Python numpy.float() Examples
The following are 30 code examples for showing how to use numpy.float(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: Collaborative-Learning-for-Weakly-Supervised-Object-Detection Author: Sunarker File: test.py License: MIT License | 6 votes |
def _project_im_rois(im_rois, scales): """Project image RoIs into the image pyramid built by _get_image_blob. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates scales (list): scale factors as returned by _get_image_blob Returns: rois (ndarray): R x 4 matrix of projected RoI coordinates levels (list): image pyramid levels used by each projected RoI """ im_rois = im_rois.astype(np.float, copy=False) if len(scales) > 1: widths = im_rois[:, 2] - im_rois[:, 0] + 1 heights = im_rois[:, 3] - im_rois[:, 1] + 1 areas = widths * heights scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2) diff_areas = np.abs(scaled_areas - 224 * 224) levels = diff_areas.argmin(axis=1)[:, np.newaxis] else: levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) rois = im_rois * scales[levels] return rois, levels
Example 2
Project: Collaborative-Learning-for-Weakly-Supervised-Object-Detection Author: Sunarker File: test_train.py License: MIT License | 6 votes |
def _project_im_rois(im_rois, scales): """Project image RoIs into the image pyramid built by _get_image_blob. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates scales (list): scale factors as returned by _get_image_blob Returns: rois (ndarray): R x 4 matrix of projected RoI coordinates levels (list): image pyramid levels used by each projected RoI """ im_rois = im_rois.astype(np.float, copy=False) if len(scales) > 1: widths = im_rois[:, 2] - im_rois[:, 0] + 1 heights = im_rois[:, 3] - im_rois[:, 1] + 1 areas = widths * heights scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2) diff_areas = np.abs(scaled_areas - 224 * 224) levels = diff_areas.argmin(axis=1)[:, np.newaxis] else: levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) rois = im_rois * scales[levels] return rois, levels
Example 3
Project: Collaborative-Learning-for-Weakly-Supervised-Object-Detection Author: Sunarker File: coco.py License: MIT License | 6 votes |
def _coco_results_one_category(self, boxes, cat_id): results = [] for im_ind, index in enumerate(self.image_index): dets = boxes[im_ind].astype(np.float) if dets == []: continue scores = dets[:, -1] xs = dets[:, 0] ys = dets[:, 1] ws = dets[:, 2] - xs + 1 hs = dets[:, 3] - ys + 1 results.extend( [{'image_id': index, 'category_id': cat_id, 'bbox': [xs[k], ys[k], ws[k], hs[k]], 'score': scores[k]} for k in range(dets.shape[0])]) return results
Example 4
Project: neural-fingerprinting Author: StephanZheng File: test_imagenet_attacks.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def load_images(input_dir, metadata_file_path, batch_shape): """Retrieve numpy arrays of images and labels, read from a directory.""" num_images = batch_shape[0] with open(metadata_file_path) as input_file: reader = csv.reader(input_file) header_row = next(reader) rows = list(reader) row_idx_image_id = header_row.index('ImageId') row_idx_true_label = header_row.index('TrueLabel') images = np.zeros(batch_shape) labels = np.zeros(num_images, dtype=np.int32) for idx in xrange(num_images): row = rows[idx] filepath = os.path.join(input_dir, row[row_idx_image_id] + '.png') with tf.gfile.Open(filepath, 'rb') as f: image = np.array( Image.open(f).convert('RGB')).astype(np.float) / 255.0 images[idx, :, :, :] = image labels[idx] = int(row[row_idx_true_label]) return images, labels
Example 5
Project: nmp_qc Author: priba File: graph_reader.py License: MIT License | 6 votes |
def create_graph_mutag(file): f = open(file, 'r') lines = f.read().splitlines() f.close() # get the indices of the vertext, adj list and class idx_vertex = lines.index("#v - vertex labels") idx_edge = lines.index("#e - edge labels") idx_clss = lines.index("#c - Class") # node label vl = [int(ivl) for ivl in lines[idx_vertex+1:idx_edge]] edge_list = lines[idx_edge+1:idx_clss] g = nx.parse_edgelist(edge_list, nodetype=int, data=(('weight', float),), delimiter=",") for i in range(1, g.number_of_nodes()+1): g.node[i]['labels'] = np.array(vl[i-1]) c = int(lines[idx_clss+1]) return g, c
Example 6
Project: mlearn Author: materialsvirtuallab File: snap.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def train(self, train_structures, energies, forces, stresses=None, **kwargs): """ Training data with model. Args: train_structures ([Structure]): The list of Pymatgen Structure object. energies ([float]): The list of total energies of each structure in structures list. energies ([float]): List of total energies of each structure in structures list. forces ([np.array]): List of (m, 3) forces array of each structure with m atoms in structures list. m can be varied with each single structure case. stresses (list): List of (6, ) virial stresses of each structure in structures list. """ train_pool = pool_from(train_structures, energies, forces, stresses) _, df = convert_docs(train_pool) ytrain = df['y_orig'] / df['n'] self.model.fit(inputs=train_structures, outputs=ytrain, **kwargs) self.specie = Element(train_structures[0].symbol_set[0])
Example 7
Project: mlearn Author: materialsvirtuallab File: snap.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def evaluate(self, test_structures, ref_energies, ref_forces, ref_stresses): """ Evaluate energies, forces and stresses of structures with trained interatomic potentials. Args: test_structures ([Structure]): List of Pymatgen Structure Objects. ref_energies ([float]): List of DFT-calculated total energies of each structure in structures list. ref_forces ([np.array]): List of DFT-calculated (m, 3) forces of each structure with m atoms in structures list. m can be varied with each single structure case. ref_stresses (list): List of DFT-calculated (6, ) viriral stresses of each structure in structures list. """ predict_pool = pool_from(test_structures, ref_energies, ref_forces, ref_stresses) _, df_orig = convert_docs(predict_pool) _, df_predict = convert_docs(pool_from(test_structures)) outputs = self.model.predict(inputs=test_structures, override=True) df_predict['y_orig'] = df_predict['n'] * outputs return df_orig, df_predict
Example 8
Project: neuropythy Author: noahbenson File: core.py License: GNU Affero General Public License v3.0 | 6 votes |
def apply_cmap(zs, cmap, vmin=None, vmax=None, unit=None, logrescale=False): ''' apply_cmap(z, cmap) applies the given cmap to the values in z; if vmin and/or vmax are passed, they are used to scale z. Note that this function can automatically rescale data into log-space if the colormap is a neuropythy log-space colormap such as log_eccentricity. To enable this behaviour use the optional argument logrescale=True. ''' zs = pimms.mag(zs) if unit is None else pimms.mag(zs, unit) zs = np.asarray(zs, dtype='float') if pimms.is_str(cmap): cmap = matplotlib.cm.get_cmap(cmap) if logrescale: if vmin is None: vmin = np.log(np.nanmin(zs)) if vmax is None: vmax = np.log(np.nanmax(zs)) mn = np.exp(vmin) u = zdivide(nanlog(zs + mn) - vmin, vmax - vmin, null=np.nan) else: if vmin is None: vmin = np.nanmin(zs) if vmax is None: vmax = np.nanmax(zs) u = zdivide(zs - vmin, vmax - vmin, null=np.nan) u[np.isnan(u)] = -np.inf return cmap(u)
Example 9
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: envs.py License: Apache License 2.0 | 6 votes |
def preprocess(self, img): """ Preprocess a 210x160x3 uint8 frame into a 6400 (80x80) (1 x input_size) float vector. """ # Crop, down-sample, erase background and set foreground to 1. # See https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4ea32c5 img = img[35:195] img = img[::2, ::2, 0] img[img == 144] = 0 img[img == 109] = 0 img[img != 0] = 1 curr = np.expand_dims(img.astype(np.float).ravel(), axis=0) # Subtract the last preprocessed image. diff = (curr - self.prev if self.prev is not None else np.zeros((1, curr.shape[1]))) self.prev = curr return diff
Example 10
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: bbox.py License: Apache License 2.0 | 6 votes |
def bbox_overlaps(boxes, query_boxes): """ determine overlaps between boxes and query_boxes :param boxes: n * 4 bounding boxes :param query_boxes: k * 4 bounding boxes :return: overlaps: n * k overlaps """ n_ = boxes.shape[0] k_ = query_boxes.shape[0] overlaps = np.zeros((n_, k_), dtype=np.float) for k in range(k_): query_box_area = (query_boxes[k, 2] - query_boxes[k, 0] + 1) * (query_boxes[k, 3] - query_boxes[k, 1] + 1) for n in range(n_): iw = min(boxes[n, 2], query_boxes[k, 2]) - max(boxes[n, 0], query_boxes[k, 0]) + 1 if iw > 0: ih = min(boxes[n, 3], query_boxes[k, 3]) - max(boxes[n, 1], query_boxes[k, 1]) + 1 if ih > 0: box_area = (boxes[n, 2] - boxes[n, 0] + 1) * (boxes[n, 3] - boxes[n, 1] + 1) all_area = float(box_area + query_box_area - iw * ih) overlaps[n, k] = iw * ih / all_area return overlaps
Example 11
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: coco.py License: Apache License 2.0 | 6 votes |
def _coco_results_one_category(self, boxes, cat_id): results = [] for im_ind, roi_rec in enumerate(self.roidb): index = roi_rec['index'] dets = boxes[im_ind].astype(np.float) if len(dets) == 0: continue scores = dets[:, -1] xs = dets[:, 0] ys = dets[:, 1] ws = dets[:, 2] - xs + 1 hs = dets[:, 3] - ys + 1 result = [{'image_id': index, 'category_id': cat_id, 'bbox': [xs[k], ys[k], ws[k], hs[k]], 'score': scores[k]} for k in range(dets.shape[0])] results.extend(result) return results
Example 12
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: _op_translations.py License: Apache License 2.0 | 6 votes |
def convert_dropout(node, **kwargs): """Map MXNet's Dropout operator attributes to onnx's Dropout operator and return the created node. """ onnx = import_onnx_modules() name = node["name"] input_id = kwargs["index_lookup"][node["inputs"][0][0]] input_name = kwargs["proc_nodes"][input_id].name attrs = node["attrs"] probability = float(attrs["p"]) dropout_node = onnx.helper.make_node( "Dropout", [input_name], [name], ratio=probability, name=name ) return [dropout_node]
Example 13
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: _op_translations.py License: Apache License 2.0 | 6 votes |
def convert_clip(node, **kwargs): """Map MXNet's Clip operator attributes to onnx's Clip operator and return the created node. """ onnx = import_onnx_modules() name = node["name"] input_idx = kwargs["index_lookup"][node["inputs"][0][0]] proc_nodes = kwargs["proc_nodes"] input_node = proc_nodes[input_idx].name attrs = node["attrs"] a_min = np.float(attrs.get('a_min', -np.inf)) a_max = np.float(attrs.get('a_max', np.inf)) clip_node = onnx.helper.make_node( "Clip", [input_node], [name], name=name, min=a_min, max=a_max ) return [clip_node]
Example 14
Project: discomll Author: romanorac File: datasets.py License: Apache License 2.0 | 6 votes |
def breastcancer_cont(replication=2): f = open(path + "breast_cancer_wisconsin_cont.txt", "r") data = np.loadtxt(f, delimiter=",", dtype=np.string0) x_train = np.array(data[:, range(0, 9)]) y_train = np.array(data[:, 9]) for j in range(replication - 1): x_train = np.vstack([x_train, data[:, range(0, 9)]]) y_train = np.hstack([y_train, data[:, 9]]) x_train = np.array(x_train, dtype=np.float) f = open(path + "breast_cancer_wisconsin_cont_test.txt") data = np.loadtxt(f, delimiter=",", dtype=np.string0) x_test = np.array(data[:, range(0, 9)]) y_test = np.array(data[:, 9]) for j in range(replication - 1): x_test = np.vstack([x_test, data[:, range(0, 9)]]) y_test = np.hstack([y_test, data[:, 9]]) x_test = np.array(x_test, dtype=np.float) return x_train, y_train, x_test, y_test
Example 15
Project: discomll Author: romanorac File: datasets.py License: Apache License 2.0 | 6 votes |
def iris(replication=2): f = open(path + "iris.txt") data = np.loadtxt(f, delimiter=",", dtype=np.string0) x_train = np.array(data[:, range(0, 4)], dtype=np.float) y_train = data[:, 4] for j in range(replication - 1): x_train = np.vstack([x_train, data[:, range(0, 4)]]) y_train = np.hstack([y_train, data[:, 4]]) x_train = np.array(x_train, dtype=np.float) f = open(path + "iris_test.txt") data = np.loadtxt(f, delimiter=",", dtype=np.string0) x_test = np.array(data[:, range(0, 4)], dtype=np.float) y_test = data[:, 4] for j in range(replication - 1): x_test = np.vstack([x_test, data[:, range(0, 4)]]) y_test = np.hstack([y_test, data[:, 4]]) x_test = np.array(x_test, dtype=np.float) return x_train, y_train, x_test, y_test
Example 16
Project: DOTA_models Author: ringringyi File: metrics.py License: Apache License 2.0 | 6 votes |
def compute_cor_loc(num_gt_imgs_per_class, num_images_correctly_detected_per_class): """Compute CorLoc according to the definition in the following paper. https://www.robots.ox.ac.uk/~vgg/rg/papers/deselaers-eccv10.pdf Returns nans if there are no ground truth images for a class. Args: num_gt_imgs_per_class: 1D array, representing number of images containing at least one object instance of a particular class num_images_correctly_detected_per_class: 1D array, representing number of images that are correctly detected at least one object instance of a particular class Returns: corloc_per_class: A float numpy array represents the corloc score of each class """ return np.where( num_gt_imgs_per_class == 0, np.nan, num_images_correctly_detected_per_class / num_gt_imgs_per_class)
Example 17
Project: dogTorch Author: ehsanik File: metrics.py License: MIT License | 6 votes |
def get_angle_diff(self, target, result): size = target.size() sequence_length = size[1] all_averages = np.zeros((sequence_length)).astype(np.float) for seq_id in range(sequence_length): average = AverageMeter() for batch_id in range(size[0]): for imu_id in range(size[2]): goal = Quaternion(target[batch_id, seq_id, imu_id]) out = Quaternion(result[batch_id, seq_id, imu_id]) acos = (2 * (np.dot(out.normalised.q, goal.normalised.q)**2) - 1) acos = round(acos, 6) if acos > 1 or acos < -1: pdb.set_trace() radian = math.acos(acos) average.update(radian) all_averages[seq_id] = (average.avg) return all_averages
Example 18
Project: cascade-rcnn_Pytorch Author: guoruoqian File: coco.py License: MIT License | 6 votes |
def _coco_results_one_category(self, boxes, cat_id): results = [] for im_ind, index in enumerate(self.image_index): dets = boxes[im_ind].astype(np.float) if dets == []: continue scores = dets[:, -1] xs = dets[:, 0] ys = dets[:, 1] ws = dets[:, 2] - xs + 1 hs = dets[:, 3] - ys + 1 results.extend( [{'image_id': index, 'category_id': cat_id, 'bbox': [xs[k], ys[k], ws[k], hs[k]], 'score': scores[k]} for k in range(dets.shape[0])]) return results
Example 19
Project: svviz Author: svviz File: kde.py License: MIT License | 5 votes |
def evaluate(self, points): points = atleast_2d(points) d, m = points.shape if d != self.d: if d == 1 and m == self.d: # points was passed in as a row vector points = reshape(points, (self.d, 1)) m = 1 else: msg = "points have dimension %s, dataset has dimension %s" % (d, self.d) raise ValueError(msg) result = zeros((m,), dtype=np.float) if m >= self.n: # there are more points than data, so loop over data for i in range(self.n): diff = self.dataset[:, i, newaxis] - points tdiff = dot(self.inv_cov, diff) energy = sum(diff*tdiff,axis=0) / 2.0 result = result + exp(-energy) else: # loop over points for i in range(m): diff = self.dataset - points[:, i, newaxis] tdiff = dot(self.inv_cov, diff) energy = sum(diff * tdiff, axis=0) / 2.0 result[i] = sum(exp(-energy), axis=0) result = result / self._norm_factor return result
Example 20
Project: vergeml Author: mme File: env.py License: MIT License | 5 votes |
def _convert(self, vals): res = {} for k, v in vals.items(): if isinstance(v, (np.int, np.int8, np.int16, np.int32, np.int64)): v = int(v) elif isinstance(v, (np.float, np.float16, np.float32, np.float64)): v = float(v) elif isinstance(v, Labels): v = list(v) elif isinstance(v, np.ndarray): v = v.tolist() elif isinstance(v, dict): v = self._convert(v) res[k] = v return res
Example 21
Project: Collaborative-Learning-for-Weakly-Supervised-Object-Detection Author: Sunarker File: test.py License: MIT License | 5 votes |
def _get_image_blob(im): """Converts an image into a network input. Arguments: im (ndarray): a color image in BGR order Returns: blob (ndarray): a data blob holding an image pyramid im_scale_factors (list): list of image scales (relative to im) used in the image pyramid """ im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS im_shape = im_orig.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) processed_ims = [] im_scale_factors = [] for target_size in cfg.TEST.SCALES: im_scale = float(target_size) / float(im_size_min) # Prevent the biggest axis from being more than MAX_SIZE if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE: im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max) im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) im_scale_factors.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, np.array(im_scale_factors)
Example 22
Project: Collaborative-Learning-for-Weakly-Supervised-Object-Detection Author: Sunarker File: test_train.py License: MIT License | 5 votes |
def _get_image_blob(im): """Converts an image into a network input. Arguments: im (ndarray): a color image in BGR order Returns: blob (ndarray): a data blob holding an image pyramid im_scale_factors (list): list of image scales (relative to im) used in the image pyramid """ im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS im_shape = im_orig.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) processed_ims = [] im_scale_factors = [] for target_size in cfg.TEST.SCALES: im_scale = float(target_size) / float(im_size_min) # Prevent the biggest axis from being more than MAX_SIZE if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE: im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max) im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) im_scale_factors.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, np.array(im_scale_factors)
Example 23
Project: mmdetection Author: open-mmlab File: test_masks.py License: Apache License 2.0 | 5 votes |
def test_polygon_mask_rescale(): # rescale with empty polygon masks raw_masks = dummy_raw_polygon_masks((0, 28, 28)) polygon_masks = PolygonMasks(raw_masks, 28, 28) rescaled_masks = polygon_masks.rescale((56, 72)) assert len(rescaled_masks) == 0 assert rescaled_masks.height == 56 assert rescaled_masks.width == 56 assert rescaled_masks.to_ndarray().shape == (0, 56, 56) # rescale with polygon masks contain 3 instances raw_masks = [[np.array([1, 1, 3, 1, 4, 3, 2, 4, 1, 3], dtype=np.float)]] polygon_masks = PolygonMasks(raw_masks, 5, 5) rescaled_masks = polygon_masks.rescale((12, 10)) assert len(rescaled_masks) == 1 assert rescaled_masks.height == 10 assert rescaled_masks.width == 10 assert rescaled_masks.to_ndarray().shape == (1, 10, 10) truth = np.array( [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], np.uint8) assert (rescaled_masks.to_ndarray() == truth).all()
Example 24
Project: neural-fingerprinting Author: StephanZheng File: attack_step_target_class.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def load_images(input_dir, batch_shape): """Read png images from input directory in batches. Args: input_dir: input directory batch_shape: shape of minibatch array, i.e. [batch_size, height, width, 3] Yields: filenames: list file names without path of each image Lenght of this list could be less than batch_size, in this case only first few images of the result are elements of the minibatch. images: array with all images from this batch """ images = np.zeros(batch_shape) filenames = [] idx = 0 batch_size = batch_shape[0] for filepath in tf.gfile.Glob(os.path.join(input_dir, '*.png')): with tf.gfile.Open(filepath) as f: image = imread(f, mode='RGB').astype(np.float) / 255.0 # Images for inception classifier are normalized to be in [-1, 1] interval. images[idx, :, :, :] = image * 2.0 - 1.0 filenames.append(os.path.basename(filepath)) idx += 1 if idx == batch_size: yield filenames, images filenames = [] images = np.zeros(batch_shape) idx = 0 if idx > 0: yield filenames, images
Example 25
Project: neural-fingerprinting Author: StephanZheng File: attack_iter_target_class.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def load_images(input_dir, batch_shape): """Read png images from input directory in batches. Args: input_dir: input directory batch_shape: shape of minibatch array, i.e. [batch_size, height, width, 3] Yields: filenames: list file names without path of each image Lenght of this list could be less than batch_size, in this case only first few images of the result are elements of the minibatch. images: array with all images from this batch """ images = np.zeros(batch_shape) filenames = [] idx = 0 batch_size = batch_shape[0] for filepath in tf.gfile.Glob(os.path.join(input_dir, '*.png')): with tf.gfile.Open(filepath) as f: image = imread(f, mode='RGB').astype(np.float) / 255.0 # Images for inception classifier are normalized to be in [-1, 1] interval. images[idx, :, :, :] = image * 2.0 - 1.0 filenames.append(os.path.basename(filepath)) idx += 1 if idx == batch_size: yield filenames, images filenames = [] images = np.zeros(batch_shape) idx = 0 if idx > 0: yield filenames, images
Example 26
Project: neural-fingerprinting Author: StephanZheng File: attack_fgsm.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def load_images(input_dir, batch_shape): """Read png images from input directory in batches. Args: input_dir: input directory batch_shape: shape of minibatch array, i.e. [batch_size, height, width, 3] Yields: filenames: list file names without path of each image Lenght of this list could be less than batch_size, in this case only first few images of the result are elements of the minibatch. images: array with all images from this batch """ images = np.zeros(batch_shape) filenames = [] idx = 0 batch_size = batch_shape[0] for filepath in tf.gfile.Glob(os.path.join(input_dir, '*.png')): with tf.gfile.Open(filepath) as f: image = np.array(Image.open(f).convert('RGB')).astype(np.float) / 255.0 # Images for inception classifier are normalized to be in [-1, 1] interval. images[idx, :, :, :] = image * 2.0 - 1.0 filenames.append(os.path.basename(filepath)) idx += 1 if idx == batch_size: yield filenames, images filenames = [] images = np.zeros(batch_shape) idx = 0 if idx > 0: yield filenames, images
Example 27
Project: neural-fingerprinting Author: StephanZheng File: attack_random_noise.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def load_images(input_dir, batch_shape): """Read png images from input directory in batches. Args: input_dir: input directory batch_shape: shape of minibatch array, i.e. [batch_size, height, width, 3] Yields: filenames: list file names without path of each image Lenght of this list could be less than batch_size, in this case only first few images of the result are elements of the minibatch. images: array with all images from this batch """ images = np.zeros(batch_shape) filenames = [] idx = 0 batch_size = batch_shape[0] for filepath in tf.gfile.Glob(os.path.join(input_dir, '*.png')): with tf.gfile.Open(filepath) as f: images[idx, :, :, :] = imread(f, mode='RGB').astype(np.float) / 255.0 filenames.append(os.path.basename(filepath)) idx += 1 if idx == batch_size: yield filenames, images filenames = [] images = np.zeros(batch_shape) idx = 0 if idx > 0: yield filenames, images
Example 28
Project: neural-fingerprinting Author: StephanZheng File: attack_noop.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def load_images(input_dir, batch_shape): """Read png images from input directory in batches. Args: input_dir: input directory batch_shape: shape of minibatch array, i.e. [batch_size, height, width, 3] Yields: filenames: list file names without path of each image Length of this list could be less than batch_size, in this case only first few images of the result are elements of the minibatch. images: array with all images from this batch """ images = np.zeros(batch_shape) filenames = [] idx = 0 batch_size = batch_shape[0] for filepath in tf.gfile.Glob(os.path.join(input_dir, '*.png')): with tf.gfile.Open(filepath) as f: images[idx, :, :, :] = imread(f, mode='RGB').astype(np.float) / 255.0 filenames.append(os.path.basename(filepath)) idx += 1 if idx == batch_size: yield filenames, images filenames = [] images = np.zeros(batch_shape) idx = 0 if idx > 0: yield filenames, images
Example 29
Project: neural-fingerprinting Author: StephanZheng File: defense.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def load_images(input_dir, batch_shape): """Read png images from input directory in batches. Args: input_dir: input directory batch_shape: shape of minibatch array, i.e. [batch_size, height, width, 3] Yields: filenames: list file names without path of each image Lenght of this list could be less than batch_size, in this case only first few images of the result are elements of the minibatch. images: array with all images from this batch """ images = np.zeros(batch_shape) filenames = [] idx = 0 batch_size = batch_shape[0] for filepath in tf.gfile.Glob(os.path.join(input_dir, '*.png')): with tf.gfile.Open(filepath) as f: image = imread(f, mode='RGB').astype(np.float) / 255.0 # Images for inception classifier are normalized to be in [-1, 1] interval. images[idx, :, :, :] = image * 2.0 - 1.0 filenames.append(os.path.basename(filepath)) idx += 1 if idx == batch_size: yield filenames, images filenames = [] images = np.zeros(batch_shape) idx = 0 if idx > 0: yield filenames, images
Example 30
Project: neural-fingerprinting Author: StephanZheng File: defense.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def load_images(input_dir, batch_shape): """Read png images from input directory in batches. Args: input_dir: input directory batch_shape: shape of minibatch array, i.e. [batch_size, height, width, 3] Yields: filenames: list file names without path of each image Lenght of this list could be less than batch_size, in this case only first few images of the result are elements of the minibatch. images: array with all images from this batch """ images = np.zeros(batch_shape) filenames = [] idx = 0 batch_size = batch_shape[0] for filepath in tf.gfile.Glob(os.path.join(input_dir, '*.png')): with tf.gfile.Open(filepath) as f: image = imread(f, mode='RGB').astype(np.float) / 255.0 # Images for inception classifier are normalized to be in [-1, 1] interval. images[idx, :, :, :] = image * 2.0 - 1.0 filenames.append(os.path.basename(filepath)) idx += 1 if idx == batch_size: yield filenames, images filenames = [] images = np.zeros(batch_shape) idx = 0 if idx > 0: yield filenames, images