Python numpy.left_shift() Examples
The following are 30 code examples for showing how to use numpy.left_shift(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 2
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 3
Project: vnpy_crypto Author: birforce File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 4
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 5
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 6
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 7
Project: pySINDy Author: luckystarufo File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 8
Project: mxnet-lambda Author: awslabs File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 9
Project: music_led_strip_control Author: TobKra96 File: output.py License: MIT License | 6 votes |
def show(self, output_array): import _rpi_ws281x as ws # pylint: disable=import-error # Typecast the array to int output_array = output_array.clip(0, 255).astype(int) # sort the colors. grb g = np.left_shift(output_array[1][:].astype(int), 16) # pylint: disable=assignment-from-no-return r = np.left_shift(output_array[0][:].astype(int), 8) # pylint: disable=assignment-from-no-return b = output_array[2][:].astype(int) rgb = np.bitwise_or(np.bitwise_or(r, g), b).astype(int) # You can only use ws2811_leds_set with the custom version. #ws.ws2811_leds_set(self.channel, rgb) for i in range(self._led_count): ws.ws2811_led_set(self.channel, i, rgb[i].item()) resp = ws.ws2811_render(self._leds) if resp != ws.WS2811_SUCCESS: message = ws.ws2811_get_return_t_str(resp) raise RuntimeError('ws2811_render failed with code {0} ({1})'.format(resp, message))
Example 10
Project: Systematic-LEDs Author: not-matt File: devices.py License: MIT License | 6 votes |
def show(self, pixels): """Writes new LED values to the Raspberry Pi's LED strip Raspberry Pi uses the rpi_ws281x to control the LED strip directly. This function updates the LED strip with new values. """ # Truncate values and cast to integer n_pixels = pixels.shape[1] pixels = pixels.clip(0, 255).astype(int) # Optional gamma correction pixels = _GAMMA_TABLE[pixels] # Encode 24-bit LED values in 32 bit integers r = np.left_shift(pixels[0][:].astype(int), 8) g = np.left_shift(pixels[1][:].astype(int), 16) b = pixels[2][:].astype(int) rgb = np.bitwise_or(np.bitwise_or(r, g), b) # Update the pixels for i in range(n_pixels): self.strip.setPixelColor(i, neopixel.Color(rgb[i])) self.strip.show()
Example 11
Project: Systematic-LEDs Author: not-matt File: led.py License: MIT License | 6 votes |
def _update_pi(): """Writes new LED values to the Raspberry Pi's LED strip Raspberry Pi uses the rpi_ws281x to control the LED strip directly. This function updates the LED strip with new values. """ global pixels, _prev_pixels # Truncate values and cast to integer pixels = np.clip(pixels, 0, 255).astype(int) # Optional gamma correction p = _gamma[pixels] if config.settings["configuration"]["SOFTWARE_GAMMA_CORRECTION"] else np.copy(pixels) # Encode 24-bit LED values in 32 bit integers r = np.left_shift(p[0][:].astype(int), 8) g = np.left_shift(p[1][:].astype(int), 16) b = p[2][:].astype(int) rgb = np.bitwise_or(np.bitwise_or(r, g), b) # Update the pixels for i in range(config.settings["configuration"]["N_PIXELS"]): # Ignore pixels if they haven't changed (saves bandwidth) if np.array_equal(p[:, i], _prev_pixels[:, i]): continue strip._led_data[i] = rgb[i] _prev_pixels = np.copy(p) strip.show()
Example 12
Project: elasticintel Author: securityclippy File: test_ufunc.py License: GNU General Public License v3.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 13
Project: Piano-LED-Visualizer Author: onlaj File: LCD_1in44.py License: MIT License | 6 votes |
def LCD_ShowImage(self,Image,Xstart,Ystart): if (Image == None): return imwidth, imheight = Image.size if imwidth != self.width or imheight != self.height: raise ValueError('Image must be same dimensions as display \ ({0}x{1}).' .format(self.width, self.height)) img = np.asarray(Image) pix = np.zeros((self.width,self.height,2), dtype = np.uint8) pix[...,[0]] = np.add(np.bitwise_and(img[...,[0]],0xF8),np.right_shift(img[...,[1]],5)) pix[...,[1]] = np.add(np.bitwise_and(np.left_shift(img[...,[1]],3),0xE0),np.right_shift(img[...,[2]],3)) pix = pix.flatten().tolist() self.LCD_SetWindows(0, 0, self.width , self.height) GPIO.output(LCD_Config.LCD_DC_PIN, GPIO.HIGH) for i in range(0,len(pix),4096): LCD_Config.SPI_Write_Byte(pix[i:i+4096])
Example 14
Project: coffeegrindsize Author: jgagneastro File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 15
Project: audio-reactive-led-strip Author: scottlawsonbc File: led.py License: MIT License | 6 votes |
def _update_pi(): """Writes new LED values to the Raspberry Pi's LED strip Raspberry Pi uses the rpi_ws281x to control the LED strip directly. This function updates the LED strip with new values. """ global pixels, _prev_pixels # Truncate values and cast to integer pixels = np.clip(pixels, 0, 255).astype(int) # Optional gamma correction p = _gamma[pixels] if config.SOFTWARE_GAMMA_CORRECTION else np.copy(pixels) # Encode 24-bit LED values in 32 bit integers r = np.left_shift(p[0][:].astype(int), 8) g = np.left_shift(p[1][:].astype(int), 16) b = p[2][:].astype(int) rgb = np.bitwise_or(np.bitwise_or(r, g), b) # Update the pixels for i in range(config.N_PIXELS): # Ignore pixels if they haven't changed (saves bandwidth) if np.array_equal(p[:, i], _prev_pixels[:, i]): continue #strip._led_data[i] = rgb[i] strip._led_data[i] = int(rgb[i]) _prev_pixels = np.copy(p) strip.show()
Example 16
Project: incubator-tvm Author: apache File: test_op_level4.py License: Apache License 2.0 | 6 votes |
def test_binary_int_broadcast_1(): for op, ref in [(relay.right_shift, np.right_shift), (relay.left_shift, np.left_shift)]: x = relay.var("x", relay.TensorType((10, 4), "int32")) y = relay.var("y", relay.TensorType((5, 10, 1), "int32")) z = op(x, y) zz = run_infer_type(z) assert zz.checked_type == relay.TensorType((5, 10, 4), "int32") if ref is not None: x_shape = (10, 4) y_shape = (5, 10, 1) t1 = relay.TensorType(x_shape, 'int32') t2 = relay.TensorType(y_shape, 'int32') x_data = np.random.randint(1, 10000, size=(x_shape)).astype(t1.dtype) y_data = np.random.randint(1, 31, size=(y_shape)).astype(t2.dtype) func = relay.Function([x, y], z) ref_res = ref(x_data, y_data) for target, ctx in ctx_list(): intrp = relay.create_executor("graph", ctx=ctx, target=target) op_res = intrp.evaluate(func)(x_data, y_data) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res)
Example 17
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 18
Project: twitter-stock-recommendation Author: alvarobartt File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 19
Project: keras-lambda Author: sunilmallya File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 20
Project: baseband Author: mhvk File: payload.py License: GNU General Public License v3.0 | 5 votes |
def decode_4bit(words): """Decode 4-bit data. For a given int8 byte containing bits 76543210, the first sample is in 3210, the second in 7654, and both are interpreted as signed 4-bit integers. """ # left_shift(byte[:,np.newaxis], shift40): [3210xxxx, 76543210] split = np.left_shift(words[:, np.newaxis], shift40).ravel() # right_shift(..., 4): [33333210, 77777654] # so least significant bits go first. split >>= 4 return split.astype(np.float32)
Example 21
Project: nesmdb Author: chrisdonahue File: exprsco.py License: MIT License | 5 votes |
def rawsco_to_exprsco(rawsco, midi_valid_range=(21, 108)): clock, rate, nsamps, rawsco = rawsco assert rate == 44100 assert rawsco.shape[0] == nsamps nsamps = rawsco.shape[0] t = rawsco[:, :3, :2].astype(np.uint16) t = np.left_shift(t[:, :, 0], 8) + t[:, :, 1] t = t.astype(np.float32) t_p, t_tr = t[:, :2], t[:, 2:] f_p = clock / (16 * (t_p + 1)) f_tr = clock / (32 * (t_tr + 1)) f = np.concatenate([f_p, f_tr], axis=1) m = 69 + (12 * np.log(f / 440)) / np.log(2) m = np.round(m) # Clip notes to midi range m[np.where(m < midi_valid_range[0])] = 0 m[np.where(m > midi_valid_range[1])] = 0 m = m.astype(np.uint8) # Create output score exprsco = np.zeros((nsamps, 4, 3), dtype=np.uint8) # Set notes exprsco[:, :3, 0] = m exprsco[:, 3, 0] = rawsco[:, 3, 1] # Set velocity exprsco[:, :, 1] = np.where(exprsco[:, :, 0] > 0, rawsco[:, :, 2], 0) # Set extra exprsco[:, :, 2] = rawsco[:, :, 3] return (rate, nsamps, exprsco)
Example 22
Project: st7789-python Author: pimoroni File: __init__.py License: MIT License | 5 votes |
def image_to_data(self, image, rotation=0): """Generator function to convert a PIL image to 16-bit 565 RGB bytes.""" # NumPy is much faster at doing this. NumPy code provided by: # Keith (https://www.blogger.com/profile/02555547344016007163) pb = np.rot90(np.array(image.convert('RGB')), rotation // 90).astype('uint8') result = np.zeros((self._width, self._height, 2), dtype=np.uint8) result[..., [0]] = np.add(np.bitwise_and(pb[..., [0]], 0xF8), np.right_shift(pb[..., [1]], 5)) result[..., [1]] = np.add(np.bitwise_and(np.left_shift(pb[..., [1]], 3), 0xE0), np.right_shift(pb[..., [2]], 3)) return result.flatten().tolist()
Example 23
Project: DepthAwareCNN Author: laughtervv File: sunrgbd_dataset.py License: MIT License | 5 votes |
def __getitem__(self, index): #self.paths['images'][index] # print self.opt.scale,self.opt.flip,self.opt.crop,self.opt.colorjitter img = np.asarray(Image.open(self.paths_dict['images'][index]))#.astype(np.uint8) HHA = np.asarray(Image.open(self.paths_dict['HHAs'][index]))[:,:,::-1] seg = np.asarray(Image.open(self.paths_dict['segs'][index])).astype(np.uint8)-1 depth = np.asarray(Image.open(self.paths_dict['depths'][index])).astype(np.uint16) assert (img.shape[0]==HHA.shape[0]==seg.shape[0]==depth.shape[0]) assert (img.shape[1]==HHA.shape[1]==seg.shape[1]==depth.shape[1]) depth = np.bitwise_or(np.right_shift(depth,3),np.left_shift(depth,16-3)) depth = depth.astype(np.float32)/120. # 1/5 * depth params = get_params_sunrgbd(self.opt, seg.shape, maxcrop=.7) depth_tensor_tranformed = transform(depth, params, normalize=False,istrain=self.opt.isTrain) seg_tensor_tranformed = transform(seg, params, normalize=False,method='nearest',istrain=self.opt.isTrain) if self.opt.inputmode == 'bgr-mean': img_tensor_tranformed = transform(img, params, normalize=False, istrain=self.opt.isTrain, option=1) HHA_tensor_tranformed = transform(HHA, params, normalize=False, istrain=self.opt.isTrain, option=2) else: img_tensor_tranformed = transform(img, params, istrain=self.opt.isTrain, option=1) HHA_tensor_tranformed = transform(HHA, params, istrain=self.opt.isTrain, option=2) # print img_tensor_tranformed # print(np.unique(depth_tensor_tranformed.numpy()).shape) # print img_tensor_tranformed.size() return {'image':img_tensor_tranformed, 'depth':depth_tensor_tranformed, 'seg': seg_tensor_tranformed, 'HHA': HHA_tensor_tranformed, 'imgpath': self.paths_dict['segs'][index]}
Example 24
Project: DepthAwareCNN Author: laughtervv File: sunrgbd_dataset.py License: MIT License | 5 votes |
def __getitem__(self, index): #self.paths['images'][index] img = np.asarray(Image.open(self.paths_dict['images'][index]))#.astype(np.uint8) HHA = np.asarray(Image.open(self.paths_dict['HHAs'][index]))[:,:,::-1] seg = np.asarray(Image.open(self.paths_dict['segs'][index])).astype(np.uint8)-1 depth = np.asarray(Image.open(self.paths_dict['depths'][index])).astype(np.uint16) depth = np.bitwise_or(np.right_shift(depth,3),np.left_shift(depth,16-3)) depth = depth.astype(np.float32)/120. # 1/5 * depth assert (img.shape[0]==HHA.shape[0]==seg.shape[0]==depth.shape[0]) assert (img.shape[1]==HHA.shape[1]==seg.shape[1]==depth.shape[1]) params = get_params_sunrgbd(self.opt, seg.shape, test=True) depth_tensor_tranformed = transform(depth, params, normalize=False,istrain=self.opt.isTrain) seg_tensor_tranformed = transform(seg, params, normalize=False,method='nearest',istrain=self.opt.isTrain) # HHA_tensor_tranformed = transform(HHA, params,istrain=self.opt.isTrain) if self.opt.inputmode == 'bgr-mean': img_tensor_tranformed = transform(img, params, normalize=False, istrain=self.opt.isTrain, option=1) HHA_tensor_tranformed = transform(HHA, params, normalize=False, istrain=self.opt.isTrain, option=2) else: img_tensor_tranformed = transform(img, params, istrain=self.opt.isTrain, option=1) HHA_tensor_tranformed = transform(HHA, params, istrain=self.opt.isTrain, option=2) return {'image':img_tensor_tranformed, 'depth':depth_tensor_tranformed, 'seg': seg_tensor_tranformed, 'HHA': HHA_tensor_tranformed, 'imgpath': self.paths_dict['segs'][index]}
Example 25
Project: FRETBursts Author: tritemio File: spcreader.py License: GNU General Public License v2.0 | 5 votes |
def load_spc(fname): """Load data from Becker&Hickl SPC files. Returns: 3 numpy arrays: timestamps, detector, nanotime """ spc_dtype = np.dtype([('field0', '<u2'), ('b', '<u1'), ('c', '<u1'), ('a', '<u2')]) data = np.fromfile(fname, dtype=spc_dtype) nanotime = 4095 - np.bitwise_and(data['field0'], 0x0FFF) detector = data['c'] # Build the macrotime (timestamps) using in-place operation for efficiency timestamps = data['b'].astype('int64') np.left_shift(timestamps, 16, out=timestamps) timestamps += data['a'] # extract the 13-th bit from data['field0'] overflow = np.bitwise_and(np.right_shift(data['field0'], 13), 1) overflow = np.cumsum(overflow, dtype='int64') # Add the overflow bits timestamps += np.left_shift(overflow, 24) return timestamps, detector, nanotime
Example 26
Project: training_results_v0.6 Author: mlperf File: test_topi_broadcast.py License: Apache License 2.0 | 5 votes |
def test_shift(): # explicit specify the output type verify_broadcast_binary_ele( (2, 1, 2), None, topi.right_shift, np.right_shift, dtype="int32", rhs_min=0, rhs_max=32) verify_broadcast_binary_ele( (1, 2, 2), (2,), topi.left_shift, np.left_shift, dtype="int32", rhs_min=0, rhs_max=32) verify_broadcast_binary_ele( (1, 2, 2), (2,), topi.left_shift, np.left_shift, dtype="int8", rhs_min=0, rhs_max=32)
Example 27
Project: mmcv Author: open-mmlab File: photometric.py License: Apache License 2.0 | 5 votes |
def posterize(img, bits): """Posterize an image (reduce the number of bits for each color channel) Args: img (ndarray): Image to be posterized. bits (int): Number of bits (1 to 8) to use for posterizing. Returns: ndarray: The posterized image. """ shift = 8 - bits img = np.left_shift(np.right_shift(img, shift), shift) return img
Example 28
Project: tierpsy-tracker Author: ver228 File: readDatFiles.py License: MIT License | 5 votes |
def __init__(self, dirName): self.fid = dirName if not os.path.exists(self.fid): print('Error: Directory (%s) does not exist.' % self.fid) exit() self.files = glob.glob(os.path.join(self.fid, '*.dat')) # TODO: figure out how to really do this. This file order works half of the time # get the order of the frames from the file name. file_num_str = [os.path.split(x)[1].partition('spool')[ 0] for x in self.files] # first we assume that the filename contains the frame number 00001, # 00002, 00003 self.dat_order = sorted([int(x) for x in file_num_str]) # check in the indexes in the file order are really continuous. The # ordered index should go 1, 2, 3, 4 is_continous = all(np.diff(self.dat_order) == 1) if not is_continous: # the file name can contain the image number as an inverted string, # e.g. 6100000 -> 0000016 self.dat_order = sorted([int(x[::-1]) for x in file_num_str]) # check again in the indexes in the file order are really # continuous. This will throw and error if it is not the case assert all(np.diff(self.dat_order) == 1) # It seems that the last 40 bytes of each file are the header (it # contains zeros and the size of the image 2080*2156) bin_dat = np.fromfile(self.files[0], np.uint8) header = bin_dat[-40:].astype(np.uint16) header = np.left_shift(header[1::2], 8) + header[0::2] im_size = header[14:16] self.height = im_size[1] self.width = im_size[0] self.dtype = np.uint16 self.num_frames = len(self.dat_order) # initialize pointer for frames self.curr_frame = -1
Example 29
Project: tierpsy-tracker Author: ver228 File: readDatFiles.py License: MIT License | 5 votes |
def read(self): self.curr_frame += 1 if self.curr_frame < self.num_frames: fname = self.files[self.dat_order[self.curr_frame]] # is this indexing correct, or do we need to shift down by one? bin_dat = np.fromfile(fname, np.uint8) # every 3 bytes will correspond two pixel levels. D1 = bin_dat[:-40:3] D2 = bin_dat[1:-40:3] D3 = bin_dat[2:-40:3] # the image format is mono 12 packed (see web) # the first and third bytes represent the higher bits of the pixel intensity # while the second byte is divided into the lower bits. D1s = np.left_shift(D1.astype(np.uint16), 4) + \ np.bitwise_and(D2, 15) D3s = np.left_shift(D3.astype(np.uint16), 4) + \ np.right_shift(D2, 4) # the pixels seemed to be organized in this order image_decoded = np.zeros((self.height, self.width), np.uint16) image_decoded[::-1, -2::-2] = D3s.reshape((self.height, -1)) image_decoded[::-1, ::-2] = D1s.reshape((self.height, -1)) return (1, image_decoded) else: return (0, [], [], [])
Example 30
Project: qupulse Author: qutech File: seqc.py License: MIT License | 5 votes |
def to_csv_compatible_table(self): """The integer values in that file should be 18-bit unsigned integers with the two least significant bits being the markers. The values are mapped to 0 => -FS, 262143 => +FS, with FS equal to the full scale. >>> np.savetxt(waveform_dir, binary_waveform.to_csv_compatible_table(), fmt='%u') """ table = np.zeros((len(self), 2), dtype=np.uint32) table[:, 0] = self.ch1 table[:, 1] = self.ch2 np.left_shift(table, 2, out=table) table[:, 0] += self.markers_ch1 table[:, 1] += self.markers_ch2 return table