Python numpy.ScalarType() Examples
The following are 30 code examples for showing how to use numpy.ScalarType(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: test_classes.py License: Apache License 2.0 | 6 votes |
def test_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 2
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_classes.py License: MIT License | 6 votes |
def check_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 3
Project: vnpy_crypto Author: birforce File: test_classes.py License: MIT License | 6 votes |
def check_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 4
Project: Computable Author: ktraunmueller File: test_distributions.py License: MIT License | 6 votes |
def test_rvs(self): vals = stats.randint.rvs(5,30,size=100) assert_(numpy.all(vals < 30) & numpy.all(vals >= 5)) assert_(len(vals) == 100) vals = stats.randint.rvs(5,30,size=(2,50)) assert_(numpy.shape(vals) == (2,50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.randint.rvs(15,46) assert_((val >= 15) & (val < 46)) assert_(isinstance(val, numpy.ScalarType), msg=repr(type(val))) val = stats.randint(15,46).rvs(3) assert_(val.dtype.char in typecodes['AllInteger'])
Example 5
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_classes.py License: MIT License | 6 votes |
def test_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 6
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_classes.py License: MIT License | 6 votes |
def test_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 7
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_classes.py License: Apache License 2.0 | 6 votes |
def test_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 8
Project: pySINDy Author: luckystarufo File: test_classes.py License: MIT License | 6 votes |
def test_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 9
Project: mxnet-lambda Author: awslabs File: test_classes.py License: Apache License 2.0 | 6 votes |
def check_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 10
Project: ImageFusion Author: pfchai File: test_classes.py License: MIT License | 6 votes |
def check_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 11
Project: dowel Author: rlworkgroup File: tensor_board_output.py License: MIT License | 6 votes |
def _record_tabular(self, data, step): if self._x_axis: nonexist_axes = [] for axis in [self._x_axis] + self._additional_x_axes: if axis not in data.as_dict: nonexist_axes.append(axis) if nonexist_axes: self._warn('{} {} exist in the tabular data.'.format( ', '.join(nonexist_axes), 'do not' if len(nonexist_axes) > 1 else 'does not')) for key, value in data.as_dict.items(): if isinstance(value, np.ScalarType) and self._x_axis in data.as_dict: if self._x_axis is not key: x = data.as_dict[self._x_axis] self._record_kv(key, value, x) for axis in self._additional_x_axes: if key is not axis and key in data.as_dict: x = data.as_dict[axis] self._record_kv('{}/{}'.format(key, axis), value, x) else: self._record_kv(key, value, step) data.mark(key)
Example 12
Project: elasticintel Author: securityclippy File: test_classes.py License: GNU General Public License v3.0 | 6 votes |
def check_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 13
Project: coffeegrindsize Author: jgagneastro File: test_classes.py License: MIT License | 6 votes |
def test_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 14
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: test_classes.py License: MIT License | 6 votes |
def test_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 15
Project: twitter-stock-recommendation Author: alvarobartt File: test_classes.py License: MIT License | 6 votes |
def test_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 16
Project: keras-lambda Author: sunilmallya File: test_classes.py License: MIT License | 6 votes |
def check_truediv(Poly): # true division is valid only if the denominator is a Number and # not a python bool. p1 = Poly([1,2,3]) p2 = p1 * 5 for stype in np.ScalarType: if not issubclass(stype, Number) or issubclass(stype, bool): continue s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in (int, long, float): s = stype(5) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for stype in [complex]: s = stype(5, 0) assert_poly_almost_equal(op.truediv(p2, s), p1) assert_raises(TypeError, op.truediv, s, p2) for s in [tuple(), list(), dict(), bool(), np.array([1])]: assert_raises(TypeError, op.truediv, p2, s) assert_raises(TypeError, op.truediv, s, p2) for ptype in classes: assert_raises(TypeError, op.truediv, p2, ptype(1))
Example 17
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_distributions.py License: MIT License | 5 votes |
def test_rvs(self): vals = stats.randint.rvs(5, 30, size=100) assert_(numpy.all(vals < 30) & numpy.all(vals >= 5)) assert_(len(vals) == 100) vals = stats.randint.rvs(5, 30, size=(2, 50)) assert_(numpy.shape(vals) == (2, 50)) assert_(vals.dtype.char in typecodes['AllInteger']) val = stats.randint.rvs(15, 46) assert_((val >= 15) & (val < 46)) assert_(isinstance(val, numpy.ScalarType), msg=repr(type(val))) val = stats.randint(15, 46).rvs(3) assert_(val.dtype.char in typecodes['AllInteger'])
Example 18
Project: cupy Author: cupy File: test_fallback.py License: MIT License | 5 votes |
def numpy_fallback_array_equal(name='xp'): """ Decorator that checks fallback_mode results are equal to NumPy ones. Checks ndarrays. Args: name(str): Argument name whose value is either ``numpy`` or ``cupy`` module. """ def decorator(impl): @functools.wraps(impl) def test_func(self, *args, **kwargs): kwargs[name] = fallback_mode.numpy fallback_result = impl(self, *args, **kwargs) kwargs[name] = numpy numpy_result = impl(self, *args, **kwargs) if isinstance(numpy_result, numpy.ndarray): # if numpy returns ndarray, cupy must return ndarray assert isinstance(fallback_result, fallback.ndarray) fallback_mode.numpy.testing.assert_array_equal( numpy_result, fallback_result) assert fallback_result.dtype == numpy_result.dtype elif isinstance(numpy_result, numpy.ScalarType): # if numpy returns scalar # cupy may return 0-dim array assert numpy_result == fallback_result._cupy_array.item() or \ (numpy_result == fallback_result._numpy_array).all() else: assert False return test_func return decorator
Example 19
Project: malib Author: ying-wen File: tensor_board_output.py License: MIT License | 5 votes |
def _record_kv(self, key, value, step): if isinstance(value, np.ScalarType): self._writer.add_scalar(key, value, step) elif isinstance(value, plt.Figure): self._writer.add_figure(key, value, step) elif isinstance(value, scipy.stats._distn_infrastructure.rv_frozen): shape = (self._histogram_samples,) + value.mean().shape self._writer.add_histogram(key, value.rvs(shape), step) elif isinstance(value, scipy.stats._multivariate.multi_rv_frozen): self._writer.add_histogram(key, value.rvs(self._histogram_samples), step) elif isinstance(value, Histogram): self._writer.add_histogram(key, value, step)
Example 20
Project: dowel Author: rlworkgroup File: tensor_board_output.py License: MIT License | 5 votes |
def _record_kv(self, key, value, step): if isinstance(value, np.ScalarType): self._writer.add_scalar(key, value, step) elif isinstance(value, plt.Figure): self._writer.add_figure(key, value, step) elif isinstance(value, scipy.stats._distn_infrastructure.rv_frozen): shape = (self._histogram_samples, ) + value.mean().shape self._writer.add_histogram(key, value.rvs(shape), step) elif isinstance(value, scipy.stats._multivariate.multi_rv_frozen): self._writer.add_histogram(key, value.rvs(self._histogram_samples), step) elif isinstance(value, Histogram): self._writer.add_histogram(key, value, step)
Example 21
Project: deeppy Author: andersbll File: elementwise.py License: MIT License | 5 votes |
def __call__(self, lhs, rhs): if lhs is rhs: return 2*lhs if isinstance(lhs, np.ScalarType) and lhs == 0: return rhs if isinstance(rhs, np.ScalarType) and rhs == 0: return lhs return super(Add, self).__call__(lhs, rhs)
Example 22
Project: deeppy Author: andersbll File: elementwise.py License: MIT License | 5 votes |
def __call__(self, lhs, rhs): if lhs is rhs: return 0.0 if isinstance(lhs, np.ScalarType) and lhs == 0: return -rhs if isinstance(rhs, np.ScalarType) and rhs == 0: return lhs return super(Subtract, self).__call__(lhs, rhs)
Example 23
Project: deeppy Author: andersbll File: elementwise.py License: MIT License | 5 votes |
def __call__(self, lhs, rhs): if lhs is rhs: return lhs**2 if isinstance(lhs, np.ScalarType) and lhs == 1: return rhs if isinstance(rhs, np.ScalarType) and rhs == 1: return lhs return super(Multiply, self).__call__(lhs, rhs)
Example 24
Project: deeppy Author: andersbll File: elementwise.py License: MIT License | 5 votes |
def __call__(self, lhs, rhs): if lhs is rhs: return 1.0 if isinstance(rhs, np.ScalarType) and rhs == 1: return lhs return super(Divide, self).__call__(lhs, rhs)
Example 25
Project: lambda-packs Author: ryfeus File: extras.py License: MIT License | 4 votes |
def __getitem__(self, key): if isinstance(key, str): raise MAError("Unavailable for masked array.") if not isinstance(key, tuple): key = (key,) objs = [] scalars = [] final_dtypedescr = None for k in range(len(key)): scalar = False if isinstance(key[k], slice): step = key[k].step start = key[k].start stop = key[k].stop if start is None: start = 0 if step is None: step = 1 if isinstance(step, complex): size = int(abs(step)) newobj = np.linspace(start, stop, num=size) else: newobj = np.arange(start, stop, step) elif isinstance(key[k], str): if (key[k] in 'rc'): self.matrix = True self.col = (key[k] == 'c') continue try: self.axis = int(key[k]) continue except (ValueError, TypeError): raise ValueError("Unknown special directive") elif type(key[k]) in np.ScalarType: newobj = asarray([key[k]]) scalars.append(k) scalar = True else: newobj = key[k] objs.append(newobj) if isinstance(newobj, ndarray) and not scalar: if final_dtypedescr is None: final_dtypedescr = newobj.dtype elif newobj.dtype > final_dtypedescr: final_dtypedescr = newobj.dtype if final_dtypedescr is not None: for k in scalars: objs[k] = objs[k].astype(final_dtypedescr) res = concatenate(tuple(objs), axis=self.axis) return self._retval(res)
Example 26
Project: auto-alt-text-lambda-api Author: abhisuri97 File: extras.py License: MIT License | 4 votes |
def __getitem__(self, key): if isinstance(key, str): raise MAError("Unavailable for masked array.") if not isinstance(key, tuple): key = (key,) objs = [] scalars = [] final_dtypedescr = None for k in range(len(key)): scalar = False if isinstance(key[k], slice): step = key[k].step start = key[k].start stop = key[k].stop if start is None: start = 0 if step is None: step = 1 if isinstance(step, complex): size = int(abs(step)) newobj = np.linspace(start, stop, num=size) else: newobj = np.arange(start, stop, step) elif isinstance(key[k], str): if (key[k] in 'rc'): self.matrix = True self.col = (key[k] == 'c') continue try: self.axis = int(key[k]) continue except (ValueError, TypeError): raise ValueError("Unknown special directive") elif type(key[k]) in np.ScalarType: newobj = asarray([key[k]]) scalars.append(k) scalar = True else: newobj = key[k] objs.append(newobj) if isinstance(newobj, ndarray) and not scalar: if final_dtypedescr is None: final_dtypedescr = newobj.dtype elif newobj.dtype > final_dtypedescr: final_dtypedescr = newobj.dtype if final_dtypedescr is not None: for k in scalars: objs[k] = objs[k].astype(final_dtypedescr) res = concatenate(tuple(objs), axis=self.axis) return self._retval(res)
Example 27
Project: Computable Author: ktraunmueller File: extras.py License: MIT License | 4 votes |
def __getitem__(self, key): if isinstance(key, str): raise MAError("Unavailable for masked array.") if not isinstance(key, tuple): key = (key,) objs = [] scalars = [] final_dtypedescr = None for k in range(len(key)): scalar = False if isinstance(key[k], slice): step = key[k].step start = key[k].start stop = key[k].stop if start is None: start = 0 if step is None: step = 1 if isinstance(step, complex): size = int(abs(step)) newobj = np.linspace(start, stop, num=size) else: newobj = np.arange(start, stop, step) elif isinstance(key[k], str): if (key[k] in 'rc'): self.matrix = True self.col = (key[k] == 'c') continue try: self.axis = int(key[k]) continue except (ValueError, TypeError): raise ValueError("Unknown special directive") elif type(key[k]) in np.ScalarType: newobj = asarray([key[k]]) scalars.append(k) scalar = True else: newobj = key[k] objs.append(newobj) if isinstance(newobj, ndarray) and not scalar: if final_dtypedescr is None: final_dtypedescr = newobj.dtype elif newobj.dtype > final_dtypedescr: final_dtypedescr = newobj.dtype if final_dtypedescr is not None: for k in scalars: objs[k] = objs[k].astype(final_dtypedescr) res = concatenate(tuple(objs), axis=self.axis) return self._retval(res)
Example 28
Project: Fluid-Designer Author: Microvellum File: extras.py License: GNU General Public License v3.0 | 4 votes |
def __getitem__(self, key): if isinstance(key, str): raise MAError("Unavailable for masked array.") if not isinstance(key, tuple): key = (key,) objs = [] scalars = [] final_dtypedescr = None for k in range(len(key)): scalar = False if isinstance(key[k], slice): step = key[k].step start = key[k].start stop = key[k].stop if start is None: start = 0 if step is None: step = 1 if isinstance(step, complex): size = int(abs(step)) newobj = np.linspace(start, stop, num=size) else: newobj = np.arange(start, stop, step) elif isinstance(key[k], str): if (key[k] in 'rc'): self.matrix = True self.col = (key[k] == 'c') continue try: self.axis = int(key[k]) continue except (ValueError, TypeError): raise ValueError("Unknown special directive") elif type(key[k]) in np.ScalarType: newobj = asarray([key[k]]) scalars.append(k) scalar = True else: newobj = key[k] objs.append(newobj) if isinstance(newobj, ndarray) and not scalar: if final_dtypedescr is None: final_dtypedescr = newobj.dtype elif newobj.dtype > final_dtypedescr: final_dtypedescr = newobj.dtype if final_dtypedescr is not None: for k in scalars: objs[k] = objs[k].astype(final_dtypedescr) res = concatenate(tuple(objs), axis=self.axis) return self._retval(res)
Example 29
Project: cupy Author: cupy File: generate.py License: MIT License | 4 votes |
def __getitem__(self, key): trans1d = self.trans1d ndmin = self.ndmin objs = [] scalars = [] arraytypes = [] scalartypes = [] if isinstance(key, str): raise NotImplementedError if not isinstance(key, tuple): key = (key,) for i, k in enumerate(key): scalar = False if isinstance(k, slice): raise NotImplementedError elif isinstance(k, str): if i != 0: raise ValueError( 'special directives must be the first entry.') raise NotImplementedError elif type(k) in numpy.ScalarType: newobj = from_data.array(k, ndmin=ndmin) scalars.append(i) scalar = True scalartypes.append(newobj.dtype) else: newobj = from_data.array(k, copy=False, ndmin=ndmin) if ndmin > 1: ndim = from_data.array(k, copy=False).ndim if trans1d != -1 and ndim < ndmin: newobj = self._output_obj(newobj, ndim, ndmin, trans1d) objs.append(newobj) if not scalar and isinstance(newobj, core.ndarray): arraytypes.append(newobj.dtype) final_dtype = numpy.find_common_type(arraytypes, scalartypes) if final_dtype is not None: for k in scalars: objs[k] = objs[k].astype(final_dtype) return join.concatenate(tuple(objs), axis=self.axis)
Example 30
Project: ImageFusion Author: pfchai File: extras.py License: MIT License | 4 votes |
def __getitem__(self, key): if isinstance(key, str): raise MAError("Unavailable for masked array.") if not isinstance(key, tuple): key = (key,) objs = [] scalars = [] final_dtypedescr = None for k in range(len(key)): scalar = False if isinstance(key[k], slice): step = key[k].step start = key[k].start stop = key[k].stop if start is None: start = 0 if step is None: step = 1 if isinstance(step, complex): size = int(abs(step)) newobj = np.linspace(start, stop, num=size) else: newobj = np.arange(start, stop, step) elif isinstance(key[k], str): if (key[k] in 'rc'): self.matrix = True self.col = (key[k] == 'c') continue try: self.axis = int(key[k]) continue except (ValueError, TypeError): raise ValueError("Unknown special directive") elif type(key[k]) in np.ScalarType: newobj = asarray([key[k]]) scalars.append(k) scalar = True else: newobj = key[k] objs.append(newobj) if isinstance(newobj, ndarray) and not scalar: if final_dtypedescr is None: final_dtypedescr = newobj.dtype elif newobj.dtype > final_dtypedescr: final_dtypedescr = newobj.dtype if final_dtypedescr is not None: for k in scalars: objs[k] = objs[k].astype(final_dtypedescr) res = concatenate(tuple(objs), axis=self.axis) return self._retval(res)