Python numpy.power() Examples
The following are 30 code examples for showing how to use numpy.power(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: torch-toolbox Author: PistonY File: functional.py License: BSD 3-Clause "New" or "Revised" License | 7 votes |
def class_balanced_weight(beta, samples_per_class): assert 0 <= beta < 1, 'Wrong rang of beta {}'.format(beta) if not isinstance(samples_per_class, np.ndarray): if isinstance(samples_per_class, (list, tuple)): samples_per_class = np.array(samples_per_class) elif torch.is_tensor(samples_per_class): samples_per_class = samples_per_class.numpy() else: raise NotImplementedError( 'Type of samples_per_class should be {}, {} or {} but got {}'.format( (list, tuple), np.ndarray, torch.Tensor, type(samples_per_class))) assert isinstance(samples_per_class, np.ndarray) \ and isinstance(beta, numbers.Number) balanced_matrix = (1 - beta) / (1 - np.power(beta, samples_per_class)) return torch.Tensor(balanced_matrix)
Example 2
Project: LanczosNetwork Author: lrjconan File: data_helper.py License: MIT License | 7 votes |
def normalize_adj(A, is_sym=True, exponent=0.5): """ Normalize adjacency matrix is_sym=True: D^{-1/2} A D^{-1/2} is_sym=False: D^{-1} A """ rowsum = np.array(A.sum(1)) if is_sym: r_inv = np.power(rowsum, -exponent).flatten() else: r_inv = np.power(rowsum, -1.0).flatten() r_inv[np.isinf(r_inv)] = 0. if sp.isspmatrix(A): r_mat_inv = sp.diags(r_inv.squeeze()) else: r_mat_inv = np.diag(r_inv) if is_sym: return r_mat_inv.dot(A).dot(r_mat_inv) else: return r_mat_inv.dot(A)
Example 3
Project: deep-learning-note Author: wdxtub File: 9_anomaly_and_rec.py License: MIT License | 6 votes |
def cost(params, Y, R, num_features): Y = np.matrix(Y) # (1682, 943) R = np.matrix(R) # (1682, 943) num_movies = Y.shape[0] num_users = Y.shape[1] # reshape the parameter array into parameter matrices X = np.matrix(np.reshape(params[:num_movies * num_features], (num_movies, num_features))) # (1682, 10) Theta = np.matrix(np.reshape(params[num_movies * num_features:], (num_users, num_features))) # (943, 10) # initializations J = 0 # compute the cost error = np.multiply((X * Theta.T) - Y, R) # (1682, 943) squared_error = np.power(error, 2) # (1682, 943) J = (1. / 2) * np.sum(squared_error) return J
Example 4
Project: deep-learning-note Author: wdxtub File: 6_bias_variance.py License: MIT License | 6 votes |
def prepare_poly_data(*args, power): """ args: keep feeding in X, Xval, or Xtest will return in the same order """ def prepare(x): # expand feature df = poly_features(x, power=power) # normalization ndarr = normalize_feature(df).as_matrix() # add intercept term return np.insert(ndarr, 0, np.ones(ndarr.shape[0]), axis=1) return [prepare(x) for x in args]
Example 5
Project: GST-Tacotron Author: KinglittleQ File: utils.py License: MIT License | 6 votes |
def spectrogram2wav(mag): '''# Generate wave file from spectrogram''' # transpose mag = mag.T # de-noramlize mag = (np.clip(mag, 0, 1) * hp.max_db) - hp.max_db + hp.ref_db # to amplitude mag = np.power(10.0, mag * 0.05) # wav reconstruction wav = griffin_lim(mag) # de-preemphasis wav = signal.lfilter([1], [1, -hp.preemphasis], wav) # trim wav, _ = librosa.effects.trim(wav) return wav.astype(np.float32)
Example 6
Project: DOTA_models Author: ringringyi File: hyperparams_builder_test.py License: Apache License 2.0 | 6 votes |
def test_return_l2_regularizer_weights(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { weight: 0.42 } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] regularizer = conv_scope_arguments['weights_regularizer'] weights = np.array([1., -1, 4., 2.]) with self.test_session() as sess: result = sess.run(regularizer(tf.constant(weights))) self.assertAllClose(np.power(weights, 2).sum() / 2.0 * 0.42, result)
Example 7
Project: End-to-end-ASR-Pytorch Author: Alexander-H-Liu File: optim.py License: MIT License | 6 votes |
def speech_aug_scheduler(step, s_r, s_i, s_f, peak_lr): # Starting from 0, ramp-up to set LR and converge to 0.01*LR, w/ exp. decay final_lr_ratio = 0.01 exp_decay_lambda = -np.log10(final_lr_ratio)/(s_f-s_i) # Approx. w/ 10-based cur_step = step+1 if cur_step<s_r: # Ramp-up return peak_lr*float(cur_step)/s_r elif cur_step<s_i: # Hold return peak_lr elif cur_step<=s_f: # Decay return peak_lr*np.power(10,-exp_decay_lambda*(cur_step-s_i)) else: # Converge return peak_lr*final_lr_ratio
Example 8
Project: fine-lm Author: akzaidi File: algorithmic.py License: MIT License | 6 votes |
def zipf_distribution(nbr_symbols, alpha): """Helper function: Create a Zipf distribution. Args: nbr_symbols: number of symbols to use in the distribution. alpha: float, Zipf's Law Distribution parameter. Default = 1.5. Usually for modelling natural text distribution is in the range [1.1-1.6]. Returns: distr_map: list of float, Zipf's distribution over nbr_symbols. """ tmp = np.power(np.arange(1, nbr_symbols + 1), -alpha) zeta = np.r_[0.0, np.cumsum(tmp)] return [x / zeta[-1] for x in zeta]
Example 9
Project: object_detector_app Author: datitran File: hyperparams_builder_test.py License: MIT License | 6 votes |
def test_return_l2_regularizer_weights(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { weight: 0.42 } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] regularizer = conv_scope_arguments['weights_regularizer'] weights = np.array([1., -1, 4., 2.]) with self.test_session() as sess: result = sess.run(regularizer(tf.constant(weights))) self.assertAllClose(np.power(weights, 2).sum() / 2.0 * 0.42, result)
Example 10
Project: quadcopter-simulation Author: hbd730 File: trajGen3D.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_poly_cc(n, k, t): """ This is a helper function to get the coeffitient of coefficient for n-th order polynomial with k-th derivative at time t. """ assert (n > 0 and k >= 0), "order and derivative must be positive." cc = np.ones(n) D = np.linspace(0, n-1, n) for i in range(n): for j in range(k): cc[i] = cc[i] * D[i] D[i] = D[i] - 1 if D[i] == -1: D[i] = 0 for i, c in enumerate(cc): cc[i] = c * np.power(t, D[i]) return cc # Minimum Snap Trajectory
Example 11
Project: quadcopter-simulation Author: hbd730 File: test_trajGen3D.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_get_poly_cc_t(self): cc = trajGen3D.get_poly_cc(4, 0, 1) expected = [1, 1, 1, 1] np.testing.assert_array_equal(cc, expected) cc = trajGen3D.get_poly_cc(8, 0, 2) expected = [1, 2, 4, 8, 16, 32, 64, 128] np.testing.assert_array_equal(cc, expected) cc = trajGen3D.get_poly_cc(8, 1, 1) expected = np.linspace(0, 7, 8) np.testing.assert_array_equal(cc, expected) t = 2 cc = trajGen3D.get_poly_cc(8, 1, t) expected = [0, 1, 2*t, 3*np.power(t,2), 4*np.power(t,3), 5*np.power(t,4), 6*np.power(t,5), 7*np.power(t,6)] np.testing.assert_array_equal(cc, expected)
Example 12
Project: pyscf Author: pyscf File: tdfields.py License: Apache License 2.0 | 6 votes |
def impulseamp(self,tnow): """ Apply impulsive wave to the system Args: tnow: float Current time in A.U. Returns: amp: float Amplitude of field at time ison: bool On whether field is on or off """ amp = self.fieldamp*np.sin(self.fieldfreq*tnow)*\ (1.0/math.sqrt(2.0*3.1415*self.tau*self.tau))*\ np.exp(-1.0*np.power(tnow-self.tOn,2.0)/(2.0*self.tau*self.tau)) ison = False if (np.abs(amp)>self.field_tol): ison = True return amp,ison
Example 13
Project: ConvLab Author: ConvLab File: Transformer.py License: MIT License | 6 votes |
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super(AverageHeadAttention, self).__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k) self.w_ks = nn.Linear(d_model, n_head * d_k) self.w_vs = nn.Linear(d_model, n_head * d_v) nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v))) self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5)) self.layer_norm = nn.LayerNorm(d_model) self.fc = nn.Linear(d_v, d_model) nn.init.xavier_normal_(self.fc.weight) self.dropout = nn.Dropout(dropout)
Example 14
Project: ConvLab Author: ConvLab File: Transformer.py License: MIT License | 6 votes |
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super(MultiHeadAttention, self).__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k) self.w_ks = nn.Linear(d_model, n_head * d_k) self.w_vs = nn.Linear(d_model, n_head * d_v) nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v))) self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5)) self.layer_norm = nn.LayerNorm(d_model) self.fc = nn.Linear(n_head * d_v, d_model) nn.init.xavier_normal_(self.fc.weight) self.dropout = nn.Dropout(dropout)
Example 15
Project: ConvLab Author: ConvLab File: Transformer.py License: MIT License | 6 votes |
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None): ''' Sinusoid position encoding table ''' def cal_angle(position, hid_idx): return position / np.power(10000, 2 * (hid_idx // 2) / d_hid) def get_posi_angle_vec(position): return [cal_angle(position, hid_j) for hid_j in range(d_hid)] sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 if padding_idx is not None: # zero vector for padding dimension sinusoid_table[padding_idx] = 0. return torch.FloatTensor(sinusoid_table)
Example 16
Project: svviz Author: svviz File: kde.py License: MIT License | 5 votes |
def scotts_factor(self): return power(self.n, -1./(self.d+4))
Example 17
Project: Traffic_sign_detection_YOLO Author: AmeyaWagh File: im_transform.py License: MIT License | 5 votes |
def imcv2_recolor(im, a = .1): t = [np.random.uniform()] t += [np.random.uniform()] t += [np.random.uniform()] t = np.array(t) * 2. - 1. # random amplify each channel im = im * (1 + t * a) mx = 255. * (1 + a) up = np.random.uniform() * 2 - 1 # im = np.power(im/mx, 1. + up * .5) im = cv2.pow(im/mx, 1. + up * .5) return np.array(im * 255., np.uint8)
Example 18
Project: dc_tts Author: Kyubyong File: utils.py License: Apache License 2.0 | 5 votes |
def spectrogram2wav(mag): '''# Generate wave file from linear magnitude spectrogram Args: mag: A numpy array of (T, 1+n_fft//2) Returns: wav: A 1-D numpy array. ''' # transpose mag = mag.T # de-noramlize mag = (np.clip(mag, 0, 1) * hp.max_db) - hp.max_db + hp.ref_db # to amplitude mag = np.power(10.0, mag * 0.05) # wav reconstruction wav = griffin_lim(mag**hp.power) # de-preemphasis wav = signal.lfilter([1], [1, -hp.preemphasis], wav) # trim wav, _ = librosa.effects.trim(wav) return wav.astype(np.float32)
Example 19
Project: mmdetection Author: open-mmlab File: regnet.py License: Apache License 2.0 | 5 votes |
def generate_regnet(self, initial_width, width_slope, width_parameter, depth, divisor=8): """Generates per block width from RegNet parameters. Args: initial_width ([int]): Initial width of the backbone width_slope ([float]): Slope of the quantized linear function width_parameter ([int]): Parameter used to quantize the width. depth ([int]): Depth of the backbone. divisor (int, optional): The divisor of channels. Defaults to 8. Returns: list, int: return a list of widths of each stage and the number of stages """ assert width_slope >= 0 assert initial_width > 0 assert width_parameter > 1 assert initial_width % divisor == 0 widths_cont = np.arange(depth) * width_slope + initial_width ks = np.round( np.log(widths_cont / initial_width) / np.log(width_parameter)) widths = initial_width * np.power(width_parameter, ks) widths = np.round(np.divide(widths, divisor)) * divisor num_stages = len(np.unique(widths)) widths, widths_cont = widths.astype(int).tolist(), widths_cont.tolist() return widths, num_stages
Example 20
Project: Griffin_lim Author: candlewill File: audio.py License: MIT License | 5 votes |
def inv_spectrogram(spectrogram): S = _db_to_amp(_denormalize(spectrogram) + hparams.ref_level_db) # Convert back to linear return _inv_preemphasis(_griffin_lim(S ** hparams.power)) # Reconstruct phase
Example 21
Project: Griffin_lim Author: candlewill File: audio.py License: MIT License | 5 votes |
def _db_to_amp(x): return np.power(10.0, x * 0.05)
Example 22
Project: models Author: kipoi File: dataloader.py License: MIT License | 5 votes |
def sign_log_func_inverse(x): return np.sign(x) * (np.power(10, np.abs(x)) - 1)
Example 23
Project: deep-learning-note Author: wdxtub File: 2_linear_regression.py License: MIT License | 5 votes |
def computeCost(X, y, theta): inner = np.power((X * theta.T - y), 2) return np.sum(inner) / (2 * len(X))
Example 24
Project: deep-learning-note Author: wdxtub File: 9_anomaly_and_rec.py License: MIT License | 5 votes |
def cost0(params, Y, R, num_features): Y = np.matrix(Y) # (1682, 943) R = np.matrix(R) # (1682, 943) num_movies = Y.shape[0] num_users = Y.shape[1] # reshape the parameter array into parameter matrices X = np.matrix(np.reshape(params[:num_movies * num_features], (num_movies, num_features))) # (1682, 10) Theta = np.matrix(np.reshape(params[num_movies * num_features:], (num_users, num_features))) # (943, 10) # initializations J = 0 X_grad = np.zeros(X.shape) # (1682, 10) Theta_grad = np.zeros(Theta.shape) # (943, 10) # compute the cost error = np.multiply((X * Theta.T) - Y, R) # (1682, 943) squared_error = np.power(error, 2) # (1682, 943) J = (1. / 2) * np.sum(squared_error) # calculate the gradients X_grad = error * Theta Theta_grad = error.T * X # unravel the gradient matrices into a single array grad = np.concatenate((np.ravel(X_grad), np.ravel(Theta_grad))) return J, grad
Example 25
Project: deep-learning-note Author: wdxtub File: 9_anomaly_and_rec.py License: MIT License | 5 votes |
def cost1(params, Y, R, num_features, learning_rate): Y = np.matrix(Y) # (1682, 943) R = np.matrix(R) # (1682, 943) num_movies = Y.shape[0] num_users = Y.shape[1] # reshape the parameter array into parameter matrices X = np.matrix(np.reshape(params[:num_movies * num_features], (num_movies, num_features))) # (1682, 10) Theta = np.matrix(np.reshape(params[num_movies * num_features:], (num_users, num_features))) # (943, 10) # initializations J = 0 X_grad = np.zeros(X.shape) # (1682, 10) Theta_grad = np.zeros(Theta.shape) # (943, 10) # compute the cost error = np.multiply((X * Theta.T) - Y, R) # (1682, 943) squared_error = np.power(error, 2) # (1682, 943) J = (1. / 2) * np.sum(squared_error) # add the cost regularization J = J + ((learning_rate / 2) * np.sum(np.power(Theta, 2))) J = J + ((learning_rate / 2) * np.sum(np.power(X, 2))) # calculate the gradients with regularization X_grad = (error * Theta) + (learning_rate * X) Theta_grad = (error.T * X) + (learning_rate * Theta) # unravel the gradient matrices into a single array grad = np.concatenate((np.ravel(X_grad), np.ravel(Theta_grad))) return J, grad
Example 26
Project: deep-learning-note Author: wdxtub File: 3_logistic_regression.py License: MIT License | 5 votes |
def costReg(theta, X, y, learningRate): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T))) reg = (learningRate / (2 * len(X))) * np.sum(np.power(theta[:,1:theta.shape[1]], 2)) return np.sum(first - second) / len(X) + reg
Example 27
Project: deep-learning-note Author: wdxtub File: 6_bias_variance.py License: MIT License | 5 votes |
def poly_features(x, power, as_ndarray=False): data = {'f{}'.format(i): np.power(x, i) for i in range(1, power + 1)} df = pd.DataFrame(data) return df.as_matrix() if as_ndarray else df
Example 28
Project: numpynet Author: uptake File: common.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def _tanh(x, deriv=False): """ Hyperbolic tangent activation """ if deriv: return 1.0 - np.power(np.tanh(x), 2) return np.tanh(x)
Example 29
Project: numpynet Author: uptake File: common.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def _tanhpos(x, deriv=False): """ Positive hyperbolic tangent activation """ if deriv: return (1.0 - np.power(np.tanh(x), 2)) / 2.0 return (np.tanh(x) + 1.0) / 2.0
Example 30
Project: DOTA_models Author: ringringyi File: swiftshader_renderer.py License: Apache License 2.0 | 5 votes |
def __init__(self, obj_file, material_file=None, load_materials=True, name_prefix='', name_suffix=''): if material_file is not None: logging.error('Ignoring material file input, reading them off obj file.') load_flags = self.get_pyassimp_load_options() scene = assimp.load(obj_file, processing=load_flags) filter_ind = self._filter_triangles(scene.meshes) self.meshes = [scene.meshes[i] for i in filter_ind] for m in self.meshes: m.name = name_prefix + m.name + name_suffix dir_name = os.path.dirname(obj_file) # Load materials materials = None if load_materials: materials = [] for m in self.meshes: file_name = os.path.join(dir_name, m.material.properties[('file', 1)]) assert(os.path.exists(file_name)), \ 'Texture file {:s} foes not exist.'.format(file_name) img_rgb = cv2.imread(file_name)[::-1,:,::-1] if img_rgb.shape[0] != img_rgb.shape[1]: logging.warn('Texture image not square.') sz = np.maximum(img_rgb.shape[0], img_rgb.shape[1]) sz = int(np.power(2., np.ceil(np.log2(sz)))) img_rgb = cv2.resize(img_rgb, (sz,sz), interpolation=cv2.INTER_LINEAR) else: sz = img_rgb.shape[0] sz_ = int(np.power(2., np.ceil(np.log2(sz)))) if sz != sz_: logging.warn('Texture image not square of power of 2 size. ' + 'Changing size from %d to %d.', sz, sz_) sz = sz_ img_rgb = cv2.resize(img_rgb, (sz,sz), interpolation=cv2.INTER_LINEAR) materials.append(img_rgb) self.scene = scene self.materials = materials