Python numpy.trunc() Examples
The following are 30 code examples for showing how to use numpy.trunc(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: QuantumGeneticAlgorithms Author: ResearchCodesHub File: RQGA.py License: MIT License | 6 votes |
def RQGA(n, string_num): psi_=psi(string_num) H=hadamard(n) psi_=np.dot(H,psi_) print(psi_) print() iter=np.trunc(maxiter(n)) iter=int(round(iter)) for i in range (1,iter): U_O=U_Oracle(n) print(U_O) print() psi_=np.dot(U_O,psi_) print(psi_) print() D=ia(n) psi_=np.dot(D,psi_) print(psi_) ######################################################### # # # MAIN PROGRAM # # # #########################################################
Example 2
Project: deep_image_model Author: tobegit3hub File: image_ops_test.py License: Apache License 2.0 | 6 votes |
def test_adjust_gamma_less_one(self): """Verifying the output with expected results for gamma correction with gamma equal to half""" with self.test_session(): x_np = np.arange(0, 255, 4, np.uint8).reshape(8,8) y = image_ops.adjust_gamma(x_np, gamma=0.5) y_tf = np.trunc(y.eval()) y_np = np.array([[ 0, 31, 45, 55, 63, 71, 78, 84], [ 90, 95, 100, 105, 110, 115, 119, 123], [127, 131, 135, 139, 142, 146, 149, 153], [156, 159, 162, 165, 168, 171, 174, 177], [180, 183, 186, 188, 191, 194, 196, 199], [201, 204, 206, 209, 211, 214, 216, 218], [221, 223, 225, 228, 230, 232, 234, 236], [238, 241, 243, 245, 247, 249, 251, 253]], dtype=np.float32) self.assertAllClose(y_tf, y_np, 1e-6)
Example 3
Project: deep_image_model Author: tobegit3hub File: image_ops_test.py License: Apache License 2.0 | 6 votes |
def test_adjust_gamma_greater_one(self): """Verifying the output with expected results for gamma correction with gamma equal to two""" with self.test_session(): x_np = np.arange(0, 255, 4, np.uint8).reshape(8,8) y = image_ops.adjust_gamma(x_np, gamma=2) y_tf = np.trunc(y.eval()) y_np = np.array([[ 0, 0, 0, 0, 1, 1, 2, 3], [ 4, 5, 6, 7, 9, 10, 12, 14], [ 16, 18, 20, 22, 25, 27, 30, 33], [ 36, 39, 42, 45, 49, 52, 56, 60], [ 64, 68, 72, 76, 81, 85, 90, 95], [100, 105, 110, 116, 121, 127, 132, 138], [144, 150, 156, 163, 169, 176, 182, 189], [196, 203, 211, 218, 225, 233, 241, 249]], dtype=np.float32) self.assertAllClose(y_tf, y_np, 1e-6)
Example 4
Project: qkit Author: qkitgroup File: virtual_pwsMagnet.py License: GNU General Public License v2.0 | 6 votes |
def check_for_quench(self, wait=5, threshold=0.95, repetitions=1000): ''' Checks the magent for quench Input: wait (float) : waiting time in sec, default=5 threshold (float) : maximum voltage in volts, default=0.95 repetitions (int) : number of times quenching is checked, default=1000 Output: None ''' logging.debug(__name__ + 'check_for_quench()') for i in range(repetitions): time.sleep(wait) voltage = self.do_get_voltage() current = self.do_get_current() print "V=" + str(np.trunc(voltage * 1000) / 1000.) + "V, I=" + str( np.trunc(current * 1000) / 1000.) + "A, R=" + str(int(np.trunc(voltage / current * 1000))) + "mOhm" if voltage > threshold: print "WARNING! Magnet quench!! ramping down the coil..." self.ramp_current(0., 2e-3, wait=0.2, showvalue=True) return
Example 5
Project: hope Author: jakeret File: hope_numpy.py License: GNU General Public License v3.0 | 6 votes |
def numpy_math(x): # **Trigonometric functions** a = np.sin(x) # Trigonometric sine, element-wise. a = np.cos(x) # Cosine elementwise. a = np.tan(x) # Compute tangent element-wise. a = np.arcsin(x) #Inverse sine, element-wise. a = np.arccos(x) #Trigonometric inverse cosine, element-wise. a = np.arctan(x) #Trigonometric inverse tangent, element-wise. # **Hyperbolic functions** a = np.sinh(x) # Hyperbolic sine, element-wise. a = np.cosh(x) # Hyperbolic cosine, element-wise. a = np.tanh(x) # Compute hyperbolic tangent element-wise. # **Miscellaneous** a = np.exp(x) # Calculate the exponential of all elements in the input array. a = np.sum(x) # Return the sum of array elements. a = np.sqrt(x) # Return the positive square-root of an array, element-wise. a = np.ceil(x) # Return the ceiling of the input, element-wise. a = np.floor(x) # Return the floor of the input, element-wise. a = np.trunc(x) # Return the truncated value of the input, element-wise. a = np.fabs(x) # Compute the absolute values element-wise a = np.pi # Returns the pi constant
Example 6
Project: incubator-tvm Author: apache File: test_op_level3.py License: Apache License 2.0 | 6 votes |
def test_unary_identity(): for op, ref in [(relay.zeros_like, np.zeros_like), (relay.ones_like, np.ones_like), (relay.ceil, np.ceil), (relay.floor, np.floor), (relay.trunc, np.trunc), (relay.round, np.round), (relay.abs, np.abs), (relay.copy, None), # np.copy (relay.negative, np.negative), (relay.sign, np.sign)]: shape = (8, 9, 4) x = relay.var("x", relay.TensorType(shape, "float32")) y = op(x) yy = run_infer_type(y) assert yy.checked_type == relay.TensorType(shape, "float32") if ref is not None: data = np.random.rand(*shape).astype('float32') intrp = create_executor() op_res = intrp.evaluate(y, { x: relay.const(data) }) ref_res = ref(data) np.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=0.01)
Example 7
Project: VIP Author: vortex-exoplanet File: utils.py License: MIT License | 6 votes |
def idl_round(x): """ Round to the *nearest* integer, half-away-from-zero. Parameters ---------- x : array-like Number or array to be rounded Returns ------- r_rounded : array-like note that the returned values are floats Notes ----- IDL ``ROUND`` rounds to the *nearest* integer (commercial rounding), unlike numpy's round/rint, which round to the nearest *even* value (half-to-even, financial rounding) as defined in IEEE-754 standard. """ return np.trunc(x + np.copysign(0.5, x))
Example 8
Project: typhon Author: atmtools File: topography.py License: MIT License | 5 votes |
def get_native_grids(lat_min, lon_min, lat_max, lon_max): """ Returns the latitude and longitude grid at native SRTM30 resolution that are included in the given rectangle. Args: lat_min: The latitude coordinate of the lower left corner. lon_min: The longitude coordinate of the lower left corner. lat_max: The latitude coordinate of the upper right corner. lon_max: The latitude coordinate of the upper right corner. Returns: Tuple :code:`(lats, lons)` of 1D-arrays containing the latitude and longitude coordinates of the SRTM30 data points within the given rectangle. """ i = (90 - lat_max) / SRTM30._dlat i_max = np.trunc(i) if not i_max < i: i_max = i_max + 1 i = (90 - lat_min) / SRTM30._dlat i_min = np.trunc(i) lat_grid = 90 + 0.5 * SRTM30._dlat - np.arange(i_max, i_min + 1) * SRTM30._dlat j = (lon_max + 180) / SRTM30._dlon j_max = np.trunc((lon_max + 180.0) / SRTM30._dlon) if not j_max < j: j_max = j_max - 1 j_min = np.trunc((lon_min + 180.0) / SRTM30._dlon) lon_grid = -180 + 0.5 * SRTM30._dlon lon_grid += np.arange(j_min, j_max + 1) * SRTM30._dlon return lat_grid, lon_grid
Example 9
Project: PySpice Author: FabriceSalvaire File: Unit.py License: GNU General Public License v3.0 | 5 votes |
def __trunc__(self): """trunc(self): Truncates self to an Integral. Returns an Integral i such that: * i>0 iff self>0; * abs(i) <= abs(self); * for any Integral j satisfying the first two conditions, abs(i) >= abs(j) [i.e. i has "maximal" abs among those]. i.e. "truncate towards 0". """ raise NotImplementedError ##############################################
Example 10
Project: mars Author: mars-project File: trunc.py License: Apache License 2.0 | 5 votes |
def trunc(x, out=None, where=None, **kwargs): """ Return the truncated value of the input, element-wise. The truncated value of the scalar `x` is the nearest integer `i` which is closer to zero than `x` is. In short, the fractional part of the signed number `x` is discarded. Parameters ---------- x : array_like Input data. out : Tensor, None, or tuple of Tensor and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated tensor is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs Returns ------- y : Tensor or scalar The truncated value of each element in `x`. See Also -------- ceil, floor, rint Examples -------- >>> import mars.tensor as mt >>> a = mt.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> mt.trunc(a).execute() array([-1., -1., -0., 0., 1., 1., 2.]) """ op = TensorTrunc(**kwargs) return op(x, out=out, where=where)
Example 11
Project: D-VAE Author: muhanzhang File: test_var.py License: MIT License | 5 votes |
def test_numpy_method(): # This type of code is used frequently by PyMC3 users x = tt.dmatrix('x') data = np.random.rand(5, 5) x.tag.test_value = data for fct in [np.arccos, np.arccosh, np.arcsin, np.arcsinh, np.arctan, np.arctanh, np.ceil, np.cos, np.cosh, np.deg2rad, np.exp, np.exp2, np.expm1, np.floor, np.log, np.log10, np.log1p, np.log2, np.rad2deg, np.sin, np.sinh, np.sqrt, np.tan, np.tanh, np.trunc]: y = fct(x) f = theano.function([x], y) utt.assert_allclose(np.nan_to_num(f(data)), np.nan_to_num(fct(data)))
Example 12
Project: D-VAE Author: muhanzhang File: basic.py License: MIT License | 5 votes |
def impl(self, x): return numpy.trunc(x)
Example 13
Project: vnpy_crypto Author: birforce File: cross_val.py License: MIT License | 5 votes |
def __init__(self, n, k): """ K-Folds cross validation iterator: Provides train/test indexes to split data in train test sets Parameters ---------- n: int Total number of elements k: int number of folds Examples -------- >>> from scikits.learn import cross_val >>> X = [[1, 2], [3, 4], [1, 2], [3, 4]] >>> y = [1, 2, 3, 4] >>> kf = cross_val.KFold(4, k=2) >>> for train_index, test_index in kf: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y) TRAIN: [False False True True] TEST: [ True True False False] TRAIN: [ True True False False] TEST: [False False True True] Notes ----- All the folds have size trunc(n/k), the last one has the complementary """ assert k>0, ValueError('cannot have k below 1') assert k<n, ValueError('cannot have k=%d greater than %d'% (k, n)) self.n = n self.k = k
Example 14
Project: nistats Author: nilearn File: thresholding.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def _compute_hommel_value(z_vals, alpha, verbose=False): """Compute the All-Resolution Inference hommel-value""" if alpha < 0 or alpha > 1: raise ValueError('alpha should be between 0 and 1') z_vals_ = - np.sort(- z_vals) p_vals = norm.sf(z_vals_) n_samples = len(p_vals) if len(p_vals) == 1: return p_vals[0] > alpha if p_vals[0] > alpha: return n_samples slopes = (alpha - p_vals[: - 1]) / np.arange(n_samples, 1, -1) slope = np.max(slopes) hommel_value = np.trunc(n_samples + (alpha - slope * n_samples) / slope) if verbose: try: from matplotlib import pyplot as plt except ImportError: warnings.warn('"verbose" option requires the package Matplotlib.' 'Please install it using `pip install matplotlib`.') else: plt.figure() plt.plot(p_vals, 'o') plt.plot([n_samples - hommel_value, n_samples], [0, alpha]) plt.plot([0, n_samples], [0, 0], 'k') plt.show(block=False) return np.minimum(hommel_value, n_samples)
Example 15
Project: nussl Author: nussl File: report_card.py License: MIT License | 5 votes |
def truncate(values, decs=2): return np.trunc(values*10**decs)/(10**decs)
Example 16
Project: nufhe Author: nucypher File: numeric_functions.py License: GNU General Public License v3.0 | 5 votes |
def double_to_t32(d: float): return ((d - numpy.trunc(d)) * 2**32).astype(Torus32)
Example 17
Project: pywasm Author: mohanson File: execution.py License: MIT License | 5 votes |
def f32_trunc(config: Configuration, i: binary.Instruction): a = config.stack.pop().f32() r = Value.from_f32(numpy.trunc(a)) config.stack.append(r)
Example 18
Project: pywasm Author: mohanson File: execution.py License: MIT License | 5 votes |
def f64_trunc(config: Configuration, i: binary.Instruction): a = config.stack.pop().f64() r = Value.from_f64(numpy.trunc(a)) config.stack.append(r)
Example 19
Project: training_results_v0.6 Author: mlperf File: test_top_level3.py License: Apache License 2.0 | 5 votes |
def test_trunc(): check_map(sym.trunc, np.trunc)
Example 20
Project: python-meep-utils Author: FilipDominec File: effparam.py License: GNU General Public License v2.0 | 5 votes |
def reasonable_ticks(a, density=.6): #{{{ """ Define the grid and ticks a bit denser than by default """ decimal=10**np.trunc(np.log10(a/density)); y=a/density/decimal/10 return (decimal, 2*decimal, 5*decimal)[np.int(3*y)] #}}} ## == Homogenisation functions (efficient processing whole np.array at once) ==
Example 21
Project: attention-lvcsr Author: rizar File: test_var.py License: MIT License | 5 votes |
def test_numpy_method(): # This type of code is used frequently by PyMC3 users x = tt.dmatrix('x') data = np.random.rand(5, 5) x.tag.test_value = data for fct in [np.arccos, np.arccosh, np.arcsin, np.arcsinh, np.arctan, np.arctanh, np.ceil, np.cos, np.cosh, np.deg2rad, np.exp, np.exp2, np.expm1, np.floor, np.log, np.log10, np.log1p, np.log2, np.rad2deg, np.sin, np.sinh, np.sqrt, np.tan, np.tanh, np.trunc]: y = fct(x) f = theano.function([x], y) utt.assert_allclose(np.nan_to_num(f(data)), np.nan_to_num(fct(data)))
Example 22
Project: attention-lvcsr Author: rizar File: basic.py License: MIT License | 5 votes |
def impl(self, x): return numpy.trunc(x)
Example 23
Project: Pyspatialml Author: stevenpawley File: rasterlayer.py License: GNU General Public License v3.0 | 5 votes |
def __trunc__(self): """Truncating to an integral using math.trunc(), i.e. math.trunc(layer) """ def func(arr): return np.trunc(arr) return self._arith(func)
Example 24
Project: ad_examples Author: shubhomoydas File: loda.py License: MIT License | 5 votes |
def get_bin_for_equal_hist(breaks, x): if x < breaks[0]: return 0 if x > breaks[len(breaks)-1]: return len(breaks)-1 i = np.trunc((x - breaks[0]) / (breaks[1] - breaks[0])) # get integral value return int(i)
Example 25
Project: ad_examples Author: shubhomoydas File: loda.py License: MIT License | 5 votes |
def pdf_hist_equal_bins(x, h, minpdf=1e-8): # here we are assuming a regular histogram where # h.breaks[1] - h.breaks[0] would return the width of the bin p = (x - h.breaks[0]) / (h.breaks[1] - h.breaks[0]) ndensity = len(h.density) p = np.array([min(int(np.trunc(v)), ndensity-1) for v in p]) d = h.density[p] # quick hack to make sure d is never 0 d = np.array([max(v, minpdf) for v in d]) return d
Example 26
Project: qkit Author: qkitgroup File: circlefit.py License: GNU General Public License v2.0 | 5 votes |
def _periodic_boundary(self,x,bound): return np.fmod(x,bound)-np.trunc(x/bound)*bound
Example 27
Project: myia Author: mila-iqia File: test_operations.py License: MIT License | 5 votes |
def test_trunc(a): return math.trunc(a)
Example 28
Project: myia Author: mila-iqia File: test_operations.py License: MIT License | 5 votes |
def test_elemwise_trunc(a): return np.trunc(a)
Example 29
Project: AnomalyDetection Author: Marcnuth File: anomaly_detect_ts.py License: Apache License 2.0 | 5 votes |
def _get_max_outliers(data, max_percent_anomalies): """ Calculates the max_outliers for an input data set data : pandas DataFrame the input data set max_percent_anomalies : float the input maximum number of anomalies per percent of data set values """ max_outliers = int(np.trunc(data.size * max_percent_anomalies)) assert max_outliers, 'With longterm=True, AnomalyDetection splits the data into 2 week periods by default. You have {0} observations in a period, which is too few. Set a higher piecewise_median_period_weeks.'.format( data.size) return max_outliers
Example 30
Project: hope Author: jakeret File: test_functions.py License: GNU General Public License v3.0 | 5 votes |
def test_func_trunc(a, b, c): return np.trunc(a)