Python numpy.triu() Examples
The following are 30 code examples for showing how to use numpy.triu(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: python-control Author: python-control File: statesp_test.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_dc_gain_integrator(self): """DC gain when eigenvalue at DC returns appropriately sized array of nan.""" # the SISO case is also tested in test_dc_gain_{cont,discr} import itertools # iterate over input and output sizes, and continuous (dt=None) and discrete (dt=True) time for inputs, outputs, dt in itertools.product(range(1, 6), range(1, 6), [None, True]): states = max(inputs, outputs) # a matrix that is singular at DC, and has no "useless" states as in # _remove_useless_states a = np.triu(np.tile(2, (states, states))) # eigenvalues all +2, except for ... a[0, 0] = 0 if dt is None else 1 b = np.eye(max(inputs, states))[:states, :inputs] c = np.eye(max(outputs, states))[:outputs, :states] d = np.zeros((outputs, inputs)) sys = StateSpace(a, b, c, d, dt) dc = np.squeeze(np.tile(np.nan, (outputs, inputs))) np.testing.assert_array_equal(dc, sys.dcgain())
Example 2
Project: python-control Author: python-control File: statesp_array_test.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_dc_gain_integrator(self): """DC gain when eigenvalue at DC returns appropriately sized array of nan.""" # the SISO case is also tested in test_dc_gain_{cont,discr} import itertools # iterate over input and output sizes, and continuous (dt=None) and discrete (dt=True) time for inputs, outputs, dt in itertools.product(range(1, 6), range(1, 6), [None, True]): states = max(inputs, outputs) # a matrix that is singular at DC, and has no "useless" states as in # _remove_useless_states a = np.triu(np.tile(2, (states, states))) # eigenvalues all +2, except for ... a[0, 0] = 0 if dt is None else 1 b = np.eye(max(inputs, states))[:states, :inputs] c = np.eye(max(outputs, states))[:outputs, :states] d = np.zeros((outputs, inputs)) sys = StateSpace(a, b, c, d, dt) dc = np.squeeze(np.tile(np.nan, (outputs, inputs))) np.testing.assert_array_equal(dc, sys.dcgain())
Example 3
Project: blow Author: joansj File: blow.py License: Apache License 2.0 | 6 votes |
def __init__(self,in_channel): super(InvConv,self).__init__() weight=np.random.randn(in_channel,in_channel) q,_=linalg.qr(weight) w_p,w_l,w_u=linalg.lu(q.astype(np.float32)) w_s=np.diag(w_u) w_u=np.triu(w_u,1) u_mask=np.triu(np.ones_like(w_u),1) l_mask=u_mask.T self.register_buffer('w_p',torch.from_numpy(w_p)) self.register_buffer('u_mask',torch.from_numpy(u_mask)) self.register_buffer('l_mask',torch.from_numpy(l_mask)) self.register_buffer('l_eye',torch.eye(l_mask.shape[0])) self.register_buffer('s_sign',torch.sign(torch.from_numpy(w_s))) self.w_l=torch.nn.Parameter(torch.from_numpy(w_l)) self.w_s=torch.nn.Parameter(torch.log(1e-7+torch.abs(torch.from_numpy(w_s)))) self.w_u=torch.nn.Parameter(torch.from_numpy(w_u)) self.weight=None self.invweight=None return
Example 4
Project: recruit Author: Frank-qlu File: test_twodim_base.py License: Apache License 2.0 | 6 votes |
def test_tril_triu_ndim3(): for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: a = np.array([ [[1, 1], [1, 1]], [[1, 1], [1, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_tril_desired = np.array([ [[1, 0], [1, 1]], [[1, 0], [1, 0]], [[1, 0], [0, 0]], ], dtype=dtype) a_triu_desired = np.array([ [[1, 1], [0, 1]], [[1, 1], [0, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_triu_observed = np.triu(a) a_tril_observed = np.tril(a) assert_array_equal(a_triu_observed, a_triu_desired) assert_array_equal(a_tril_observed, a_tril_desired) assert_equal(a_triu_observed.dtype, a.dtype) assert_equal(a_tril_observed.dtype, a.dtype)
Example 5
Project: recruit Author: Frank-qlu File: test_twodim_base.py License: Apache License 2.0 | 6 votes |
def test_tril_triu_dtype(): # Issue 4916 # tril and triu should return the same dtype as input for c in np.typecodes['All']: if c == 'V': continue arr = np.zeros((3, 3), dtype=c) assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) # check special cases arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'], ['2004-01-01T12:00', '2003-01-03T13:45']], dtype='datetime64') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) arr = np.zeros((3,3), dtype='f4,f4') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype)
Example 6
Project: tenpy Author: tenpy File: test_tools.py License: GNU General Public License v3.0 | 6 votes |
def test_qr_li(): cutoff = 1.e-10 for shape in [(5, 4), (4, 5)]: print('shape =', shape) A = np.arange(20).reshape(shape) # linearly dependent: only two rows/columns independent A[3, :] = np.random.random() * (cutoff / 100) # nearly linear dependent q, r = tools.math.qr_li(A) assert np.linalg.norm(r - np.triu(r)) == 0. qdq = q.T.conj().dot(q) assert np.linalg.norm(qdq - np.eye(len(qdq))) < 1.e-13 assert np.linalg.norm(q.dot(r) - A) < cutoff * 20 r, q = tools.math.rq_li(A) assert np.linalg.norm(r - np.triu(r, r.shape[1] - r.shape[0])) == 0. qqd = q.dot(q.T.conj()) assert np.linalg.norm(qqd - np.eye(len(qqd))) < 1.e-13 assert np.linalg.norm(r.dot(q) - A) < cutoff * 20
Example 7
Project: lambda-packs Author: ryfeus File: test_twodim_base.py License: MIT License | 6 votes |
def test_tril_triu_ndim3(): for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: a = np.array([ [[1, 1], [1, 1]], [[1, 1], [1, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_tril_desired = np.array([ [[1, 0], [1, 1]], [[1, 0], [1, 0]], [[1, 0], [0, 0]], ], dtype=dtype) a_triu_desired = np.array([ [[1, 1], [0, 1]], [[1, 1], [0, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_triu_observed = np.triu(a) a_tril_observed = np.tril(a) yield assert_array_equal, a_triu_observed, a_triu_desired yield assert_array_equal, a_tril_observed, a_tril_desired yield assert_equal, a_triu_observed.dtype, a.dtype yield assert_equal, a_tril_observed.dtype, a.dtype
Example 8
Project: lambda-packs Author: ryfeus File: test_twodim_base.py License: MIT License | 6 votes |
def test_tril_triu_dtype(): # Issue 4916 # tril and triu should return the same dtype as input for c in np.typecodes['All']: if c == 'V': continue arr = np.zeros((3, 3), dtype=c) assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) # check special cases arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'], ['2004-01-01T12:00', '2003-01-03T13:45']], dtype='datetime64') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) arr = np.zeros((3,3), dtype='f4,f4') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype)
Example 9
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_twodim_base.py License: MIT License | 6 votes |
def test_tril_triu_ndim3(): for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: a = np.array([ [[1, 1], [1, 1]], [[1, 1], [1, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_tril_desired = np.array([ [[1, 0], [1, 1]], [[1, 0], [1, 0]], [[1, 0], [0, 0]], ], dtype=dtype) a_triu_desired = np.array([ [[1, 1], [0, 1]], [[1, 1], [0, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_triu_observed = np.triu(a) a_tril_observed = np.tril(a) yield assert_array_equal, a_triu_observed, a_triu_desired yield assert_array_equal, a_tril_observed, a_tril_desired yield assert_equal, a_triu_observed.dtype, a.dtype yield assert_equal, a_tril_observed.dtype, a.dtype
Example 10
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_twodim_base.py License: MIT License | 6 votes |
def test_tril_triu_dtype(): # Issue 4916 # tril and triu should return the same dtype as input for c in np.typecodes['All']: if c == 'V': continue arr = np.zeros((3, 3), dtype=c) assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) # check special cases arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'], ['2004-01-01T12:00', '2003-01-03T13:45']], dtype='datetime64') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) arr = np.zeros((3,3), dtype='f4,f4') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype)
Example 11
Project: ITDD Author: lizekang File: transformer.py License: MIT License | 6 votes |
def _get_attn_subsequent_mask(self, size): """ Get an attention mask to avoid using the subsequent info. Args: size: int Returns: (`LongTensor`): * subsequent_mask `[1 x size x size]` """ attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') subsequent_mask = torch.from_numpy(subsequent_mask) return subsequent_mask
Example 12
Project: ITDD Author: lizekang File: ktransformer.py License: MIT License | 6 votes |
def _get_attn_subsequent_mask(self, size): """ Get an attention mask to avoid using the subsequent info. Args: size: int Returns: (`LongTensor`): * subsequent_mask `[1 x size x size]` """ attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') subsequent_mask = torch.from_numpy(subsequent_mask) return subsequent_mask
Example 13
Project: ITDD Author: lizekang File: mtransformer.py License: MIT License | 6 votes |
def _get_attn_subsequent_mask(self, size): """ Get an attention mask to avoid using the subsequent info. Args: size: int Returns: (`LongTensor`): * subsequent_mask `[1 x size x size]` """ attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') subsequent_mask = torch.from_numpy(subsequent_mask) return subsequent_mask
Example 14
Project: vnpy_crypto Author: birforce File: test_twodim_base.py License: MIT License | 6 votes |
def test_tril_triu_ndim3(): for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: a = np.array([ [[1, 1], [1, 1]], [[1, 1], [1, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_tril_desired = np.array([ [[1, 0], [1, 1]], [[1, 0], [1, 0]], [[1, 0], [0, 0]], ], dtype=dtype) a_triu_desired = np.array([ [[1, 1], [0, 1]], [[1, 1], [0, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_triu_observed = np.triu(a) a_tril_observed = np.tril(a) yield assert_array_equal, a_triu_observed, a_triu_desired yield assert_array_equal, a_tril_observed, a_tril_desired yield assert_equal, a_triu_observed.dtype, a.dtype yield assert_equal, a_tril_observed.dtype, a.dtype
Example 15
Project: vnpy_crypto Author: birforce File: test_twodim_base.py License: MIT License | 6 votes |
def test_tril_triu_dtype(): # Issue 4916 # tril and triu should return the same dtype as input for c in np.typecodes['All']: if c == 'V': continue arr = np.zeros((3, 3), dtype=c) assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) # check special cases arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'], ['2004-01-01T12:00', '2003-01-03T13:45']], dtype='datetime64') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) arr = np.zeros((3,3), dtype='f4,f4') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype)
Example 16
Project: OpenFermion Author: quantumlib File: _bksf_test.py License: Apache License 2.0 | 6 votes |
def test_bravyi_kitaev_fast_edgeoperator_Bi(self): # checking the edge operators edge_matrix = numpy.triu(numpy.ones((4, 4))) edge_matrix_indices = numpy.array( numpy.nonzero(numpy.triu(edge_matrix) - numpy.diag(numpy.diag(edge_matrix)))) correct_operators_b0 = ((0, 'Z'), (1, 'Z'), (2, 'Z')) correct_operators_b1 = ((0, 'Z'), (3, 'Z'), (4, 'Z')) correct_operators_b2 = ((1, 'Z'), (3, 'Z'), (5, 'Z')) correct_operators_b3 = ((2, 'Z'), (4, 'Z'), (5, 'Z')) qterm_b0 = QubitOperator(correct_operators_b0, 1) qterm_b1 = QubitOperator(correct_operators_b1, 1) qterm_b2 = QubitOperator(correct_operators_b2, 1) qterm_b3 = QubitOperator(correct_operators_b3, 1) self.assertTrue(qterm_b0 == _bksf.edge_operator_b(edge_matrix_indices, 0)) self.assertTrue(qterm_b1 == _bksf.edge_operator_b(edge_matrix_indices, 1)) self.assertTrue(qterm_b2 == _bksf.edge_operator_b(edge_matrix_indices, 2)) self.assertTrue(qterm_b3 == _bksf.edge_operator_b(edge_matrix_indices, 3))
Example 17
Project: fragile Author: FragileTech File: models.py License: MIT License | 6 votes |
def _cov_matrix_diagonalization(self): # Decomposition of cov_matrix into coords_matrix*diag(scaling_diag.^2)*coords_matrix' # (diagonalization) if ( self._count_eval - self.n_eigen_eval > self.pop_size / (self.lr_covrank1_const + self.lr_mu_const) / self.n_dims / 10 ): self.n_eigen_eval = self._count_eval self.cov_matrix = numpy.triu(self.cov_matrix) + numpy.triu(self.cov_matrix, 1).T eigvals, eigvects = numpy.linalg.eig(self.cov_matrix) self.scaling_diag = numpy.diag(eigvals) # [::-1]) self.coords_matrix = eigvects # [:, ::-1] assert numpy.abs(numpy.imag(self.coords_matrix).sum()) == 0, self.coords_matrix assert numpy.abs(numpy.imag(self.scaling_diag).sum()) == 0, self.scaling_diag self.scaling_diag = numpy.sqrt(numpy.diag(self.scaling_diag)).reshape(-1, 1) self.invsqrtC = numpy.matmul( numpy.matmul(self.coords_matrix, numpy.diag(self.scaling_diag.flatten() ** -1)), self.coords_matrix.T, )
Example 18
Project: Computable Author: ktraunmueller File: test_blas.py License: MIT License | 6 votes |
def test_syrk(self): for f in _get_func('syrk'): c = f(a=self.a, alpha=1.) assert_array_almost_equal(np.triu(c), np.triu(self.t)) c = f(a=self.a, alpha=1., lower=1) assert_array_almost_equal(np.tril(c), np.tril(self.t)) c0 = np.ones(self.t.shape) c = f(a=self.a, alpha=1., beta=1., c=c0) assert_array_almost_equal(np.triu(c), np.triu(self.t+c0)) c = f(a=self.a, alpha=1., trans=1) assert_array_almost_equal(np.triu(c), np.triu(self.tt)) #prints '0-th dimension must be fixed to 3 but got 5', FIXME: suppress? # FIXME: how to catch the _fblas.error?
Example 19
Project: controllable-text-attribute-transfer Author: Nrgeup File: model2.py License: Apache License 2.0 | 5 votes |
def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0
Example 20
Project: controllable-text-attribute-transfer Author: Nrgeup File: model.py License: Apache License 2.0 | 5 votes |
def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0
Example 21
Project: controllable-text-attribute-transfer Author: Nrgeup File: data.py License: Apache License 2.0 | 5 votes |
def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0
Example 22
Project: controllable-text-attribute-transfer Author: Nrgeup File: model2.py License: Apache License 2.0 | 5 votes |
def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0
Example 23
Project: controllable-text-attribute-transfer Author: Nrgeup File: model.py License: Apache License 2.0 | 5 votes |
def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0
Example 24
Project: controllable-text-attribute-transfer Author: Nrgeup File: model2.py License: Apache License 2.0 | 5 votes |
def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0
Example 25
Project: controllable-text-attribute-transfer Author: Nrgeup File: model.py License: Apache License 2.0 | 5 votes |
def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0
Example 26
Project: controllable-text-attribute-transfer Author: Nrgeup File: data.py License: Apache License 2.0 | 5 votes |
def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0
Example 27
Project: graph-neural-networks Author: alelab-upenn File: graphTools.py License: GNU General Public License v3.0 | 5 votes |
def edgeFailSampling(W, p): """ edgeFailSampling: randomly delete the edges of a given graph Input: W (np.array): adjacency matrix p (float): probability of deleting an edge Output: W (np.array): adjacency matrix with some edges randomly deleted Obs.: The resulting graph need not be connected (even if the input graph is) """ assert 0 <= p <= 1 N = W.shape[0] assert W.shape[1] == N undirected = np.allclose(W, W.T, atol = zeroTolerance) maskEdges = np.random.rand(N, N) maskEdges = (maskEdges > p).astype(W.dtype) # Put a 1 with probability 1-p W = maskEdges * W if undirected: W = np.triu(W) W = W + W.T return W
Example 28
Project: graph-neural-networks Author: alelab-upenn File: graphTools.py License: GNU General Public License v3.0 | 5 votes |
def __init__(self, graphType, N, graphOptions): assert N > 0 #\\\ Create the graph (Outputs adjacency matrix): self.W = createGraph(graphType, N, graphOptions) # TODO: Let's start easy: make it just an N x N matrix. We'll see later # the rest of the things just as handling multiple features and stuff. #\\\ Number of nodes: self.N = (self.W).shape[0] #\\\ Bool for graph being undirected: self.undirected = np.allclose(self.W, (self.W).T, atol = zeroTolerance) # np.allclose() gives true if matrices W and W.T are the same up to # atol. #\\\ Bool for graph having self-loops: self.selfLoops = True \ if np.sum(np.abs(np.diag(self.W)) > zeroTolerance) > 0 \ else False #\\\ Degree matrix: self.D = np.diag(np.sum(self.W, axis = 1)) #\\\ Number of edges: self.M = int(np.sum(np.triu(self.W)) if self.undirected \ else np.sum(self.W)) #\\\ Unweighted adjacency: self.A = (np.abs(self.W) > 0).astype(self.W.dtype) #\\\ Laplacian matrix: # Only if the graph is undirected and has no self-loops if self.undirected and not self.selfLoops: self.L = adjacencyToLaplacian(self.W) else: self.L = None #\\\ GSO (Graph Shift Operator): # The weighted adjacency matrix by default self.S = self.W #\\\ GFT: Declare variables but do not compute it unless specifically # requested self.E = None # Eigenvalues self.V = None # Eigenvectors
Example 29
Project: Doc2EDAG Author: dolphin-zs File: transformer.py License: MIT License | 5 votes |
def subsequent_mask(size): """Mask out subsequent positions.""" attn_shape = (1, size, size) subseq_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subseq_mask) == 0
Example 30
Project: Character-Level-Language-Modeling-with-Deeper-Self-Attention-pytorch Author: nadavbh12 File: annotated_attention.py License: MIT License | 5 votes |
def subsequent_mask(size): """Mask out subsequent positions.""" attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0