Python numpy.identity() Examples
The following are 30 code examples for showing how to use numpy.identity(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: padasip Author: matousc89 File: ap.py License: MIT License | 6 votes |
def __init__(self, n, order=5, mu=0.1, eps=0.001, w="random"): self.kind = "AP filter" self.n = self.check_int( n,'The size of filter must be an integer') self.order = self.check_int( order, 'The order of projection must be an integer') self.mu = self.check_float_param(mu, 0, 1000, "mu") self.eps = self.check_float_param(eps, 0, 1000, "eps") self.init_weights(w, self.n) self.w_history = False self.x_mem = np.zeros((self.n, self.order)) self.d_mem = np.zeros(order) self.ide_eps = self.eps * np.identity(self.order) self.ide = np.identity(self.order) self.y_mem = False self.e_mem = False
Example 2
Project: DOTA_models Author: ringringyi File: optimizers.py License: Apache License 2.0 | 6 votes |
def optimize(self, sess, feed_dict): reg_input, reg_weight, old_values, targets = sess.run( [self.inputs, self.regression_weight, self.values, self.targets], feed_dict=feed_dict) intended_values = targets * self.mix_frac + old_values * (1 - self.mix_frac) # taken from rllab reg_coeff = 1e-5 for _ in range(5): best_fit_weight = np.linalg.lstsq( reg_input.T.dot(reg_input) + reg_coeff * np.identity(reg_input.shape[1]), reg_input.T.dot(intended_values))[0] if not np.any(np.isnan(best_fit_weight)): break reg_coeff *= 10 if len(best_fit_weight.shape) == 1: best_fit_weight = np.expand_dims(best_fit_weight, -1) sess.run(self.update_regression_weight, feed_dict={self.new_regression_weight: best_fit_weight})
Example 3
Project: OpenNRE Author: thunlp File: max_pool.py License: MIT License | 6 votes |
def __init__(self, kernel_size, segment_num=None): """ Args: input_size: dimention of input embedding kernel_size: kernel_size for CNN padding: padding for CNN hidden_size: hidden size """ super().__init__() self.segment_num = segment_num if self.segment_num != None: self.mask_embedding = nn.Embedding(segment_num + 1, segment_num) self.mask_embedding.weight.data.copy_(torch.FloatTensor(np.concatenate([np.zeros((1, segment_num)), np.identity(segment_num)], axis=0))) self.mask_embedding.weight.requires_grad = False self._minus = -100 self.pool = nn.MaxPool1d(kernel_size)
Example 4
Project: robosuite Author: StanfordVL File: transform_utils.py License: MIT License | 6 votes |
def quat2mat(quaternion): """ Converts given quaternion (x, y, z, w) to matrix. Args: quaternion: vec4 float angles Returns: 3x3 rotation matrix """ q = np.array(quaternion, dtype=np.float32, copy=True)[[3, 0, 1, 2]] n = np.dot(q, q) if n < EPS: return np.identity(3) q *= math.sqrt(2.0 / n) q = np.outer(q, q) return np.array( [ [1.0 - q[2, 2] - q[3, 3], q[1, 2] - q[3, 0], q[1, 3] + q[2, 0]], [q[1, 2] + q[3, 0], 1.0 - q[1, 1] - q[3, 3], q[2, 3] - q[1, 0]], [q[1, 3] - q[2, 0], q[2, 3] + q[1, 0], 1.0 - q[1, 1] - q[2, 2]], ] )
Example 5
Project: QCElemental Author: MolSSI File: test_scipy_hungarian.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_linear_sum_assignment_input_validation(): assert_raises(ValueError, linear_sum_assignment, [1, 2, 3]) C = [[1, 2, 3], [4, 5, 6]] assert_array_equal(linear_sum_assignment(C), linear_sum_assignment(np.asarray(C))) # assert_array_equal(linear_sum_assignment(C), # linear_sum_assignment(matrix(C))) I = np.identity(3) assert_array_equal(linear_sum_assignment(I.astype(np.bool)), linear_sum_assignment(I)) assert_raises(ValueError, linear_sum_assignment, I.astype(str)) I[0][0] = np.nan assert_raises(ValueError, linear_sum_assignment, I) I = np.identity(3) I[1][1] = np.inf assert_raises(ValueError, linear_sum_assignment, I)
Example 6
Project: pyscf Author: pyscf File: pmloc.py License: Apache License 2.0 | 6 votes |
def lowdin(s): e, v = numpy.linalg.eigh(s) return numpy.dot(v/numpy.sqrt(e), v.T.conj()) #def scdmU(coeff,ova): # aux = numpy.identity(ova.shape[0]) # #aux = lowdin(ova) # no = coeff.shape[1] # ova = reduce(numpy.dot,(coeff.T,ova,aux)) # # ova = no*nb # q,r,piv = scipy.linalg.qr(ova, pivoting=True) # # In fact, it is just "Lowdin-orthonormalized PAO". # bc = ova[:,piv[:no]] # ova = numpy.dot(bc.T,bc) # s12inv = lowdin(ova) # u = numpy.dot(bc,s12inv) # return u #------------------------------------------------ # Boys/PM-Localization #------------------------------------------------
Example 7
Project: pyscf Author: pyscf File: ulocal.py License: Apache License 2.0 | 6 votes |
def lowdinPop(mol,coeff,ova,enorb,occ): print '\nLowdin population for LMOs:' nb,nc = coeff.shape s12 = sqrtm(ova) lcoeff = s12.dot(coeff) diff = reduce(numpy.dot,(lcoeff.T,lcoeff)) - numpy.identity(nc) print 'diff=',numpy.linalg.norm(diff) pthresh = 0.05 labels = mol.ao_labels(None) nelec = 0.0 for iorb in range(nc): vec = lcoeff[:,iorb]**2 idx = list(numpy.argwhere(vec>pthresh)) print ' iorb=',iorb,' occ=',occ[iorb],' <i|F|i>=',enorb[iorb] for iao in idx: print ' iao=',labels[iao],' pop=',vec[iao] nelec += occ[iorb] print 'nelec=',nelec return 0
Example 8
Project: pyscf Author: pyscf File: test_eom_kuccsd_diag.py License: Apache License 2.0 | 6 votes |
def _test_ip_diag(self,kmf,kshift=0): cc = kccsd.KUCCSD(kmf) Ecc = cc.kernel()[0] eom = kccsd_uhf.EOMIP(cc) imds = eom.make_imds() t1a,t1b = imds.t1 nkpts, nocc_a, nvir_a = t1a.shape nkpts, nocc_b, nvir_b = t1b.shape nocc = nocc_a + nocc_b diag = kccsd_uhf.ipccsd_diag(eom,kshift,imds=imds) I = np.identity(diag.shape[0],dtype=complex) indices = np.arange(diag.shape[0]) H = np.zeros((I.shape[0],len(indices)),dtype=complex) for j,idx in enumerate(indices): H[:,j] = kccsd_uhf.ipccsd_matvec(eom,I[:,idx],kshift,imds=imds) diag_ref = np.zeros(len(indices),dtype=complex) diag_out = np.zeros(len(indices),dtype=complex) for j,idx in enumerate(indices): diag_ref[j] = H[idx,j] diag_out[j] = diag[idx] diff = np.linalg.norm(diag_ref - diag_out) self.assertTrue(abs(diff) < KGCCSD_TEST_THRESHOLD,"Difference in IP diag: {}".format(diff))
Example 9
Project: pyscf Author: pyscf File: test_eom_kgccsd_diag.py License: Apache License 2.0 | 6 votes |
def _test_ip_diag(self,cc): eom = kccsd_ghf.EOMIP(cc) imds = eom.make_imds() nkpts, nocc, nvir = imds.t1.shape diag = kccsd_ghf.ipccsd_diag(eom,0,imds=imds) I = np.identity(diag.shape[0],dtype=complex) indices = np.arange(len(diag)) H = np.zeros((I.shape[0],len(indices)),dtype=complex) for j,idx in enumerate(indices): H[:,j] = kccsd_ghf.ipccsd_matvec(eom,I[:,idx],0,imds=imds) diag_ref = np.zeros(len(indices),dtype=complex) diag_out = np.zeros(len(indices),dtype=complex) for j,idx in enumerate(indices): diag_ref[j] = H[idx,j] diag_out[j] = diag[idx] diff = np.linalg.norm(diag_ref - diag_out) self.assertTrue(abs(diff) < KGCCSD_TEST_THRESHOLD,"Difference in IP diag: {}".format(diff))
Example 10
Project: pyscf Author: pyscf File: test_eom_kgccsd_diag.py License: Apache License 2.0 | 6 votes |
def _test_ea_diag(self,cc): eom = kccsd_ghf.EOMEA(cc) imds = eom.make_imds() nkpts, nocc, nvir = imds.t1.shape diag = kccsd_ghf.eaccsd_diag(eom,0,imds=imds) I = np.identity(diag.shape[0],dtype=complex) indices = np.arange(len(diag)) H = np.zeros((I.shape[0],len(indices)),dtype=complex) for j,idx in enumerate(indices): H[:,j] = kccsd_ghf.eaccsd_matvec(eom,I[:,idx],0,imds=imds) diag_ref = np.zeros(len(indices),dtype=complex) diag_out = np.zeros(len(indices),dtype=complex) for j,idx in enumerate(indices): diag_ref[j] = H[idx,j] diag_out[j] = diag[idx] diff = np.linalg.norm(diag_ref - diag_out) self.assertTrue(abs(diff) < KGCCSD_TEST_THRESHOLD,"Difference in EA diag: {}".format(diff))
Example 11
Project: pyscf Author: pyscf File: make_test_cell.py License: Apache License 2.0 | 6 votes |
def test_cell_n2(L=5, mesh=[9]*3): cell = pbcgto.Cell() cell.unit = 'B' cell.atom.extend([['O', (L/2., L/2., L/2.)], ['H', (L/2.-0.689440, L/2.+0.578509, L/2.)], ['H', (L/2.+0.689440, L/2.-0.578509, L/2.)], ]) cell.a = L * np.identity(3) cell.basis = 'sto-3g' cell.pseudo = 'gth-pade' cell.mesh = mesh cell.output = '/dev/null' cell.build() return cell
Example 12
Project: pyscf Author: pyscf File: shci.py License: Apache License 2.0 | 6 votes |
def _make_dm123(self, state, norb, nelec, link_index=None, **kwargs): r"""Note this function does NOT compute the standard density matrix. The density matrices are reordered to match the the fci.rdm.make_dm123 function (used by NEVPT code). The returned "2pdm" is :math:`\langle p^\dagger q r^\dagger s\rangle`; The returned "3pdm" is :math:`\langle p^\dagger q r^\dagger s t^\dagger u\rangle`. """ onepdm, twopdm, threepdm = self.make_rdm123(state, norb, nelec, None, **kwargs) threepdm = numpy.einsum("mkijln->ijklmn", threepdm).copy() threepdm += numpy.einsum("jk,lm,in->ijklmn", numpy.identity(norb), numpy.identity(norb), onepdm) threepdm += numpy.einsum("jk,miln->ijklmn", numpy.identity(norb), twopdm) threepdm += numpy.einsum("lm,kijn->ijklmn", numpy.identity(norb), twopdm) threepdm += numpy.einsum("jm,kinl->ijklmn", numpy.identity(norb), twopdm) twopdm = numpy.einsum("iklj->ijkl", twopdm) + numpy.einsum("li,jk->ijkl", onepdm, numpy.identity(norb)) return onepdm, twopdm, threepdm
Example 13
Project: pyscf Author: pyscf File: dmrgci.py License: Apache License 2.0 | 6 votes |
def _make_dm123(self, state, norb, nelec, link_index=None, **kwargs): r'''Note this function does NOT compute the standard density matrix. The density matrices are reordered to match the the fci.rdm.make_dm123 function (used by NEVPT code). The returned "2pdm" is :math:`\langle p^\dagger q r^\dagger s\rangle`; The returned "3pdm" is :math:`\langle p^\dagger q r^\dagger s t^\dagger u\rangle`. ''' onepdm, twopdm, threepdm = self.make_rdm123(state, norb, nelec, None, **kwargs) threepdm = numpy.einsum('mkijln->ijklmn',threepdm).copy() threepdm += numpy.einsum('jk,lm,in->ijklmn',numpy.identity(norb),numpy.identity(norb),onepdm) threepdm += numpy.einsum('jk,miln->ijklmn',numpy.identity(norb),twopdm) threepdm += numpy.einsum('lm,kijn->ijklmn',numpy.identity(norb),twopdm) threepdm += numpy.einsum('jm,kinl->ijklmn',numpy.identity(norb),twopdm) twopdm =(numpy.einsum('iklj->ijkl',twopdm) + numpy.einsum('li,jk->ijkl',onepdm,numpy.identity(norb))) return onepdm, twopdm, threepdm
Example 14
Project: pyscf Author: pyscf File: uadc.py License: Apache License 2.0 | 6 votes |
def get_init_guess(self, nroots=1, diag=None, ascending = True): if diag is None : diag = self.ea_adc_diag() idx = None if ascending: idx = np.argsort(diag) else: idx = np.argsort(diag)[::-1] guess = np.zeros((diag.shape[0], nroots)) min_shape = min(diag.shape[0], nroots) guess[:min_shape,:min_shape] = np.identity(min_shape) g = np.zeros((diag.shape[0], nroots)) g[idx] = guess.copy() guess = [] for p in range(g.shape[1]): guess.append(g[:,p]) return guess
Example 15
Project: pyscf Author: pyscf File: uadc.py License: Apache License 2.0 | 6 votes |
def get_init_guess(self, nroots=1, diag=None, ascending = True): if diag is None : diag = self.ip_adc_diag() idx = None if ascending: idx = np.argsort(diag) else: idx = np.argsort(diag)[::-1] guess = np.zeros((diag.shape[0], nroots)) min_shape = min(diag.shape[0], nroots) guess[:min_shape,:min_shape] = np.identity(min_shape) g = np.zeros((diag.shape[0], nroots)) g[idx] = guess.copy() guess = [] for p in range(g.shape[1]): guess.append(g[:,p]) return guess
Example 16
Project: pyscf Author: pyscf File: dmrgci.py License: Apache License 2.0 | 6 votes |
def _make_dm123(self, state, norb, nelec, link_index=None, **kwargs): r'''Note this function does NOT compute the standard density matrix. The density matrices are reordered to match the the fci.rdm.make_dm123 function (used by NEVPT code). The returned "2pdm" is :math:`\langle p^\dagger q r^\dagger s\rangle`; The returned "3pdm" is :math:`\langle p^\dagger q r^\dagger s t^\dagger u\rangle`. ''' onepdm, twopdm, threepdm = self.make_rdm123(state, norb, nelec, None, **kwargs) threepdm = numpy.einsum('mkijln->ijklmn',threepdm).copy() threepdm += numpy.einsum('jk,lm,in->ijklmn',numpy.identity(norb),numpy.identity(norb),onepdm) threepdm += numpy.einsum('jk,miln->ijklmn',numpy.identity(norb),twopdm) threepdm += numpy.einsum('lm,kijn->ijklmn',numpy.identity(norb),twopdm) threepdm += numpy.einsum('jm,kinl->ijklmn',numpy.identity(norb),twopdm) twopdm =(numpy.einsum('iklj->ijkl',twopdm) + numpy.einsum('li,jk->ijkl',onepdm,numpy.identity(norb))) return onepdm, twopdm, threepdm
Example 17
Project: razzy-spinner Author: rafasashi File: __init__.py License: GNU General Public License v3.0 | 6 votes |
def cluster(self, vectors, assign_clusters=False, trace=False): assert len(vectors) > 0 # normalise the vectors if self._should_normalise: vectors = map(self._normalise, vectors) # use SVD to reduce the dimensionality if self._svd_dimensions and self._svd_dimensions < len(vectors[0]): [u, d, vt] = linalg.svd(numpy.transpose(array(vectors))) S = d[:self._svd_dimensions] * \ numpy.identity(self._svd_dimensions, numpy.Float64) T = u[:,:self._svd_dimensions] Dt = vt[:self._svd_dimensions,:] vectors = numpy.transpose(numpy.matrixmultiply(S, Dt)) self._Tt = numpy.transpose(T) # call abstract method to cluster the vectors self.cluster_vectorspace(vectors, trace) # assign the vectors to clusters if assign_clusters: print self._Tt, vectors return [self.classify(vector) for vector in vectors]
Example 18
Project: razzy-spinner Author: rafasashi File: util.py License: GNU General Public License v3.0 | 6 votes |
def cluster(self, vectors, assign_clusters=False, trace=False): assert len(vectors) > 0 # normalise the vectors if self._should_normalise: vectors = list(map(self._normalise, vectors)) # use SVD to reduce the dimensionality if self._svd_dimensions and self._svd_dimensions < len(vectors[0]): [u, d, vt] = numpy.linalg.svd(numpy.transpose(numpy.array(vectors))) S = d[:self._svd_dimensions] * \ numpy.identity(self._svd_dimensions, numpy.float64) T = u[:,:self._svd_dimensions] Dt = vt[:self._svd_dimensions,:] vectors = numpy.transpose(numpy.dot(S, Dt)) self._Tt = numpy.transpose(T) # call abstract method to cluster the vectors self.cluster_vectorspace(vectors, trace) # assign the vectors to clusters if assign_clusters: return [self.classify(vector) for vector in vectors]
Example 19
Project: kvae Author: simonkamronn File: nn.py License: MIT License | 6 votes |
def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype if len(shape) == 1: return constant_op.constant(0., dtype=dtype, shape=shape) elif len(shape) == 2 and shape[0] == shape[1]: return constant_op.constant(np.identity(shape[0], dtype)) elif len(shape) == 4 and shape[2] == shape[3]: array = np.zeros(shape, dtype=float) cx, cy = shape[0]/2, shape[1]/2 for i in range(shape[2]): array[cx, cy, i, i] = 1 return constant_op.constant(array, dtype=dtype) else: constant_op.constant(0., dtype=dtype, shape=shape)
Example 20
Project: striatum Author: ntucllab File: test_linucb.py License: BSD 2-Clause "Simplified" License | 6 votes |
def test_add_action(self): policy = self.policy context1 = {1: [1, 1], 2: [2, 2], 3: [3, 3]} history_id, _ = policy.get_action(context1, 2) new_actions = [Action() for i in range(2)] policy.add_action(new_actions) self.assertEqual(len(new_actions) + len(self.actions), policy._action_storage.count()) policy.reward(history_id, {3: 1}) model = policy._model_storage.get_model() for action in new_actions: self.assertTrue((model['A'][action.id] == np.identity(self.context_dimension)).all()) context2 = {1: [1, 1], 2: [2, 2], 3: [3, 3], 4: [4, 4], 5: [5, 5]} history_id2, recommendations = policy.get_action(context2, 4) self.assertEqual(len(recommendations), 4) policy.reward(history_id2, {new_actions[0].id: 4, new_actions[1].id: 5}) model = policy._model_storage.get_model() for action in new_actions: self.assertFalse((model['A'][action.id] == np.identity(2)).all())
Example 21
Project: pyGSTi Author: pyGSTio File: gaugegroup.py License: Apache License 2.0 | 6 votes |
def __init__(self, dim): """ Create a new gauge group with gauge-transform dimension `dim`, which should be the same as `mdl.dim` where `mdl` is a :class:`Model` you might gauge-transform. """ from . import operation as _op # b/c operation.py imports gaugegroup ltrans = _np.identity(dim, 'd') rtrans = _np.identity(dim, 'd') baseMx = _np.identity(dim, 'd') parameterArray = _np.zeros(dim, 'd') parameterToBaseIndicesMap = {i: [(i, i)] for i in range(dim)} gate = _op.LinearlyParamDenseOp(baseMx, parameterArray, parameterToBaseIndicesMap, ltrans, rtrans, real=True) OpGaugeGroup.__init__(self, gate, DiagGaugeGroupElement, "Diagonal")
Example 22
Project: pyGSTi Author: pyGSTio File: gaugegroup.py License: Apache License 2.0 | 6 votes |
def __init__(self, dim): """ Create a new gauge group with gauge-transform dimension `dim`, which should be the same as `mdl.dim` where `mdl` is a :class:`Model` you might gauge-transform. """ from . import operation as _op # b/c operation.py imports gaugegroup ltrans = _np.identity(dim, 'd') rtrans = _np.identity(dim, 'd') baseMx = _np.identity(dim, 'd') parameterArray = _np.zeros(dim - 1, 'd') parameterToBaseIndicesMap = {i: [(i + 1, i + 1)] for i in range(dim - 1)} gate = _op.LinearlyParamDenseOp(baseMx, parameterArray, parameterToBaseIndicesMap, ltrans, rtrans, real=True) OpGaugeGroup.__init__(self, gate, TPDiagGaugeGroupElement, "TP Diagonal")
Example 23
Project: pyGSTi Author: pyGSTio File: gaugegroup.py License: Apache License 2.0 | 6 votes |
def __init__(self, dim): """ Create a new gauge group with gauge-transform dimension `dim`, which should be the same as `mdl.dim` where `mdl` is a :class:`Model` you might gauge-transform. """ from . import operation as _op # b/c operation.py imports gaugegroup ltrans = _np.identity(dim, 'd') rtrans = _np.identity(dim, 'd') baseMx = _np.identity(dim, 'd') parameterArray = _np.zeros(1, 'd') parameterToBaseIndicesMap = {0: [(i, i) for i in range(1, dim)]} gate = _op.LinearlyParamDenseOp(baseMx, parameterArray, parameterToBaseIndicesMap, ltrans, rtrans, real=True) OpGaugeGroup.__init__(self, gate, TPSpamGaugeGroupElement, "TP Spam")
Example 24
Project: pyGSTi Author: pyGSTio File: povm.py License: Apache License 2.0 | 6 votes |
def depolarize(self, amount): """ Depolarize this POVM by the given `amount`. Parameters ---------- amount : float or tuple The amount to depolarize by. If a tuple, it must have length equal to one less than the dimension of the gate. All but the first element of each spam vector (often corresponding to the identity element) are multiplied by `amount` (if a float) or the corresponding `amount[i]` (if a tuple). Returns ------- None """ raise ValueError("Cannot depolarize a %s object" % self.__class__.__name__) #self.dirty = True
Example 25
Project: pyGSTi Author: pyGSTio File: povm.py License: Apache License 2.0 | 6 votes |
def _rebuild_complement(self, identity_for_complement=None): """ Rebuild complement vector (in case other vectors have changed) """ if self.complement_label is not None and self.complement_label in self: non_comp_effects = [v for k, v in self.items() if k != self.complement_label] if identity_for_complement is None: identity_for_complement = self[self.complement_label].identity complement_effect = _sv.ComplementSPAMVec( identity_for_complement, non_comp_effects) complement_effect.set_gpindices(slice(0, self.Np), self) # all parameters #Assign new complement effect without calling our __setitem__ old_ro = self._readonly; self._readonly = False POVM.__setitem__(self, self.complement_label, complement_effect) self._readonly = old_ro
Example 26
Project: Att-ChemdNER Author: lingluodlut File: initializations.py License: Apache License 2.0 | 5 votes |
def identity(shape, scale=1, name=None): if len(shape) != 2 or shape[0] != shape[1]: raise ValueError('Identity matrix initialization can only be used ' 'for 2D square matrices.') else: return K.variable(scale * np.identity(shape[0]), name=name)
Example 27
Project: padasip Author: matousc89 File: rls.py License: MIT License | 5 votes |
def __init__(self, n, mu=0.99, eps=0.1, w="random"): self.kind = "RLS filter" if type(n) == int: self.n = n else: raise ValueError('The size of filter must be an integer') self.mu = self.check_float_param(mu, 0, 1, "mu") self.eps = self.check_float_param(eps, 0, 1, "eps") self.init_weights(w, self.n) self.R = 1/self.eps * np.identity(n) self.w_history = False
Example 28
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: model.py License: Apache License 2.0 | 5 votes |
def get_distance(F, x): """Helper function for margin-based loss. Return a distance matrix given a matrix.""" n = x.shape[0] square = F.sum(x ** 2.0, axis=1, keepdims=True) distance_square = square + square.transpose() - (2.0 * F.dot(x, x.transpose())) # Adding identity to make sqrt work. return F.sqrt(distance_square + F.array(np.identity(n)))
Example 29
Project: OpenFermion-Cirq Author: quantumlib File: ffft_test.py License: Apache License 2.0 | 5 votes |
def test_ffft_inverse(size): qubits = LineQubit.range(size) ffft_circuit = cirq.Circuit(ffft(qubits), strategy=cirq.InsertStrategy.EARLIEST) ffft_circuit.append(cirq.inverse(ffft(qubits))) ffft_matrix = ffft_circuit.unitary( qubits_that_should_be_present=qubits) cirq.testing.assert_allclose_up_to_global_phase( ffft_matrix, np.identity(1 << size), atol=1e-8 )
Example 30
Project: OpenNRE Author: thunlp File: avg_pool.py License: MIT License | 5 votes |
def __init__(self, kernel_size, segment_num=None): """ Args: input_size: dimention of input embedding kernel_size: kernel_size for CNN padding: padding for CNN hidden_size: hidden size """ super().__init__() self.segment_num = segment_num if self.segment_num != None: self.mask_embedding = nn.Embedding(segment_num + 1, segment_num) self.mask_embedding.weight.data.copy_(torch.FloatTensor(np.concatenate([np.zeros(segment_num), np.identity(segment_num)], axis = 0))) self.mask_embedding.weight.requires_grad = False self.pool = nn.AvgPool1d(kernel_size)