Python scipy.sin() Examples

The following are 3 code examples of scipy.sin(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module scipy , or try the search function .
Example #1
Source File: crude.py    From pychemqt with GNU General Public License v3.0 5 votes vote down vote up
def Z_Burnett(Tr, Pr):
    """Calculate gas compressibility factor using the Burnett (1979)
    correlation

    Parameters
    ------------
    Tr : float
        Reduced temperature [-]
    Pr : float
        Reduced pressure [-]

    Returns
    -------
    Z : float
        Gas compressibility factor [-]

    Notes
    -----
    The correlation is in cited reference, the parameters are least square
    fitting by Leung.

    Raise :class:`NotImplementedError` if input pair isn't in limit:

        * 1.3 ≤ Tr ≤ 3
        * 0.2 ≤ Pr ≤ 4
    """
    # FIXME: Don't work
    # Check input in range of validity
    if Tr < 1.1 or Tr > 2.6 or Pr < 0.5 or Pr > 11:
        raise NotImplementedError("Incoming out of bound")

    Zo = 0.3379*log(log(Tr)) + 1.091
    Po = 21.46*Zo - 11.9*Zo**2 - 5.9
    N = (1.1 + 0.26*Tr + (1.04-1.42*Tr)*Pr/Po)*exp(Pr/Po)/Tr
    Z = 1 + (Zo-1) * sin(pi/2*Pr/Po)**N
    return unidades.Dimensionless(Z) 
Example #2
Source File: crude.py    From pychemqt with GNU General Public License v3.0 5 votes vote down vote up
def Mu_Muerto(self, T):
        """Viscosidad de petroleos muertos (sin gas disuelto)"""
        metodos=[self.Mu_Beal, self.Mu_Beggs_Robinson, self.Mu_Glaso, self.Mu_Egbogah, self.Mu_Kartoatmodjo_Schmidt][Preferences.getint("petro", "mu_dead")]
        return metodos(T) 
Example #3
Source File: sound_waves.py    From qmpy with MIT License 4 votes vote down vote up
def spherical_integral(C,rho):
    """
    Calculate the integral of a function over a unit sphere.
    """
    # phi - azimuthal angle (angle in xy-plane)
    # theta - polar angle (angle between z and xy-plane)
    #       (  y  , x )
    def func(theta,phi,C,rho):  # Test function. Can I get 4*pi^2????
        x = sp.cos(phi)*sp.sin(theta)
        y = sp.sin(phi)*sp.sin(theta)
        z = sp.cos(theta)
        #dir = sp.array((x,y,z))
        #dc = dir_cosines(dir)
        dc = sp.array((x,y,z))  # Turns out these are direction cosines!
        Gamma = make_gamma(dc,C)
        rho_c_square = linalg.eigvals(Gamma).real  # GPa
        rho_c_square = rho_c_square*1e9  # Pa
        sound_vel = sp.sqrt(rho_c_square/rho)  # m/s
        integrand = 1/(sound_vel[0]**3) + 1/(sound_vel[1]**3) + 1/(sound_vel[2]**3)
        return integrand*sp.sin(theta)
    #        (  y  , x      )
    #def sfunc(theta,phi,args=()):
    #    return func(theta,phi,args)*sp.sin(theta)

    integral,error = dblquad(func,0,2*sp.pi,lambda g: 0,lambda h:
            sp.pi,args=(C,rho))
    return integral


#direction = sp.array((1.0,1.0,1.0))
#dc = dir_cosines(direction)
#C = read_file.read_file(sys.argv[1])
#C.pop(0)
#C = sp.array(C,float)
#Gamma = make_gamma(dc,C)
#density = 7500 #kg/m**3
#density = float(read_file.read_file(sys.argv[2])[0][0])
#rho_c_square = linalg.eigvals(Gamma) #GPa
#rho_c_square = rho_c_square*1e9 #Pa
#sound_vel = sp.sqrt(rho_c_square/density).real
#avg_vel = sp.average(sound_vel)
#print Gamma
#print direction
#print C
#print rho_c_square
#print rho_c_square.real
#print sound_vel," in m/s"
#print avg_vel
#print spherical_integral(C,density)