Python numpy.savetxt() Examples
The following are 30 code examples for showing how to use numpy.savetxt(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: mlearn Author: materialsvirtuallab File: gap.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def write_param(self, xml_filename='gap.xml'): """ Write xml file to perform lammps calculation. Args: xml_filename (str): Filename to store xml formatted parameters. """ if not self.param: raise RuntimeError("The xml and parameters should be provided.") tree = self.param.get('xml') root = tree.getroot() gpcoordinates = list(root.iter('gpCoordinates'))[0] param_filename = "{}.soapparam".format(self.name) gpcoordinates.set('sparseX_filename', param_filename) np.savetxt(param_filename, self.param.get('param'), fmt='%.20e') tree.write(xml_filename) pair_coeff = self.pair_coeff.format(xml_filename, '\"Potential xml_label={}\"'. format(self.param.get('potential_label')), self.specie.Z) ff_settings = [self.pair_style, pair_coeff] return ff_settings
Example 2
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: utils.py License: Apache License 2.0 | 6 votes |
def pred_test(testing_data, exe, param_list=None, save_path=""): ret = numpy.zeros((testing_data.shape[0], 2)) if param_list is None: for i in range(testing_data.shape[0]): exe.arg_dict['data'][:] = testing_data[i, 0] exe.forward(is_train=False) ret[i, 0] = exe.outputs[0].asnumpy() ret[i, 1] = numpy.exp(exe.outputs[1].asnumpy()) numpy.savetxt(save_path, ret) else: for i in range(testing_data.shape[0]): pred = numpy.zeros((len(param_list),)) for j in range(len(param_list)): exe.copy_params_from(param_list[j]) exe.arg_dict['data'][:] = testing_data[i, 0] exe.forward(is_train=False) pred[j] = exe.outputs[0].asnumpy() ret[i, 0] = pred.mean() ret[i, 1] = pred.std()**2 numpy.savetxt(save_path, ret) mse = numpy.square(ret[:, 0] - testing_data[:, 0] **3).mean() return mse, ret
Example 3
Project: pruning_yolov3 Author: zbyuan File: utils.py License: GNU General Public License v3.0 | 6 votes |
def print_mutation(hyp, results, bucket=''): # Print mutation results to evolve.txt (for use with train.py --evolve) a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values c = '%10.3g' * len(results) % results # results (P, R, mAP, F1, test_loss) print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) if bucket: os.system('gsutil cp gs://%s/evolve.txt .' % bucket) # download evolve.txt with open('evolve.txt', 'a') as f: # append result f.write(c + b + '\n') x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g') # save sort by fitness if bucket: os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt
Example 4
Project: ArtGAN Author: cs-chan File: ingest_flower102.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def run(self): """ resize images then write manifest files to disk. """ self.write_label() self.collectdata() records = [(fname, tgt) for fname, tgt in self.trainpairlist.items()] np.savetxt(self.manifests['train'], records, fmt='%s,%s') records = [(fname, tgt) for fname, tgt in self.valpairlist.items()] np.savetxt(self.manifests['val'], records, fmt='%s,%s') records = [(fname, tgt) for fname, tgt in self.testpairlist.items()] np.savetxt(self.manifests['test'], records, fmt='%s,%s')
Example 5
Project: transferlearning Author: jindongwang File: main.py License: MIT License | 6 votes |
def extract_feature(model, dataloader, save_path, load_from_disk=True, model_path=''): if load_from_disk: model = models.Network(base_net=args.model_name, n_class=args.num_class) model.load_state_dict(torch.load(model_path)) model = model.to(DEVICE) model.eval() correct = 0 fea_all = torch.zeros(1,1+model.base_network.output_num()).to(DEVICE) with torch.no_grad(): for inputs, labels in dataloader: inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) feas = model.get_features(inputs) labels = labels.view(labels.size(0), 1).float() x = torch.cat((feas, labels), dim=1) fea_all = torch.cat((fea_all, x), dim=0) outputs = model(inputs) preds = torch.max(outputs, 1)[1] correct += torch.sum(preds == labels.data.long()) test_acc = correct.double() / len(dataloader.dataset) fea_numpy = fea_all.cpu().numpy() np.savetxt(save_path, fea_numpy[1:], fmt='%.6f', delimiter=',') print('Test acc: %f' % test_acc) # You may want to classify with 1nn after getting features
Example 6
Project: pointnet-registration-framework Author: vinits5 File: generate_rotations.py License: MIT License | 6 votes |
def main(args): # dataset testset = get_datasets(args) batch_size = len(testset) amp = args.deg * math.pi / 180.0 w = torch.randn(batch_size, 3) w = w / w.norm(p=2, dim=1, keepdim=True) * amp t = torch.rand(batch_size, 3) * args.max_trans if args.format == 'wv': # the output: twist vectors. R = ptlk.so3.exp(w) # (N, 3) --> (N, 3, 3) G = torch.zeros(batch_size, 4, 4) G[:, 3, 3] = 1 G[:, 0:3, 0:3] = R G[:, 0:3, 3] = t x = ptlk.se3.log(G) # --> (N, 6) else: # rotation-vector and translation-vector x = torch.cat((w, t), dim=1) numpy.savetxt(args.outfile, x, delimiter=',')
Example 7
Project: pymoo Author: msu-coinlab File: generate.py License: Apache License 2.0 | 6 votes |
def generate_test_data(): for str_problem in ["osy"]: problem = get_problem(str_problem) X = [] # define a callback function that prints the X and F value of the best individual def my_callback(algorithm): pop = algorithm.pop _X = pop.get("X")[np.random.permutation(len(pop))[:10]] X.append(_X) minimize(problem, method='nsga2', method_args={'pop_size': 100}, termination=('n_gen', 100), callback=my_callback, pf=problem.pareto_front(), disp=True, seed=1) np.savetxt("%s.x" % str_problem, np.concatenate(X, axis=0), delimiter=",")
Example 8
Project: Chinese-Character-and-Calligraphic-Image-Processing Author: MingtaoGuo File: confusionMatrix.py License: MIT License | 6 votes |
def get_predict_labels(): inputs = tf.placeholder("float", [None, 64, 64, 1]) is_training = tf.placeholder("bool") prediction, _ = googlenet(inputs, is_training) predict_labels = tf.argmax(prediction, 1) sess = tf.Session() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() data = sio.loadmat("../data/dataset.mat") testdata = data["test"] / 127.5 - 1.0 testlabel = data["testlabels"] saver.restore(sess, "../save_para/.\\model.ckpt") nums_test = testlabel.shape[1] PREDICT_LABELS = np.zeros([nums_test]) for i in range(nums_test // BATCH_SIZE): PREDICT_LABELS[i * BATCH_SIZE:i * BATCH_SIZE + BATCH_SIZE] = sess.run(predict_labels, feed_dict={inputs: testdata[i * BATCH_SIZE:i * BATCH_SIZE + BATCH_SIZE], is_training: False}) PREDICT_LABELS[(nums_test // BATCH_SIZE - 1) * BATCH_SIZE + BATCH_SIZE:] = sess.run(predict_labels, feed_dict={inputs: testdata[(nums_test // BATCH_SIZE - 1) * BATCH_SIZE + BATCH_SIZE:], is_training: False}) np.savetxt("../data/predict_labels.txt", PREDICT_LABELS)
Example 9
Project: pyscf Author: pyscf File: test_0162_bse_h2o_spin2_uhf_cis.py License: Apache License 2.0 | 6 votes |
def test_0162_bse_h2o_spin2_uhf_cis(self): """ This """ mol = gto.M(verbose=1,atom='O 0 0 0; H 0 0.489 1.074; H 0 0.489 -1.074',basis='cc-pvdz',spin=2) gto_mf = scf.UHF(mol) gto_mf.kernel() gto_td = tddft.TDDFT(gto_mf) gto_td.nstates = 190 gto_td.kernel() omegas = np.arange(0.0, 2.0, 0.01) + 1j*0.03 p_ave = -polariz_freq_osc_strength(gto_td.e, gto_td.oscillator_strength(), omegas).imag data = np.array([omegas.real*HARTREE2EV, p_ave]) np.savetxt('test_0162_bse_h2o_spin2_uhf_cis_pyscf.txt', data.T, fmt=['%f','%f']) #data_ref = np.loadtxt('test_0162_bse_h2o_spin2_uhf_cis_pyscf.txt-ref').T #self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3)) nao_td = bse_iter(mf=gto_mf, gto=mol, verbosity=0, xc_code='CIS') polariz = -nao_td.comp_polariz_inter_ave(omegas).imag data = np.array([omegas.real*HARTREE2EV, polariz]) np.savetxt('test_0162_bse_h2o_spin2_uhf_cis_nao.txt', data.T, fmt=['%f','%f']) #data_ref = np.loadtxt('test_0162_bse_h2o_spin2_uhf_cis_nao.txt-ref').T #self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3), \ # msg="{}".format(abs(data_ref-data).sum()/data.size))
Example 10
Project: pyscf Author: pyscf File: test_0082_bse_gw_gto_be.py License: Apache License 2.0 | 6 votes |
def test_bse_gto_vs_nao_inter_0082(self): """ Interacting case """ #dm1 = gto_mf.make_rdm1() #o1 = gto_mf.get_ovlp() #print(__name__, 'dm1*o1', (dm1*o1).sum()) nao_td = bse_iter(mf=gto_mf, gto=mol, verbosity=0, xc_code='GW', perform_gw=True) #dm2 = nao_td.make_rdm1() #o2 = nao_td.get_ovlp() #n = nao_td.norbs #print(__name__, 'dm2*o2', (dm2.reshape((n,n))*o2).sum()) omegas = np.linspace(0.0,2.0,450)+1j*0.04 p_iter = -nao_td.comp_polariz_inter_ave(omegas).imag data = np.array([omegas.real*27.2114, p_iter]) np.savetxt('be.bse_iter.omega.inter.ave.txt', data.T, fmt=['%f','%f'])
Example 11
Project: pyscf Author: pyscf File: test_0083_gw_bse_h2_ae.py License: Apache License 2.0 | 6 votes |
def test_gw(self): """ This is GW """ mol = gto.M( verbose = 1, atom = '''H 0 0 0; H 0.17 0.7 0.587''', basis = 'cc-pvdz',) #mol = gto.M( verbose = 0, atom = '''H 0.0 0.0 -0.3707; H 0.0 0.0 0.3707''', basis = 'cc-pvdz',) gto_mf = scf.RHF(mol) gto_mf.kernel() #print('gto_mf.mo_energy:', gto_mf.mo_energy) b = bse_iter(mf=gto_mf, gto=mol, perform_gw=True, xc_code='GW', verbosity=0, nvrt=4) #self.assertAlmostEqual(b.mo_energy[0], -0.5967647) #self.assertAlmostEqual(b.mo_energy[1], 0.19072719) omegas = np.linspace(0.0,2.0,450)+1j*0.04 p_iter = -b.comp_polariz_inter_ave(omegas).imag data = np.array([omegas.real*27.2114, p_iter]) np.savetxt('h2_gw_bse_iter.omega.inter.ave.txt', data.T) data_ref = np.loadtxt('h2_gw_bse_iter.omega.inter.ave.txt-ref').T #print(__name__, abs(data_ref-data).sum()/data.size) self.assertTrue(np.allclose(data_ref, data, 5)) p_iter = -b.comp_polariz_nonin_ave(omegas).imag data = np.array([omegas.real*27.2114, p_iter]) np.savetxt('h2_gw_bse_iter.omega.nonin.ave.txt', data.T)
Example 12
Project: pyscf Author: pyscf File: test_0040_bse_rpa_nao.py License: Apache License 2.0 | 6 votes |
def test_0040_bse_rpa_nao(self): """ Compute polarization with RPA via 2-point non-local potentials (BSE solver) """ from timeit import default_timer as timer dname = os.path.dirname(os.path.abspath(__file__)) bse = bse_iter(label='water', cd=dname, xc_code='RPA', verbosity=0) omegas = np.linspace(0.0,2.0,150)+1j*0.01 #print(__name__, omegas.shape) pxx = np.zeros(len(omegas)) for iw,omega in enumerate(omegas): for ixyz in range(1): dip = bse.dip_ab[ixyz] vab = bse.apply_l(dip, omega) pxx[iw] = pxx[iw] - (vab.imag*dip.reshape(-1)).sum() data = np.array([omegas.real*27.2114, pxx]) np.savetxt('water.bse_iter_rpa.omega.inter.pxx.txt', data.T, fmt=['%f','%f']) data_ref = np.loadtxt(dname+'/water.bse_iter_rpa.omega.inter.pxx.txt-ref') #print(' bse.l0_ncalls ', bse.l0_ncalls) self.assertTrue(np.allclose(data_ref,data.T, rtol=1.0, atol=1e-05))
Example 13
Project: pyscf Author: pyscf File: test_0091_tddft_x_zip_na20.py License: Apache License 2.0 | 6 votes |
def test_x_zip_feature_na20_chain(self): """ This a test for compression of the eigenvectos at higher energies """ dname = dirname(abspath(__file__)) siesd = dname+'/sodium_20' x = td_c(label='siesta', cd=siesd,x_zip=True, x_zip_emax=0.25,x_zip_eps=0.05,jcutoff=7,xc_code='RPA',nr=128, fermi_energy=-0.0913346431431985) eps = 0.005 ww = np.arange(0.0, 0.5, eps/2.0)+1j*eps data = np.array([ww.real*27.2114, -x.comp_polariz_inter_ave(ww).imag]) fname = 'na20_chain.tddft_iter_rpa.omega.inter.ave.x_zip.txt' np.savetxt(fname, data.T, fmt=['%f','%f']) #print(__file__, fname) data_ref = np.loadtxt(dname+'/'+fname+'-ref') #print(' x.rf0_ncalls ', x.rf0_ncalls) #print(' x.matvec_ncalls ', x.matvec_ncalls) self.assertTrue(np.allclose(data_ref,data.T, rtol=1.0e-1, atol=1e-06))
Example 14
Project: pyscf Author: pyscf File: test_0161_bse_h2b_spin1_uhf_cis.py License: Apache License 2.0 | 6 votes |
def test_161_bse_h2b_spin1_uhf_cis(self): """ This """ mol = gto.M(verbose=1,atom='B 0 0 0; H 0 0.489 1.074; H 0 0.489 -1.074',basis='cc-pvdz',spin=1) gto_mf = scf.UHF(mol) gto_mf.kernel() gto_td = tddft.TDHF(gto_mf) gto_td.nstates = 150 gto_td.kernel() omegas = np.arange(0.0, 2.0, 0.01) + 1j*0.03 p_ave = -polariz_freq_osc_strength(gto_td.e, gto_td.oscillator_strength(), omegas).imag data = np.array([omegas.real*HARTREE2EV, p_ave]) np.savetxt('test_0161_bse_h2b_spin1_uhf_cis_pyscf.txt', data.T, fmt=['%f','%f']) #data_ref = np.loadtxt('test_0159_bse_h2b_uhf_cis_pyscf.txt-ref').T #self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3)) nao_td = bse_iter(mf=gto_mf, gto=mol, verbosity=0, xc_code='CIS') polariz = -nao_td.comp_polariz_inter_ave(omegas).imag data = np.array([omegas.real*HARTREE2EV, polariz]) np.savetxt('test_0161_bse_h2b_spin1_uhf_cis_nao.txt', data.T, fmt=['%f','%f']) #data_ref = np.loadtxt('test_0161_bse_h2b_spin1_uhf_cis_nao.txt-ref').T #self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3))
Example 15
Project: pyscf Author: pyscf File: test_0157_bse_h2o_rhf_cis.py License: Apache License 2.0 | 6 votes |
def test_157_bse_h2o_rhf_cis(self): """ This """ mol = gto.M(verbose=1,atom='O 0 0 0; H 0 0.489 1.074; H 0 0.489 -1.074',basis='cc-pvdz') gto_mf = scf.RHF(mol) gto_mf.kernel() gto_td = tddft.TDDFT(gto_mf) gto_td.nstates = 190 gto_td.kernel() omegas = np.arange(0.0, 2.0, 0.01) + 1j*0.03 p_ave = -polariz_freq_osc_strength(gto_td.e, gto_td.oscillator_strength(), omegas).imag data = np.array([omegas.real*HARTREE2EV, p_ave]) np.savetxt('test_0157_bse_h2o_rhf_cis_pyscf.txt', data.T, fmt=['%f','%f']) data_ref = np.loadtxt('test_0157_bse_h2o_rhf_cis_pyscf.txt-ref').T self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3)) nao_td = bse_iter(mf=gto_mf, gto=mol, verbosity=0, xc_code='CIS') polariz = -nao_td.comp_polariz_inter_ave(omegas).imag data = np.array([omegas.real*HARTREE2EV, polariz]) np.savetxt('test_0157_bse_h2o_rhf_cis_nao.txt', data.T, fmt=['%f','%f']) data_ref = np.loadtxt('test_0157_bse_h2o_rhf_cis_nao.txt-ref').T self.assertTrue(np.allclose(data_ref, data, atol=5e-5, rtol=5e-2), msg="{}".format(abs(data_ref-data).sum()/data.size ) )
Example 16
Project: pyscf Author: pyscf File: test_0035_bse_nonin_nao.py License: Apache License 2.0 | 6 votes |
def test_bse_iter_nonin(self): """ Compute polarization with LDA TDDFT """ from timeit import default_timer as timer dname = os.path.dirname(os.path.abspath(__file__)) bse = bse_iter(label='water', cd=dname, iter_broadening=1e-2, xc_code='RPA', verbosity=0) omegas = np.linspace(0.0,2.0,500)+1j*bse.eps pxx = np.zeros(len(omegas)) for iw,omega in enumerate(omegas): for ixyz in range(1): vab = bse.apply_l0(bse.dip_ab[ixyz], omega) pxx[iw] = pxx[iw] - (vab.imag*bse.dip_ab[ixyz].reshape(-1)).sum() data = np.array([omegas.real*27.2114, pxx]) np.savetxt('water.bse_iter_rpa.omega.nonin.pxx.txt', data.T, fmt=['%f','%f']) data_ref = np.loadtxt(dname+'/water.bse_iter_rpa.omega.nonin.pxx.txt-ref') #print(' bse.l0_ncalls ', bse.l0_ncalls) self.assertTrue(np.allclose(data_ref,data.T, rtol=1.0, atol=1e-05))
Example 17
Project: pyscf Author: pyscf File: test_0152_bse_h2b_uks_pz.py License: Apache License 2.0 | 6 votes |
def test_152_bse_h2b_uks_pz(self): """ This """ mol = gto.M(verbose=1,atom='B 0 0 0; H 0 0.489 1.074; H 0 0.489 -1.074',basis='cc-pvdz',spin=3) gto_mf = scf.UKS(mol) gto_mf.kernel() gto_td = tddft.TDDFT(gto_mf) gto_td.nstates = 190 gto_td.kernel() omegas = np.arange(0.0, 2.0, 0.01) + 1j*0.03 p_ave = -polariz_freq_osc_strength(gto_td.e, gto_td.oscillator_strength(), omegas).imag data = np.array([omegas.real*HARTREE2EV, p_ave]) np.savetxt('test_0152_bse_h2b_uks_pz_pyscf.txt', data.T, fmt=['%f','%f']) data_ref = np.loadtxt('test_0152_bse_h2b_uks_pz_pyscf.txt-ref').T self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3)) nao_td = bse_iter(mf=gto_mf, gto=mol, verbosity=0) polariz = -nao_td.comp_polariz_inter_ave(omegas).imag data = np.array([omegas.real*HARTREE2EV, polariz]) np.savetxt('test_0152_bse_h2b_uks_pz_nao.txt', data.T, fmt=['%f','%f']) data_ref = np.loadtxt('test_0152_bse_h2b_uks_pz_nao.txt-ref').T self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3))
Example 18
Project: pyscf Author: pyscf File: test_0139_h2o_uks_nonin_pb.py License: Apache License 2.0 | 6 votes |
def test_139_h2o_uks_nonin_pb(self): """ This """ mol = gto.M(verbose=1,atom='O 0 0 0; H 0 0.489 1.074; H 0 0.489 -1.074',basis='cc-pvdz') gto_mf = dft.UKS(mol) gto_mf.kernel() nao_mf = bse_iter(gto=mol, mf=gto_mf) comega = np.arange(0.0, 2.0, 0.01) + 1j*0.03 pnonin = -nao_mf.polariz_nonin_ave_matelem(comega).imag data = np.array([comega.real*HARTREE2EV, pnonin]) np.savetxt('test_139_h2o_uks_nonin_matelem.txt', data.T, fmt=['%f','%f']) #data_ref = np.loadtxt('test_139_h2o_uks_nonin_matelem.txt-ref').T #self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3)) pnonin = -nao_mf.comp_polariz_nonin_ave(comega).imag data = np.array([comega.real*HARTREE2EV, pnonin]) np.savetxt('test_139_h2o_uks_nonin_nao.txt', data.T, fmt=['%f','%f']) #data_ref = np.loadtxt('test_139_h2o_uks_nonin_nao.txt-ref').T #self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3))
Example 19
Project: pyscf Author: pyscf File: test_0146_bse_h2o_rhf_rpa.py License: Apache License 2.0 | 6 votes |
def test_0146_bse_h2o_rhf_rpa(self): """ Interacting case """ mol=gto.M(verbose=0,atom='O 0 0 0;H 0 0.489 1.074;H 0 0.489 -1.074',basis='cc-pvdz',) gto_hf = scf.RKS(mol) gto_hf.xc = 'hf' gto_hf.kernel() gto_td = tddft.dRPA(gto_hf) gto_td.nstates = 95 gto_td.kernel() omegas = np.arange(0.0, 2.0, 0.01) + 1j*0.03 #p_ave = -polariz_inter_ave(gto_hf, mol, gto_td, omegas).imag p_ave = -polariz_freq_osc_strength(gto_td.e, gto_td.oscillator_strength(), omegas).imag data = np.array([omegas.real*HARTREE2EV, p_ave]) np.savetxt('test_0146_bse_h2o_rhf_rpa_pyscf.txt', data.T, fmt=['%f','%f']) data_ref = np.loadtxt('test_0146_bse_h2o_rhf_rpa_pyscf.txt-ref').T self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3)) nao_td = bse_iter(mf=gto_hf, gto=mol, verbosity=0, xc_code='RPA') p_iter = -nao_td.comp_polariz_inter_ave(omegas).imag data = np.array([omegas.real*HARTREE2EV, p_iter]) np.savetxt('test_0146_bse_h2o_rhf_rpa_nao.txt', data.T, fmt=['%f','%f']) data_ref = np.loadtxt('test_0146_bse_h2o_rhf_rpa_nao.txt-ref').T self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3))
Example 20
Project: pyscf Author: pyscf File: test_0096_h2_ae_qchem_irf.py License: Apache License 2.0 | 6 votes |
def test_qchem_irf(self): """ Test """ gto_hf = dft.RKS(mol) gto_hf.kernel() nocc = mol.nelectron//2 nmo = gto_hf.mo_energy.size nvir = nmo-nocc gto_td = tddft.dRPA(gto_hf) gto_td.nstates = min(100, nocc*nvir) gto_td.kernel() gto_gw = GW(gto_hf, gto_td) gto_gw.kernel() nao_td = tddft_iter(mf=gto_hf, gto=mol, xc_code='RPA') eps = 0.02 omegas = np.arange(0.0,2.0,eps/2.0)+1j*eps p_iter = -nao_td.comp_polariz_inter_ave(omegas).imag data = np.array([omegas.real*27.2114, p_iter]) np.savetxt('NH.tddft_iter_rpa.omega.inter.pav.txt', data.T, fmt=['%f','%f']) np.set_printoptions(linewidth=180) #qrf = qchem_inter_rf(mf=gto_hf, gto=mol, pb_algorithm='fp', verbosity=1)
Example 21
Project: pyscf Author: pyscf File: test_0150_bse_h2o_uhf_rpa.py License: Apache License 2.0 | 6 votes |
def test_0150_bse_h2o_uhf_rpa(self): """ Interacting case """ mol=gto.M(verbose=0,atom='O 0 0 0;H 0 0.489 1.074;H 0 0.489 -1.074',basis='cc-pvdz',) gto_mf = scf.UKS(mol) gto_mf.xc = 'hf' gto_mf.kernel() gto_td = tddft.dRPA(gto_mf) gto_td.nstates = 95 gto_td.kernel() omegas = np.arange(0.0, 2.0, 0.01) + 1j*0.03 p_ave = -polariz_freq_osc_strength(gto_td.e, gto_td.oscillator_strength(), omegas).imag data = np.array([omegas.real*HARTREE2EV, p_ave]) np.savetxt('test_0150_bse_h2o_uhf_rpa_pyscf.txt', data.T, fmt=['%f','%f']) data_ref = np.loadtxt('test_0150_bse_h2o_uhf_rpa_pyscf.txt-ref').T self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3)) nao_td = bse_iter(mf=gto_mf, gto=mol, verbosity=0, xc_code='RPA') polariz = -nao_td.comp_polariz_inter_ave(omegas).imag data = np.array([omegas.real*HARTREE2EV, polariz]) np.savetxt('test_0150_bse_h2o_uhf_rpa_nao.txt', data.T, fmt=['%f','%f']) data_ref = np.loadtxt('test_0150_bse_h2o_uhf_rpa_nao.txt-ref').T self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3))
Example 22
Project: pyscf Author: pyscf File: test_0151_bse_h2b_uhf_rpa.py License: Apache License 2.0 | 6 votes |
def test_151_bse_h2b_uhf_rpa(self): """ This """ mol = gto.M(verbose=1,atom='B 0 0 0; H 0 0.489 1.074; H 0 0.489 -1.074',basis='cc-pvdz',spin=3) gto_mf = scf.UKS(mol) gto_mf.xc = 'hf' gto_mf.kernel() gto_td = tddft.dRPA(gto_mf) gto_td.nstates = 190 gto_td.kernel() omegas = np.arange(0.0, 2.0, 0.01) + 1j*0.03 p_ave = -polariz_freq_osc_strength(gto_td.e, gto_td.oscillator_strength(), omegas).imag data = np.array([omegas.real*HARTREE2EV, p_ave]) np.savetxt('test_0151_bse_h2b_uhf_rpa_pyscf.txt', data.T, fmt=['%f','%f']) data_ref = np.loadtxt('test_0151_bse_h2b_uhf_rpa_pyscf.txt-ref').T self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3)) nao_td = bse_iter(mf=gto_mf, gto=mol, verbosity=0, xc_code='RPA') polariz = -nao_td.comp_polariz_inter_ave(omegas).imag data = np.array([omegas.real*HARTREE2EV, polariz]) np.savetxt('test_0151_bse_h2b_uhf_rpa_nao.txt', data.T, fmt=['%f','%f']) data_ref = np.loadtxt('test_0151_bse_h2b_uhf_rpa_nao.txt-ref').T self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3))
Example 23
Project: pyscf Author: pyscf File: test_0013_gpaw_overlap_nao.py License: Apache License 2.0 | 6 votes |
def test_sv_after_gpaw(self): """ init ao_log with radial orbitals from GPAW """ if calc is None: return self.assertTrue(hasattr(calc, 'setups')) sv = mf(gpaw=calc, gen_pb=False) self.assertEqual(sv.ao_log.nr, 1024) over = sv.overlap_coo().toarray() error = sv.hsx.check_overlaps(over) self.assertLess(error, 1e-4) #print("overlap error: ", error/over.size) #print("Pyscf gpaw") #for py, gp in zip(over[:, 0], sv.wfsx.overlaps[:, 0]): # print("{0:.5f} {1:.5f}".format(py, gp)) #np.savetxt("Pyscf.overlaps", over) #np.savetxt("gpaw.overlaps", sv.wfsx.overlaps,)
Example 24
Project: TensorFlow-TransX Author: thunlp File: transR.py License: MIT License | 5 votes |
def __init__(self): lib.setInPath("./data/FB15K/") test_lib.setInPath("./data/FB15K/") lib.setBernFlag(0) self.learning_rate = 0.0001 self.testFlag = False self.loadFromData = False self.L1_flag = True self.hidden_sizeE = 100 self.hidden_sizeR = 100 self.nbatches = 100 self.entity = 0 self.relation = 0 self.trainTimes = 1000 self.margin = 1.0 ''' In the original paper, TransR is trained with the pre-trained embeddings as parameter initialization. If you do not want to train with the pre-trained embeddings, you can use the following code instead of the default version. You need to use np.savetxt() to store the pre-trained embeddings into the corresponding file and input the file's name. e.g. self.ent_init = "ent_embeddings.txt" self.rel_init = "rel_embeddings.txt" where entity and relation embeddings are stored into the "ent_embeddings.txt" and "rel_embeddings.txt" respectively. ''' self.rel_init = None self.ent_init = None
Example 25
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: stt_datagenerator.py License: Apache License 2.0 | 5 votes |
def sample_normalize(self, k_samples=1000, overwrite=False): """ Estimate the mean and std of the features from the training set Params: k_samples (int): Use this number of samples for estimation """ log = LogUtil().getlogger() log.info("Calculating mean and std from samples") # if k_samples is negative then it goes through total dataset if k_samples < 0: audio_paths = self.audio_paths # using sample else: k_samples = min(k_samples, len(self.train_audio_paths)) samples = self.rng.sample(self.train_audio_paths, k_samples) audio_paths = samples manager = Manager() return_dict = manager.dict() jobs = [] for threadIndex in range(cpu_count()): proc = Process(target=self.preprocess_sample_normalize, args=(threadIndex, audio_paths, overwrite, return_dict)) jobs.append(proc) proc.start() for proc in jobs: proc.join() feat = np.sum(np.vstack([item['feat'] for item in return_dict.values()]), axis=0) count = sum([item['count'] for item in return_dict.values()]) feat_squared = np.sum(np.vstack([item['feat_squared'] for item in return_dict.values()]), axis=0) self.feats_mean = feat / float(count) self.feats_std = np.sqrt(feat_squared / float(count) - np.square(self.feats_mean)) np.savetxt( generate_file_path(self.save_dir, self.model_name, 'feats_mean'), self.feats_mean) np.savetxt( generate_file_path(self.save_dir, self.model_name, 'feats_std'), self.feats_std) log.info("End calculating mean and std from samples")
Example 26
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: stt_utils.py License: Apache License 2.0 | 5 votes |
def spectrogram_from_file(filename, step=10, window=20, max_freq=None, eps=1e-14, overwrite=False, save_feature_as_csvfile=False): """ Calculate the log of linear spectrogram from FFT energy Params: filename (str): Path to the audio file step (int): Step size in milliseconds between windows window (int): FFT window size in milliseconds max_freq (int): Only FFT bins corresponding to frequencies between [0, max_freq] are returned eps (float): Small value to ensure numerical stability (for ln(x)) """ csvfilename = filename.replace(".wav", ".csv") if (os.path.isfile(csvfilename) is False) or overwrite: with soundfile.SoundFile(filename) as sound_file: audio = sound_file.read(dtype='float32') sample_rate = sound_file.samplerate if audio.ndim >= 2: audio = np.mean(audio, 1) if max_freq is None: max_freq = sample_rate / 2 if max_freq > sample_rate / 2: raise ValueError("max_freq must not be greater than half of " " sample rate") if step > window: raise ValueError("step size must not be greater than window size") hop_length = int(0.001 * step * sample_rate) fft_length = int(0.001 * window * sample_rate) pxx, freqs = spectrogram( audio, fft_length=fft_length, sample_rate=sample_rate, hop_length=hop_length) ind = np.where(freqs <= max_freq)[0][-1] + 1 res = np.transpose(np.log(pxx[:ind, :] + eps)) if save_feature_as_csvfile: np.savetxt(csvfilename, res) return res else: return np.loadtxt(csvfilename)
Example 27
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: Train.py License: Apache License 2.0 | 5 votes |
def encode_csv(label_csv, systole_csv, diastole_csv): systole_encode, diastole_encode = encode_label(np.loadtxt(label_csv, delimiter=",")) np.savetxt(systole_csv, systole_encode, delimiter=",", fmt="%g") np.savetxt(diastole_csv, diastole_encode, delimiter=",", fmt="%g") # Write encoded label into the target csv # We use CSV so that not all data need to sit into memory # You can also use inmemory numpy array if your machine is large enough
Example 28
Project: ArtGAN Author: cs-chan File: ingest_stl10.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def write_label(self, ): for i, l in enumerate(self.labels): sdir = os.path.join(self.outlabeldir, str(i) + '.txt') np.savetxt(sdir, [l], '%d')
Example 29
Project: ArtGAN Author: cs-chan File: ingest_stl10.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def run(self): """ resize images then write manifest files to disk. """ self.write_label() self.collectdata() records = [(fname, tgt) for fname, tgt in self.trainpairlist.items()] np.savetxt(self.manifests['train'], records, fmt='%s,%s') records = [(fname, tgt) for fname, tgt in self.valpairlist.items()] np.savetxt(self.manifests['val'], records, fmt='%s,%s')
Example 30
Project: ArtGAN Author: cs-chan File: ingest_stl10.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def write_label(self, ): sdir = os.path.join(self.out_dir, 'labels', '11.txt') np.savetxt(sdir, [11], '%d')