Python numpy.spacing() Examples
The following are 30 code examples for showing how to use numpy.spacing(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: Dispersion-based-Clustering Author: gddingcs File: kissme.py License: MIT License | 6 votes |
def validate_cov_matrix(M): M = (M + M.T) * 0.5 k = 0 I = np.eye(M.shape[0]) while True: try: _ = np.linalg.cholesky(M) break except np.linalg.LinAlgError: # Find the nearest positive definite matrix for M. Modified from # http://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd # Might take several minutes k += 1 w, v = np.linalg.eig(M) min_eig = v.min() M += (-min_eig * k * k + np.spacing(min_eig)) * I return M
Example 2
Project: Semantic-Aware-Scene-Recognition Author: vpulab File: utils.py License: MIT License | 6 votes |
def MeanPixelAccuracy(pred, label): """ Function to compute the mean pixel accuracy for semantic segmentation between mini-batch tensors :param pred: Tensor of predictions :param label: Tensor of ground-truth :return: Mean pixel accuracy for all the mini-bath """ # Convert tensors to numpy arrays imPred = np.asarray(torch.squeeze(pred)) imLab = np.asarray(torch.squeeze(label)) # Create empty numpy arrays pixel_accuracy = np.empty(imLab.shape[0]) pixel_correct = np.empty(imLab.shape[0]) pixel_labeled = np.empty(imLab.shape[0]) # Compute pixel accuracy for each pair of images in the batch for i in range(imLab.shape[0]): pixel_accuracy[i], pixel_correct[i], pixel_labeled[i] = pixelAccuracy(imPred[i], imLab[i]) # Compute the final accuracy for the batch acc = 100.0 * np.sum(pixel_correct) / (np.spacing(1) + np.sum(pixel_labeled)) return acc
Example 3
Project: Semantic-Aware-Scene-Recognition Author: vpulab File: utils.py License: MIT License | 6 votes |
def semanticIoU(pred, label): """ Computes the mean Intersection over Union for all the classes between two mini-batch tensors of semantic segmentation :param pred: Tensor of predictions :param label: Tensor of ground-truth :return: Mean semantic intersection over Union for all the classes """ imPred = np.asarray(torch.squeeze(pred)) imLab = np.asarray(torch.squeeze(label)) area_intersection = [] area_union = [] for i in range(imLab.shape[0]): intersection, union = intersectionAndUnion(imPred[i], imLab[i]) area_intersection.append(intersection) area_union.append(union) IoU = 1.0 * np.sum(area_intersection, axis=0) / np.sum(np.spacing(1)+area_union, axis=0) return np.mean(IoU)
Example 4
Project: PoseWarper Author: facebookresearch File: nms.py License: Apache License 2.0 | 6 votes |
def oks_iou(g, d, a_g, a_d, sigmas=None, in_vis_thre=None): if not isinstance(sigmas, np.ndarray): sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0 vars = (sigmas * 2) ** 2 xg = g[0::3] yg = g[1::3] vg = g[2::3] ious = np.zeros((d.shape[0])) for n_d in range(0, d.shape[0]): xd = d[n_d, 0::3] yd = d[n_d, 1::3] vd = d[n_d, 2::3] dx = xd - xg dy = yd - yg e = (dx ** 2 + dy ** 2) / vars / ((a_g + a_d[n_d]) / 2 + np.spacing(1)) / 2 if in_vis_thre is not None: ind = list(vg > in_vis_thre) and list(vd > in_vis_thre) e = e[ind] ious[n_d] = np.sum(np.exp(-e)) / e.shape[0] if e.shape[0] != 0 else 0.0 return ious
Example 5
Project: recruit Author: Frank-qlu File: test_half.py License: Apache License 2.0 | 6 votes |
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 6
Project: SegmenTron Author: LikeLy-Journey File: score.py License: Apache License 2.0 | 6 votes |
def intersectionAndUnion(imPred, imLab, numClass): """ This function takes the prediction and label of a single image, returns intersection and union areas for each class To compute over many images do: for i in range(Nimages): (area_intersection[:,i], area_union[:,i]) = intersectionAndUnion(imPred[i], imLab[i]) IoU = 1.0 * np.sum(area_intersection, axis=1) / np.sum(np.spacing(1)+area_union, axis=1) """ # Remove classes from unlabeled pixels in gt image. # We should not penalize detections in unlabeled portions of the image. imPred = imPred * (imLab >= 0) # Compute area intersection: intersection = imPred * (imPred == imLab) (area_intersection, _) = np.histogram(intersection, bins=numClass, range=(1, numClass)) # Compute area union: (area_pred, _) = np.histogram(imPred, bins=numClass, range=(1, numClass)) (area_lab, _) = np.histogram(imLab, bins=numClass, range=(1, numClass)) area_union = area_pred + area_lab - area_intersection return (area_intersection, area_union)
Example 7
Project: dgl Author: dmlc File: coarsening.py License: Apache License 2.0 | 6 votes |
def laplacian(W, normalized=True): """Return graph Laplacian""" # Degree matrix. d = W.sum(axis=0) # Laplacian matrix. if not normalized: D = scipy.sparse.diags(d.A.squeeze(), 0) L = D - W else: d += np.spacing(np.array(0, W.dtype)) d = 1 / np.sqrt(d) D = scipy.sparse.diags(d.A.squeeze(), 0) I = scipy.sparse.identity(d.size, dtype=W.dtype) L = I - D * W * D assert np.abs(L - L.T).mean() < 1e-9 assert type(L) is scipy.sparse.csr.csr_matrix return L
Example 8
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_half.py License: MIT License | 6 votes |
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 9
Project: vnpy_crypto Author: birforce File: test_half.py License: MIT License | 6 votes |
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 10
Project: KL-Loss Author: yihui-he File: keypoints.py License: Apache License 2.0 | 6 votes |
def compute_oks(src_keypoints, src_roi, dst_keypoints, dst_roi): """Compute OKS for predicted keypoints wrt gt_keypoints. src_keypoints: 4xK src_roi: 4x1 dst_keypoints: Nx4xK dst_roi: Nx4 """ sigmas = np.array([ .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0 vars = (sigmas * 2)**2 # area src_area = (src_roi[2] - src_roi[0] + 1) * (src_roi[3] - src_roi[1] + 1) # measure the per-keypoint distance if keypoints visible dx = dst_keypoints[:, 0, :] - src_keypoints[0, :] dy = dst_keypoints[:, 1, :] - src_keypoints[1, :] e = (dx**2 + dy**2) / vars / (src_area + np.spacing(1)) / 2 e = np.sum(np.exp(-e), axis=1) / e.shape[1] return e
Example 11
Project: gluon-cv Author: dmlc File: segmentation.py License: Apache License 2.0 | 6 votes |
def intersectionAndUnion(imPred, imLab, numClass): """ This function takes the prediction and label of a single image, returns intersection and union areas for each class To compute over many images do: for i in range(Nimages): (area_intersection[:,i], area_union[:,i]) = intersectionAndUnion(imPred[i], imLab[i]) IoU = 1.0 * np.sum(area_intersection, axis=1) / np.sum(np.spacing(1)+area_union, axis=1) """ # Remove classes from unlabeled pixels in gt image. # We should not penalize detections in unlabeled portions of the image. imPred = imPred * (imLab > 0) # Compute area intersection: intersection = imPred * (imPred == imLab) (area_intersection, _) = np.histogram(intersection, bins=numClass, range=(1, numClass)) # Compute area union: (area_pred, _) = np.histogram(imPred, bins=numClass, range=(1, numClass)) (area_lab, _) = np.histogram(imLab, bins=numClass, range=(1, numClass)) area_union = area_pred + area_lab - area_intersection return (area_intersection, area_union)
Example 12
Project: Computable Author: ktraunmueller File: test_half.py License: MIT License | 6 votes |
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 13
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_half.py License: MIT License | 6 votes |
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 14
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: data.py License: MIT License | 6 votes |
def _yeo_johnson_inverse_transform(self, x, lmbda): """Return inverse-transformed input x following Yeo-Johnson inverse transform with parameter lambda. """ x_inv = np.zeros_like(x) pos = x >= 0 # when x >= 0 if abs(lmbda) < np.spacing(1.): x_inv[pos] = np.exp(x[pos]) - 1 else: # lmbda != 0 x_inv[pos] = np.power(x[pos] * lmbda + 1, 1 / lmbda) - 1 # when x < 0 if abs(lmbda - 2) > np.spacing(1.): x_inv[~pos] = 1 - np.power(-(2 - lmbda) * x[~pos] + 1, 1 / (2 - lmbda)) else: # lmbda == 2 x_inv[~pos] = 1 - np.exp(-x[~pos]) return x_inv
Example 15
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: data.py License: MIT License | 6 votes |
def _yeo_johnson_transform(self, x, lmbda): """Return transformed input x following Yeo-Johnson transform with parameter lambda. """ out = np.zeros_like(x) pos = x >= 0 # binary mask # when x >= 0 if abs(lmbda) < np.spacing(1.): out[pos] = np.log1p(x[pos]) else: # lmbda != 0 out[pos] = (np.power(x[pos] + 1, lmbda) - 1) / lmbda # when x < 0 if abs(lmbda - 2) > np.spacing(1.): out[~pos] = -(np.power(-x[~pos] + 1, 2 - lmbda) - 1) / (2 - lmbda) else: # lmbda == 2 out[~pos] = -np.log1p(-x[~pos]) return out
Example 16
Project: awesome-semantic-segmentation-pytorch Author: Tramac File: score.py License: Apache License 2.0 | 6 votes |
def intersectionAndUnion(imPred, imLab, numClass): """ This function takes the prediction and label of a single image, returns intersection and union areas for each class To compute over many images do: for i in range(Nimages): (area_intersection[:,i], area_union[:,i]) = intersectionAndUnion(imPred[i], imLab[i]) IoU = 1.0 * np.sum(area_intersection, axis=1) / np.sum(np.spacing(1)+area_union, axis=1) """ # Remove classes from unlabeled pixels in gt image. # We should not penalize detections in unlabeled portions of the image. imPred = imPred * (imLab >= 0) # Compute area intersection: intersection = imPred * (imPred == imLab) (area_intersection, _) = np.histogram(intersection, bins=numClass, range=(1, numClass)) # Compute area union: (area_pred, _) = np.histogram(imPred, bins=numClass, range=(1, numClass)) (area_lab, _) = np.histogram(imLab, bins=numClass, range=(1, numClass)) area_union = area_pred + area_lab - area_intersection return (area_intersection, area_union)
Example 17
Project: Detectron.pytorch Author: roytseng-tw File: keypoints.py License: MIT License | 6 votes |
def compute_oks(src_keypoints, src_roi, dst_keypoints, dst_roi): """Compute OKS for predicted keypoints wrt gt_keypoints. src_keypoints: 4xK src_roi: 4x1 dst_keypoints: Nx4xK dst_roi: Nx4 """ sigmas = np.array([ .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0 vars = (sigmas * 2)**2 # area src_area = (src_roi[2] - src_roi[0] + 1) * (src_roi[3] - src_roi[1] + 1) # measure the per-keypoint distance if keypoints visible dx = dst_keypoints[:, 0, :] - src_keypoints[0, :] dy = dst_keypoints[:, 1, :] - src_keypoints[1, :] e = (dx**2 + dy**2) / vars / (src_area + np.spacing(1)) / 2 e = np.sum(np.exp(-e), axis=1) / e.shape[1] return e
Example 18
Project: gconvRNN Author: youngjoo-epfl File: graph.py License: MIT License | 6 votes |
def laplacian(W, normalized=True): """Return the Laplacian of the weigth matrix.""" # Degree matrix. d = W.sum(axis=0) # Laplacian matrix. if not normalized: D = scipy.sparse.diags(d.A.squeeze(), 0) L = D - W else: d += np.spacing(np.array(0, W.dtype)) d = 1 / np.sqrt(d) D = scipy.sparse.diags(d.A.squeeze(), 0) I = scipy.sparse.identity(d.size, dtype=W.dtype) L = I - D * W * D # assert np.abs(L - L.T).mean() < 1e-9 assert type(L) is scipy.sparse.csr.csr_matrix return L
Example 19
Project: harold Author: ilayn File: _classes.py License: MIT License | 6 votes |
def __rtruediv__(self, other): """ Support for division .../G """ if not np.equal(*self._shape): raise ValueError('Nonsquare systems cannot be inverted') a, b, c, d = self._a, self._b, self._c, self._d if np.any(svdvals(d) < np.spacing(1.)): raise LinAlgError('The feedthrough term of the system is not' ' invertible.') else: # A-BD^{-1}C | BD^{-1} # -----------|-------- # -D^{-1}C | D^{-1} if self._isgain: ai, bi, ci = None, None, None else: ai = a - b @ solve(d, c) bi = (solve(d.T, b.T)).T ci = -solve(d, c) di = inv(d) return other @ State(ai, bi, ci, di, dt=self._dt)
Example 20
Project: EXOSIMS Author: dsavransky File: keplerSTM.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def contFrac(self, x, a = 5., b = 0., c = 5./2.): #initialize k = 1 - 2*(a-b) l = 2*(c-1) d = 4*c*(c-1) n = 4*b*(c-a) A = np.ones(x.size) B = np.ones(x.size) G = np.ones(x.size) Gprev = np.zeros(x.size)+2 counter = 0 #loop until convergence of continued fraction while (np.max(np.abs(G-Gprev)) > self.epsmult*np.max(np.spacing(G))) and (counter < 1000): k = -k l = l+2. d = d+4.*l n = n+(1.+k)*l A = d/(d - n*A*x) B = (A-1.)*B Gprev = G G = G + B counter += 1 if (counter == 1000): raise ValueError('Failed to converge on G, most likely due to divergence in continued fractions.') return G
Example 21
Project: EXOSIMS Author: dsavransky File: keplerSTM_indprop.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def calcSTM(self,dt,j): #allocate u = 0 deltaU = 0 t = 0 counter = 0 #For elliptic orbits, calculate period effects if self.beta[j] >0: P = 2*np.pi*self.mu[j]*self.beta[j]**(-3./2.) n = np.floor((dt + P/2 - 2*self.nu0[j]/self.beta[j])/P) deltaU = 2*np.pi*n*self.beta[j]**(-5./2.) #loop until convergence of the time array to the time step while (np.max(np.abs(t-dt)) > self.epsmult*np.spacing(dt)) and (counter < 1000): q = self.beta[j]*u**2./(1+self.beta[j]*u**2.) U0w2 = 1. - 2.*q U1w2 = 2.*(1.-q)*u temp = self.contFrac(q) U = 16./15.*U1w2**5.*temp + deltaU U0 = 2.*U0w2**2.-1. U1 = 2.*U0w2*U1w2 U2 = 2.*U1w2**2. U3 = self.beta[j]*U + U1*U2/3. r = self.r0norm[j]*U0 + self.nu0[j]*U1 + self.mu[j]*U2 t = self.r0norm[j]*U1 + self.nu0[j]*U2 + self.mu[j]*U3 u = u - (t-dt)/(4.*(1.-q)*r) counter += 1 if (counter == 1000): raise ValueError('Failed to converge on t: %e/%e'%(np.max(np.abs(t-dt)), self.epsmult*np.spacing(dt))) #Kepler solution f = 1 - self.mu[j]/self.r0norm[j]*U2 g = self.r0norm[j]*U1 + self.nu0[j]*U2 F = -self.mu[j]*U1/r/self.r0norm[j] G = 1 - self.mu[j]/r*U2 Phi = np.vstack((np.hstack((np.eye(3)*f, np.eye(3)*g)),np.hstack((np.eye(3)*F, np.eye(3)*G)))) return Phi
Example 22
Project: EXOSIMS Author: dsavransky File: keplerSTM_indprop.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def contFrac(self, x, a = 5., b = 0., c = 5./2.): #initialize k = 1 - 2*(a-b) l = 2*(c-1) d = 4*c*(c-1) n = 4*b*(c-a) A = np.ones(x.size) B = np.ones(x.size) G = np.ones(x.size) Gprev = np.zeros(x.size)+2 counter = 0 #loop until convergence of continued fraction while (np.max(np.abs(G-Gprev)) > self.epsmult*np.max(np.spacing(G))) and (counter < 1000): k = -k l = l+2. d = d+4.*l n = n+(1.+k)*l A = d/(d - n*A*x) B = (A-1.)*B Gprev = G G = G + B counter += 1 if (counter == 1000): raise ValueError('Failed to converge on G, most likely due to divergence in continued fractions.') return G
Example 23
Project: recruit Author: Frank-qlu File: test_half.py License: Apache License 2.0 | 5 votes |
def test_nans_infs(self): with np.errstate(all='ignore'): # Check some of the ufuncs assert_equal(np.isnan(self.all_f16), np.isnan(self.all_f32)) assert_equal(np.isinf(self.all_f16), np.isinf(self.all_f32)) assert_equal(np.isfinite(self.all_f16), np.isfinite(self.all_f32)) assert_equal(np.signbit(self.all_f16), np.signbit(self.all_f32)) assert_equal(np.spacing(float16(65504)), np.inf) # Check comparisons of all values with NaN nan = float16(np.nan) assert_(not (self.all_f16 == nan).any()) assert_(not (nan == self.all_f16).any()) assert_((self.all_f16 != nan).all()) assert_((nan != self.all_f16).all()) assert_(not (self.all_f16 < nan).any()) assert_(not (nan < self.all_f16).any()) assert_(not (self.all_f16 <= nan).any()) assert_(not (nan <= self.all_f16).any()) assert_(not (self.all_f16 > nan).any()) assert_(not (nan > self.all_f16).any()) assert_(not (self.all_f16 >= nan).any()) assert_(not (nan >= self.all_f16).any())
Example 24
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def _test_spacing(t): one = t(1) eps = np.finfo(t).eps nan = t(np.nan) inf = t(np.inf) with np.errstate(invalid='ignore'): assert_(np.spacing(one) == eps) assert_(np.isnan(np.spacing(nan))) assert_(np.isnan(np.spacing(inf))) assert_(np.isnan(np.spacing(-inf))) assert_(np.spacing(t(1e30)) != 0)
Example 25
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def test_nextafter_vs_spacing(): # XXX: spacing does not handle long double yet for t in [np.float32, np.float64]: for _f in [1, 1e-5, 1000]: f = t(_f) f1 = t(_f + 1) assert_(np.nextafter(f, f1) - f == np.spacing(f))
Example 26
Project: Hurst-exponent-R-S-analysis- Author: RyanWangZf File: Hurst.py License: MIT License | 5 votes |
def hurst(ts): ts = list(ts) N = len(ts) if N < 20: raise ValueError("Time series is too short! input series ought to have at least 20 samples!") max_k = int(np.floor(N/2)) R_S_dict = [] for k in range(10,max_k+1): R,S = 0,0 # split ts into subsets subset_list = [ts[i:i+k] for i in range(0,N,k)] if np.mod(N,k)>0: subset_list.pop() #tail = subset_list.pop() #subset_list[-1].extend(tail) # calc mean of every subset mean_list=[np.mean(x) for x in subset_list] for i in range(len(subset_list)): cumsum_list = pd.Series(subset_list[i]-mean_list[i]).cumsum() R += max(cumsum_list)-min(cumsum_list) S += np.std(subset_list[i]) R_S_dict.append({"R":R/len(subset_list),"S":S/len(subset_list),"n":k}) log_R_S = [] log_n = [] print(R_S_dict) for i in range(len(R_S_dict)): R_S = (R_S_dict[i]["R"]+np.spacing(1)) / (R_S_dict[i]["S"]+np.spacing(1)) log_R_S.append(np.log(R_S)) log_n.append(np.log(R_S_dict[i]["n"])) Hurst_exponent = np.polyfit(log_n,log_R_S,1)[0] return Hurst_exponent
Example 27
Project: SegmenTron Author: LikeLy-Journey File: score.py License: Apache License 2.0 | 5 votes |
def get(self, return_category_iou=False): """Gets the current evaluation result. Returns ------- metrics : tuple of float pixAcc and mIoU """ pixAcc = 1.0 * self.total_correct / (2.220446049250313e-16 + self.total_label) # remove np.spacing(1) IoU = 1.0 * self.total_inter / (2.220446049250313e-16 + self.total_union) mIoU = IoU.mean().item() if return_category_iou: return pixAcc, mIoU, IoU.cpu().numpy() return pixAcc, mIoU
Example 28
Project: SegmenTron Author: LikeLy-Journey File: score.py License: Apache License 2.0 | 5 votes |
def pixelAccuracy(imPred, imLab): """ This function takes the prediction and label of a single image, returns pixel-wise accuracy To compute over many images do: for i = range(Nimages): (pixel_accuracy[i], pixel_correct[i], pixel_labeled[i]) = \ pixelAccuracy(imPred[i], imLab[i]) mean_pixel_accuracy = 1.0 * np.sum(pixel_correct) / (np.spacing(1) + np.sum(pixel_labeled)) """ # Remove classes from unlabeled pixels in gt image. # We should not penalize detections in unlabeled portions of the image. pixel_labeled = np.sum(imLab >= 0) pixel_correct = np.sum((imPred == imLab) * (imLab >= 0)) pixel_accuracy = 1.0 * pixel_correct / pixel_labeled return (pixel_accuracy, pixel_correct, pixel_labeled)
Example 29
Project: mars Author: mars-project File: spacing.py License: Apache License 2.0 | 5 votes |
def spacing(x, out=None, where=None, **kwargs): """ Return the distance between x and the nearest adjacent number. Parameters ---------- x : array_like Values to find the spacing of. out : Tensor, None, or tuple of Tensor and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated tensor is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs Returns ------- out : array_like The spacing of values of `x1`. Notes ----- It can be considered as a generalization of EPS: ``spacing(mt.float64(1)) == mt.finfo(mt.float64).eps``, and there should not be any representable number between ``x + spacing(x)`` and x for any finite x. Spacing of +- inf and NaN is NaN. Examples -------- >>> import mars.tensor as mt >>> (mt.spacing(1) == mt.finfo(mt.float64).eps).execute() True """ op = TensorSpacing(**kwargs) return op(x, out=out, where=where)
Example 30
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_half.py License: MIT License | 5 votes |
def test_nans_infs(self): with np.errstate(all='ignore'): # Check some of the ufuncs assert_equal(np.isnan(self.all_f16), np.isnan(self.all_f32)) assert_equal(np.isinf(self.all_f16), np.isinf(self.all_f32)) assert_equal(np.isfinite(self.all_f16), np.isfinite(self.all_f32)) assert_equal(np.signbit(self.all_f16), np.signbit(self.all_f32)) assert_equal(np.spacing(float16(65504)), np.inf) # Check comparisons of all values with NaN nan = float16(np.nan) assert_(not (self.all_f16 == nan).any()) assert_(not (nan == self.all_f16).any()) assert_((self.all_f16 != nan).all()) assert_((nan != self.all_f16).all()) assert_(not (self.all_f16 < nan).any()) assert_(not (nan < self.all_f16).any()) assert_(not (self.all_f16 <= nan).any()) assert_(not (nan <= self.all_f16).any()) assert_(not (self.all_f16 > nan).any()) assert_(not (nan > self.all_f16).any()) assert_(not (self.all_f16 >= nan).any()) assert_(not (nan >= self.all_f16).any())