Python numpy.percentile() Examples
The following are 30 code examples for showing how to use numpy.percentile(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: contextualbandits Author: david-cortes File: online.py License: BSD 2-Clause "Simplified" License | 6 votes |
def _add_bootstrapped_inputs(self, base_algorithm, batch_sample_method, nsamples, njobs_samples, percentile, ts_byrow = False, ts_weighted = False): assert (batch_sample_method == 'gamma') or (batch_sample_method == 'poisson') assert isinstance(nsamples, int) assert nsamples >= 1 self.batch_sample_method = batch_sample_method self.nsamples = nsamples self.njobs_samples = _check_njobs(njobs_samples) if not isinstance(base_algorithm, list): self.base_algorithm = self._make_bootstrapped(base_algorithm, percentile, ts_byrow, ts_weighted) else: self.base_algorithm = [ \ self._make_bootstrapped(alg, percentile, ts_byrow, ts_weighted) \ for alg in base_algorithm]
Example 2
Project: contextualbandits Author: david-cortes File: online.py License: BSD 2-Clause "Simplified" License | 6 votes |
def reset_percentile(self, percentile=80): """ Set the upper confidence bound percentile to a custom number Parameters ---------- percentile : int [0,100] Percentile of the confidence interval to take. Returns ------- self : obj This object """ assert (percentile > 0) and (percentile < 100) if self.is_fitted: self._oracles.reset_attribute("percentile", percentile) self.base_algorithm.percentile = percentile return self
Example 3
Project: contextualbandits Author: david-cortes File: online.py License: BSD 2-Clause "Simplified" License | 6 votes |
def __init__(self, nchoices, percentile=80, fit_intercept=True, lambda_=1.0, ucb_from_empty=False, beta_prior='auto', smoothing=None, noise_to_smooth=True, assume_unique_reward=False, random_state=None, njobs=-1): assert (percentile > 0) and (percentile < 100) assert lambda_ > 0. base = _LogisticUCB_n_TS_single(lambda_=float(lambda_), fit_intercept=fit_intercept, alpha=float(percentile), ts=False) self._add_common_params(base, beta_prior, smoothing, noise_to_smooth, njobs, nchoices, False, None, False, assume_unique_reward, random_state, assign_algo=True, prior_def_ucb=True, force_unfit_predict = ucb_from_empty) self.percentile = percentile
Example 4
Project: contextualbandits Author: david-cortes File: online.py License: BSD 2-Clause "Simplified" License | 6 votes |
def reset_threshold(self, threshold="auto"): """ Set the adaptive threshold to a custom number Parameters ---------- threshold : float or "auto" New threshold to use. If passing "auto", will set it to 1.5/nchoices. Note that this threshold will still be decayed if the object was initialized with ``decay_type="threshold"``, and will still be updated if initialized with ``percentile != None``. Returns ------- self : obj This object """ if isinstance(threshold, int): threshold = float(threshold) elif threshold == "auto": threshold = 1.5 / self.nchoices assert isinstance(threshold, float) self.thr = threshold return self
Example 5
Project: contextualbandits Author: david-cortes File: online.py License: BSD 2-Clause "Simplified" License | 6 votes |
def reset_percentile(self, percentile=30): """ Set the moving percentile to a custom number Parameters ---------- percentile : int between 0 and 100 The new percentile to set. Note that it will still apply decay to it after being set through this method. Returns ------- self : obj This object """ if self.decay_type == 'threshold': raise ValueError("Method is not available when not using percentile decay.") assert percentile >= 0 assert percentile <= 100 self.percentile = percentile return self
Example 6
Project: contextualbandits Author: david-cortes File: online.py License: BSD 2-Clause "Simplified" License | 6 votes |
def reset_percentile(self, percentile=80): """ Set the upper confidence bound percentile to a custom number Parameters ---------- percentile : int [0,100] Percentile of the confidence interval to take. Returns ------- self : obj This object """ assert (percentile > 0) and (percentile < 100) if self.is_fitted: self._oracles.reset_attribute("alpha", percentile) self.base_algorithm.alpha = percentile return self
Example 7
Project: pywr Author: pywr File: test_aggregator.py License: GNU General Public License v3.0 | 6 votes |
def agg_func(request): agg_func_name = request.param if agg_func_name == "custom": # When using custom you assign the function rather than a string. agg_func_name = npy_func = custom_test_func elif agg_func_name == "percentile": agg_func_name = { "func": "percentile", "args": [95], "kwargs": {} } npy_func = partial(np.percentile, q=95) elif agg_func_name == "percentileofscore": agg_func_name = { "func": "percentileofscore", "kwargs": { "score": 0.5, "kind": "rank" } } npy_func = partial(percentileofscore_with_axis, score=0.5, kind="rank") else: npy_func = npy_funcs[agg_func_name] return agg_func_name, npy_func
Example 8
Project: pywr Author: pywr File: test_recorders.py License: GNU General Public License v3.0 | 6 votes |
def test_seasonal_fdc_recorder(self): """ Test the FlowDurationCurveRecorder """ model = load_model("timeseries4.json") df = pandas.read_csv(os.path.join(os.path.dirname(__file__), 'models', 'timeseries3.csv'), parse_dates=True, dayfirst=True, index_col=0) percentiles = np.linspace(20., 100., 5) summer_flows = df.loc[pandas.Timestamp("2014-06-01"):pandas.Timestamp("2014-08-31"), :] summer_fdc = np.percentile(summer_flows, percentiles, axis=0) model.run() rec = model.recorders["seasonal_fdc"] assert_allclose(rec.fdc, summer_fdc)
Example 9
Project: xalpha Author: refraction-ray File: toolbox.py License: MIT License | 6 votes |
def analyse_percentile(cpdf, col): percentile = [1, 5, 25, 50, 75, 95, 99] r = [round(d, 3) for d in np.percentile(list(cpdf[col]), percentile)] print( "\n预测偏差分位:", "\n1% 分位: ", r[0], "\n5% 分位: ", r[1], "\n25% 分位: ", r[2], "\n50% 分位: ", r[3], "\n75% 分位: ", r[4], "\n95% 分位: ", r[5], "\n99% 分位: ", r[6], )
Example 10
Project: scarlet Author: pmelchior File: display.py License: MIT License | 6 votes |
def __init__(self, img, percentiles=[1, 99]): """Create norm that is linear between lower and upper percentile of img Parameters ---------- img: array_like Image to normalize percentile: array_like, default=[1,99] Lower and upper percentile to consider. Pixel values below will be set to zero, above to saturated. """ assert len(percentiles) == 2 vmin, vmax = np.percentile(img, percentiles) # solution for beta assumes flat spectrum at vmax stretch = vmax - vmin beta = stretch / np.sinh(1) super().__init__(minimum=vmin, stretch=stretch, Q=beta)
Example 11
Project: adagan Author: tolstikhin File: adagan.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _compute_data_weights_topk(self, opts, density_ratios): """Put a uniform distribution on K points with largest prob real data. This is a naiive heuristic which makes next GAN concentrate on those points of the training set, which were classified correctly with largest margins. I.e., out current mixture model is not capable of generating points looking similar to these ones. """ threshold = np.percentile(density_ratios, opts["topk_constant"]*100.0) # Note that largest prob_real_data corresponds to smallest density # ratios. mask = density_ratios <= threshold data_weights = np.zeros(self._data_num) data_weights[mask] = 1.0 / np.sum(mask) return data_weights
Example 12
Project: entmax Author: deep-spin File: bench_grad_alpha.py License: MIT License | 6 votes |
def bench(f_): timings_fwd = [] timings_bck = [] for _ in range(100): with f_ as f: tic = time.perf_counter() f.forward() torch.cuda.synchronize() toc = time.perf_counter() timings_fwd.append(toc - tic) tic = time.perf_counter() f.backward() torch.cuda.synchronize() toc = time.perf_counter() timings_bck.append(toc - tic) return (np.percentile(timings_fwd, [25, 50, 75]), np.percentile(timings_bck, [25, 50, 75]))
Example 13
Project: yatsm Author: ceholden File: longtermmean.py License: MIT License | 6 votes |
def scale_EVI(evi, periods, qmin=10, qmax=90): """ Returns EVI scaled to upper and lower quantiles Quantiles are calculated based on EVI within some year-to-year interval. As part of finding the quantiles, EVI values not within the (0, 1) range will be removed. Args: evi (np.ndarray): EVI values periods (np.ndarray): intervals of years to group and scale together qmin (float, optional): lower quantile for scaling (default: 10) qmax (float, optional): upper quantile for scaling (default: 90) Returns: np.ndarray: scaled EVI array """ _evi = evi.copy() for u in np.unique(periods): index = np.where(periods == u) evi_min = np.percentile(evi[index], qmin) evi_max = np.percentile(evi[index], qmax) _evi[index] = (evi[index] - evi_min) / (evi_max - evi_min) return _evi
Example 14
Project: recruit Author: Frank-qlu File: nanfunctions.py License: Apache License 2.0 | 6 votes |
def _nanquantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear'): """ Private function that doesn't support extended axis or keepdims. These methods are extended to this function using _ureduce See nanpercentile for parameter usage """ if axis is None or a.ndim == 1: part = a.ravel() result = _nanquantile_1d(part, q, overwrite_input, interpolation) else: result = np.apply_along_axis(_nanquantile_1d, axis, a, q, overwrite_input, interpolation) # apply_along_axis fills in collapsed axis with results. # Move that axis to the beginning to match percentile's # convention. if q.ndim != 0: result = np.moveaxis(result, axis, 0) if out is not None: out[...] = result return result
Example 15
Project: recruit Author: Frank-qlu File: test_function_base.py License: Apache License 2.0 | 6 votes |
def test_keepdims(self): d = np.ones((3, 5, 7, 11)) assert_equal(np.percentile(d, 7, axis=None, keepdims=True).shape, (1, 1, 1, 1)) assert_equal(np.percentile(d, 7, axis=(0, 1), keepdims=True).shape, (1, 1, 7, 11)) assert_equal(np.percentile(d, 7, axis=(0, 3), keepdims=True).shape, (1, 5, 7, 1)) assert_equal(np.percentile(d, 7, axis=(1,), keepdims=True).shape, (3, 1, 7, 11)) assert_equal(np.percentile(d, 7, (0, 1, 2, 3), keepdims=True).shape, (1, 1, 1, 1)) assert_equal(np.percentile(d, 7, axis=(0, 1, 3), keepdims=True).shape, (1, 1, 7, 1)) assert_equal(np.percentile(d, [1, 7], axis=(0, 1, 3), keepdims=True).shape, (2, 1, 1, 7, 1)) assert_equal(np.percentile(d, [1, 7], axis=(0, 3), keepdims=True).shape, (2, 1, 5, 7, 1))
Example 16
Project: recruit Author: Frank-qlu File: test_nanfunctions.py License: Apache License 2.0 | 6 votes |
def test_out(self): mat = np.random.rand(3, 3) nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) resout = np.zeros(3) tgt = np.percentile(mat, 42, axis=1) res = np.nanpercentile(nan_mat, 42, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) # 0-d output: resout = np.zeros(()) tgt = np.percentile(mat, 42, axis=None) res = np.nanpercentile(nan_mat, 42, axis=None, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) res = np.nanpercentile(nan_mat, 42, axis=(0, 1), out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt)
Example 17
Project: recruit Author: Frank-qlu File: test_nanfunctions.py License: Apache License 2.0 | 6 votes |
def test_multiple_percentiles(self): perc = [50, 100] mat = np.ones((4, 3)) nan_mat = np.nan * mat # For checking consistency in higher dimensional case large_mat = np.ones((3, 4, 5)) large_mat[:, 0:2:4, :] = 0 large_mat[:, :, 3:] *= 2 for axis in [None, 0, 1]: for keepdim in [False, True]: with suppress_warnings() as sup: sup.filter(RuntimeWarning, "All-NaN slice encountered") val = np.percentile(mat, perc, axis=axis, keepdims=keepdim) nan_val = np.nanpercentile(nan_mat, perc, axis=axis, keepdims=keepdim) assert_equal(nan_val.shape, val.shape) val = np.percentile(large_mat, perc, axis=axis, keepdims=keepdim) nan_val = np.nanpercentile(large_mat, perc, axis=axis, keepdims=keepdim) assert_equal(nan_val, val) megamat = np.ones((3, 4, 5, 6)) assert_equal(np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6))
Example 18
Project: recruit Author: Frank-qlu File: test_quantile.py License: Apache License 2.0 | 6 votes |
def test_quantile_multi(self): qs = [.1, .9] result = self.ts.quantile(qs) expected = pd.Series([np.percentile(self.ts.dropna(), 10), np.percentile(self.ts.dropna(), 90)], index=qs, name=self.ts.name) tm.assert_series_equal(result, expected) dts = self.ts.index.to_series() dts.name = 'xxx' result = dts.quantile((.2, .2)) expected = Series([Timestamp('2000-01-10 19:12:00'), Timestamp('2000-01-10 19:12:00')], index=[.2, .2], name='xxx') tm.assert_series_equal(result, expected) result = self.ts.quantile([]) expected = pd.Series([], name=self.ts.name, index=Index( [], dtype=float)) tm.assert_series_equal(result, expected)
Example 19
Project: svviz Author: svviz File: insertsizes.py License: MIT License | 5 votes |
def readLengthUpperQuantile(self): if self.hasReadLengthDistribution(): return numpy.percentile(self.readLengths, 99) return None
Example 20
Project: EDeN Author: fabriziocosta File: estimator_utils.py License: MIT License | 5 votes |
def compute_stats(scores): """compute_stats.""" median = np.percentile(scores, 50, axis=1) low = np.percentile(scores, 25, axis=1) high = np.percentile(scores, 75, axis=1) low10 = np.percentile(scores, 10, axis=1) high90 = np.percentile(scores, 90, axis=1) return median, low, high, low10, high90
Example 21
Project: EDeN Author: fabriziocosta File: link_prediction_utils.py License: MIT License | 5 votes |
def show_graph(g, vertex_color='typeof', size=15, vertex_label=None): """show_graph.""" degrees = [len(g.neighbors(u)) for u in g.nodes()] print(('num nodes=%d' % len(g))) print(('num edges=%d' % len(g.edges()))) print(('num non edges=%d' % len(list(nx.non_edges(g))))) print(('max degree=%d' % max(degrees))) print(('median degree=%d' % np.percentile(degrees, 50))) draw_graph(g, size=size, vertex_color=vertex_color, vertex_label=vertex_label, vertex_size=200, edge_label=None) # display degree distribution size = int((max(degrees) - min(degrees)) / 1.5) plt.figure(figsize=(size, 3)) plt.title('Degree distribution') _bins = np.arange(min(degrees), max(degrees) + 2) - .5 n, bins, patches = plt.hist(degrees, _bins, alpha=0.3, facecolor='navy', histtype='bar', rwidth=0.8, edgecolor='k') labels = np.array([str(int(i)) for i in n]) for xi, yi, label in zip(bins, n, labels): plt.text(xi + 0.5, yi, label, ha='center', va='bottom') plt.xticks(bins + 0.5) plt.xlim((min(degrees) - 1, max(degrees) + 1)) plt.ylim((0, max(n) * 1.1)) plt.xlabel('Node degree') plt.ylabel('Counts') plt.grid(linestyle=":") plt.show()
Example 22
Project: osqf2015 Author: mvaz File: model.py License: MIT License | 5 votes |
def __call__(self, scenarios, neutral_scenario=0): pnls = scenarios - neutral_scenario return - np.percentile(pnls, 100-self.level, interpolation='linear'), pnls
Example 23
Project: osqf2015 Author: mvaz File: model.py License: MIT License | 5 votes |
def compute_var(self, scenarios, neutral_scenario, level=99.): pnls = scenarios - neutral_scenario return - np.percentile(pnls, 100-level, interpolation='linear'), pnls
Example 24
Project: RF-Monitor Author: EarToEarOak File: cli.py License: GNU General Public License v2.0 | 5 votes |
def __on_scan_data(self, event): levels = numpy.log10(event['l']) levels *= 10 noise = numpy.percentile(levels, self._dynP) for monitor in self._monitors: freq = monitor.get_frequency() if monitor.get_enabled(): monitor.set_noise(noise) index = numpy.where(freq == event['f'])[0] signal = monitor.set_level(levels[index][0], event['timestamp'], self._location) if signal is not None: signals = 'Signals: {}\r'.format(self.__count_signals() - self._signalCount) self.__std_out(signals, False) if signal.end is not None: recording = format_recording(freq, signal) if self._pushUri is not None: self._push.send(self._pushUri, recording) if self._server is not None: self._server.send(recording) if self._json: sys.stdout.write(recording + '\n')
Example 25
Project: RF-Monitor Author: EarToEarOak File: gui.py License: GNU General Public License v2.0 | 5 votes |
def __on_scan_data(self, event): levels = numpy.log10(event['l']) levels *= 10 self._levels = levels noise = numpy.percentile(levels, self._toolbar.get_dynamic_percentile()) updated = False for monitor in self._monitors: freq = monitor.get_frequency() if monitor.get_enabled(): monitor.set_noise(noise) index = numpy.where(freq == event['f'])[0] signal = monitor.set_level(levels[index][0], event['timestamp'], self._location) if signal is not None: updated = True if signal.end is not None: recording = format_recording(freq, signal) if self._settings.get_push_enable(): self._push.send(self._settings.get_push_uri(), recording) if self._server is not None: self._server.send(recording) if updated: if self._isSaved: self._isSaved = False self.__set_title() self.__set_timeline() self.__set_spectrum(noise) self._rssi.set_noise(numpy.mean(levels)) self._rssi.set_level(numpy.max(levels))
Example 26
Project: Adversarial-Face-Attack Author: ppwwyyxx File: face_attack.py License: GNU General Public License v3.0 | 5 votes |
def distance_to_victim(self, img): emb = self.eval_embeddings([img]) dist = np.dot(emb, self.victim_embeddings.T).flatten() stats = np.percentile(dist, [10, 30, 50, 70, 90]) return stats
Example 27
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: gradcam.py License: Apache License 2.0 | 5 votes |
def to_grayscale(cv2im): """Convert gradients to grayscale. This gives a saliency map.""" # How strongly does each position activate the output grayscale_im = np.sum(np.abs(cv2im), axis=0) # Normalize between min and 99th percentile im_max = np.percentile(grayscale_im, 99) im_min = np.min(grayscale_im) grayscale_im = np.clip((grayscale_im - im_min) / (im_max - im_min), 0, 1) grayscale_im = np.expand_dims(grayscale_im, axis=0) return grayscale_im
Example 28
Project: contextualbandits Author: david-cortes File: online.py License: BSD 2-Clause "Simplified" License | 5 votes |
def _make_bootstrapped(self, base_algorithm, percentile, ts_byrow, ts_weighted): if "predict_proba" in dir(base_algorithm): return _BootstrappedClassifier_w_predict_proba( base_algorithm, self.nsamples, percentile, self.batch_train, self.batch_sample_method, random_state = 1, ### gets changed later njobs = self.njobs_samples, ts_byrow = ts_byrow, ts_weighted = ts_weighted ) elif "decision_function" in dir(base_algorithm): return _BootstrappedClassifier_w_decision_function( base_algorithm, self.nsamples, percentile, self.batch_train, self.batch_sample_method, random_state = 1, ### gets changed later njobs = self.njobs_samples, ts_byrow = ts_byrow, ts_weighted = ts_weighted ) else: return _BootstrappedClassifier_w_predict( base_algorithm, self.nsamples, percentile, self.batch_train, self.batch_sample_method, random_state = 1, ### gets changed later njobs = self.njobs_samples, ts_byrow = ts_byrow, ts_weighted = ts_weighted )
Example 29
Project: contextualbandits Author: david-cortes File: online.py License: BSD 2-Clause "Simplified" License | 5 votes |
def __init__(self, base_algorithm, nchoices, nsamples=10, percentile=80, beta_prior='auto', smoothing=None, noise_to_smooth=True, batch_train=False, refit_buffer=None, deep_copy_buffer=True, assume_unique_reward=False, batch_sample_method='gamma', random_state=None, njobs_arms=-1, njobs_samples=1): assert (percentile > 0) and (percentile < 100) assert nsamples >= 2 self._add_common_params(base_algorithm, beta_prior, smoothing, noise_to_smooth, njobs_arms, nchoices, batch_train, refit_buffer, deep_copy_buffer, assume_unique_reward, random_state, assign_algo = False, prior_def_ucb = True) self.percentile = percentile self._add_bootstrapped_inputs(base_algorithm, batch_sample_method, nsamples, njobs_samples, self.percentile)
Example 30
Project: contextualbandits Author: david-cortes File: online.py License: BSD 2-Clause "Simplified" License | 5 votes |
def _apply_decay(self, nobs): if (self.decay is not None) and (self.decay != 1): if self.decay_type == 'threshold': self.thr *= self.decay ** nobs elif self.decay_type == 'percentile': self.percentile *= self.decay ** nobs else: raise ValueError("'decay_type' must be one of 'threshold' or 'percentile'")