.py License: MIT License | 6 votes |
def _leading_trailing(a, edgeitems, index=()): """ Keep only the N-D corners (leading and trailing edges) of an array. Should be passed a base-class ndarray, since it makes no guarantees about preserving subclasses. """ axis = len(index) if axis == a.ndim: return a[index] if a.shape[axis] > 2*edgeitems: return concatenate(( _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) ), axis=axis) else: return _leading_trailing(a, edgeitems, index + np.index_exp[:])
Example 18
Project: twitter-stock-recommendation Author: alvarobartt File: arrayprint.py License: MIT License | 6 votes |
def _leading_trailing(a, edgeitems, index=()): """ Keep only the N-D corners (leading and trailing edges) of an array. Should be passed a base-class ndarray, since it makes no guarantees about preserving subclasses. """ axis = len(index) if axis == a.ndim: return a[index] if a.shape[axis] > 2*edgeitems: return concatenate(( _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) ), axis=axis) else: return _leading_trailing(a, edgeitems, index + np.index_exp[:])
Example 19
Project: ffn Author: google File: bounding_box.py License: Apache License 2.0 | 5 votes |
def to_slice(self): """Returns slice in C-order (ZYX).""" return np.index_exp[self.start[2]:self.end[2], # self.start[1]:self.end[1], # self.start[0]:self.end[0]]
Example 20
Project: westpa Author: westpa File: ploterr.py License: MIT License | 5 votes |
def process_args(self, args): self.output_filename = args.output (pathname, slicestr) = re.search(r'([^[]+)(\[[^\]]+\])?$', args.dsspec).groups() if slicestr: sl = eval('numpy.index_exp' + slicestr) else: sl = numpy.index_exp[...] self.h5file, self.h5dset = h5io.resolve_filepath(pathname, mode='r') self.dset_slice = sl
Example 21
Project: westpa Author: westpa File: data_reader.py License: MIT License | 5 votes |
def weight_dsspec(self): if self._weight_dsspec is None: assert self.we_h5filename is not None self._weight_dsspec = SingleIterDSSpec(self.we_h5filename, 'seg_index', slice=index_exp['weight']) return self._weight_dsspec
Example 22
Project: westpa Author: westpa File: data_reader.py License: MIT License | 5 votes |
def parent_id_dsspec(self): if self._parent_id_dsspec is None: assert self.we_h5filename is not None #self._parent_id_dsspec = SingleIterDSSpec(self.we_h5filename, 'seg_index', slice=index_exp['parent_id']) self._parent_id_dsspec = FnDSSpec(self.we_h5filename, _get_parent_ids) return self._parent_id_dsspec
Example 23
Project: westpa Author: westpa File: w_assign.py License: MIT License | 5 votes |
def _assign_label_pop(n_iter, lb, ub, mapper, nstates, state_map, last_labels, parent_id_dsspec, weight_dsspec, pcoord_dsspec, subsample): nbins = len(state_map)-1 parent_ids = parent_id_dsspec.get_iter_data(n_iter,index_exp[lb:ub]) weights = weight_dsspec.get_iter_data(n_iter,index_exp[lb:ub]) pcoords = pcoord_dsspec.get_iter_data(n_iter,index_exp[lb:ub]) assignments, trajlabels, statelabels = assign_and_label(lb, ub, parent_ids, mapper.assign, nstates, state_map, last_labels, pcoords, subsample) pops = numpy.zeros((nstates+1,nbins+1), weight_dtype) accumulate_labeled_populations(weights, assignments, trajlabels, pops) return (assignments, trajlabels, pops, lb, ub, statelabels)
Example 24
Project: westpa Author: westpa File: h5io.py License: MIT License | 5 votes |
def get_iteration_entry(h5object, n_iter): '''Create a slice for data corresponding to iteration ``n_iter`` in ``h5object``.''' obj_iter_start, obj_iter_stop = get_iter_range(h5object) if n_iter < obj_iter_start or n_iter >= obj_iter_stop: raise IndexError('data for iteration {} not available in dataset {!r}'.format(n_iter, h5object)) return numpy.index_exp[n_iter-obj_iter_start]
Example 25
Project: westpa Author: westpa File: h5io.py License: MIT License | 5 votes |
def get_iter_data(self, n_iter, seg_slice=index_exp[:]): raise NotImplementedError
Example 26
Project: westpa Author: westpa File: h5io.py License: MIT License | 5 votes |
def get_iter_data(self, n_iter, seg_slice=index_exp[:]): if self.slice: return self.h5file.get_iter_group(n_iter)[self.dsname][seg_slice + self.slice] else: return self.h5file.get_iter_group(n_iter)[self.dsname][seg_slice]
Example 27
Project: westpa Author: westpa File: h5io.py License: MIT License | 5 votes |
def get_iter_data(self, n_iter, seg_slice=index_exp[:]): if self.slice: return self.h5file.get_iter_group(n_iter)[self.dsname][seg_slice + index_exp[:] + self.slice] else: return self.h5file.get_iter_group(n_iter)[self.dsname][seg_slice]
Example 28
Project: westpa Author: westpa File: h5io.py License: MIT License | 5 votes |
def get_segment_data(self, n_iter, seg_id): if self.slice: return self.h5file.get_iter_group(n_iter)[numpy.index_exp[seg_id,:] + self.slice] else: return self.h5file.get_iter_group(n_iter)[seg_id]
Example 29
Project: westpa Author: westpa File: h5io.py License: MIT License | 5 votes |
def get_iter_data(self, n_iter, seg_slice=index_exp[:]): return self.fn(n_iter, self.h5file.get_iter_group(n_iter))[seg_slice]
Example 30
Project: rpitelecine Author: Alexamder File: perforation.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def setROI(self): # Sets the ROI where to look for a perforation # If an expected perforation size is set, then ROI is based on size of perforation img_h,img_w = self.imageSize if self.isInitialised: # Already know expected size, so use smaller ROI # ROI height and position on Y axis # Top of ROI for initialised perforation detection h = int(img_h/2) # Use 1/2 of image height for ROI if self.filmType == 'super8': # Middle of image height y = int(img_h/4) else: # Standard 8 - top part of image y = int(img_h/50) # 39 pixels with 1944px high image # Base width on previously detected perforation - centre ib ROIcx w = int((self.expectedSize[0] + (self.expectedSize[0]*self.sizeMargin))/2) roiL = max(0, self.ROIcentrexy[0]-w) roiR = min(img_w, self.ROIcentrexy[0]+w) self.ROIcentrexy = [ int(roiL+(roiR-roiL)/2), int(y+(h/2)) ] else: # Not found before - so use larger area for detection # Use whole image height + half image width y = 0 h = img_h roiL = 0 roiR = int(img_w/2) self.ROIcentrexy = [0,0] self.ROIxy = ( roiL, y ) self.ROIwh = ( roiR-roiL, h ) self.ROIslice = np.index_exp[ y:y+h, roiL:roiR ] # Create the slice object for making the ROI self.ROIimg = np.zeros( (roiR-roiL, h), dtype=np.uint8) # Initialise space for the ROI image