Python numpy.rank() Examples
The following are 28 code examples for showing how to use numpy.rank(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: simulated-unsupervised-tensorflow Author: carpedm20 File: gaze_data.py License: Apache License 2.0 | 6 votes |
def __init__(self, config, rng=None): self.rng = np.random.RandomState(1) if rng is None else rng self.data_path = os.path.join(config.data_dir, 'gaze') self.sample_path = os.path.join(self.data_path, config.sample_dir) self.batch_size = config.batch_size self.debug = config.debug self.real_data, synthetic_image_path = load(config, self.data_path, self.sample_path, rng) self.synthetic_data_paths = np.array(glob(os.path.join(synthetic_image_path, '*_cropped.png'))) self.synthetic_data_dims = list(imread(self.synthetic_data_paths[0]).shape) + [1] self.synthetic_data_paths.sort() if np.rank(self.real_data) == 3: self.real_data = np.expand_dims(self.real_data, -1) self.real_p = 0
Example 2
Project: recruit Author: Frank-qlu File: test_deprecations.py License: Apache License 2.0 | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 3
Project: hoggorm Author: olivertomic File: statTools.py License: BSD 2-Clause "Simplified" License | 5 votes |
def matrixRank(arr, tol=1e-8): """ Computes the rank of an array/matrix, i.e. number of linearly independent variables. This is not the same as numpy.rank() which only returns the number of ways (2-way, 3-way, etc) an array/matrix has. PARAMETERS ---------- arrX : numpy array A numpy array containing the data RETURNS ------- scalar Rank of matrix. Examples -------- >>> import hoggorm as ho >>> >>> # Get the rank of the data >>> ho.matrixRank(myData) >>> 8 """ if len(arr.shape) != 2: raise ValueError('Input must be a 2-d array or Matrix object') s = numpy.linalg.svd(arr, compute_uv=0) return numpy.sum(numpy.where(s > tol, 1, 0))
Example 4
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_deprecations.py License: MIT License | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 5
Project: calfem-python Author: CALFEM File: utils.py License: MIT License | 5 votes |
def scalfact2(ex,ey,ed,rat=0.2): """ Determine scale factor for drawing computational results, such as displacements, section forces or flux. Parameters: ex, ey element node coordinates ed element displacement matrix or section force matrix rat relation between illustrated quantity and element size. If not specified, 0.2 is used. """ nen = -1 if ex.shape != ey.shape: print("ex and ey shapes do not match.") return 1.0 dlmax = 0. edmax = 1. if np.rank(ex)==1: nen = ex.shape[0] nel = 1 dxmax=ex.T.max()-ex.T.min() dymax=ey.T.max()-ey.T.min() dlmax=max(dxmax,dymax); edmax=abs(ed).max(); else: nen = ex.shape[1] nel = ex.shape[0] dxmax=ex.T.max()-ex.T.min() dymax=ey.T.max()-ey.T.min() dlmax=max(dxmax,dymax); edmax=abs(ed).max(); k = rat return k*dlmax/edmax
Example 6
Project: vnpy_crypto Author: birforce File: test_deprecations.py License: MIT License | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 7
Project: Computable Author: ktraunmueller File: coo.py License: MIT License | 5 votes |
def getnnz(self): nnz = len(self.data) if nnz != len(self.row) or nnz != len(self.col): raise ValueError('row, column, and data array must all be the same length') if np.rank(self.data) != 1 or np.rank(self.row) != 1 or np.rank(self.col) != 1: raise ValueError('row, column, and data arrays must have rank 1') return int(nnz)
Example 8
Project: Computable Author: ktraunmueller File: sputils.py License: MIT License | 5 votes |
def isshape(x): """Is x a valid 2-tuple of dimensions? """ try: # Assume it's a tuple of matrix dimensions (M, N) (M, N) = x except: return False else: if isintlike(M) and isintlike(N): if np.rank(M) == 0 and np.rank(N) == 0: return True return False
Example 9
Project: Quijote-simulations Author: franciscovillaescusa File: var_regression_matrix.py License: MIT License | 5 votes |
def var_regression_matrix(H, x, model, sigma=1): """ Compute the variance of the 'regression error'. Parameters ---------- H : 2d-array The regression matrix x : 2d-array The coordinates to calculate the regression error variance at. model : str A string of tokens that define the regression model (e.g. '1 x1 x2 x1*x2') sigma : scalar An estimate of the variance (default: 1). Returns ------- var : scalar The variance of the regression error, evaluated at ``x``. """ x = np.atleast_2d(x) H = np.atleast_2d(H) if x.shape[0]==1: x = x.T if np.rank(H)<(np.dot(H.T, H)).shape[0]: raise ValueError("model and DOE don't suit together") x_mod = build_regression_matrix(x, model) var = sigma**2*np.dot(np.dot(x_mod.T, np.linalg.inv(np.dot(H.T, H))), x_mod) return var
Example 10
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_deprecations.py License: MIT License | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 11
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_deprecations.py License: MIT License | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 12
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_deprecations.py License: Apache License 2.0 | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 13
Project: pySINDy Author: luckystarufo File: test_deprecations.py License: MIT License | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 14
Project: mxnet-lambda Author: awslabs File: test_deprecations.py License: Apache License 2.0 | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 15
Project: ImageFusion Author: pfchai File: test_deprecations.py License: MIT License | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 16
Project: elasticintel Author: securityclippy File: test_deprecations.py License: GNU General Public License v3.0 | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 17
Project: coffeegrindsize Author: jgagneastro File: test_deprecations.py License: MIT License | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 18
Project: Carnets Author: holzschu File: test_quantity_non_ufuncs.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_lstsq(self): b = np.array([1., 2., 4.]) * u.m / u.s x, residuals, rank, s = np.linalg.lstsq(self.q, b, rcond=None) xx, residualsx, rankx, sx = np.linalg.lstsq(self.q.value, b.value, rcond=None) xx <<= b.unit / self.q.unit residualsx <<= b.unit ** 2 sx <<= self.q.unit assert_array_equal(x, xx) assert_array_equal(residuals, residualsx) assert_array_equal(s, sx) assert rank == rankx assert u.allclose(self.q @ x, b) # Also do one where we can check the answer... m = np.eye(3) b = np.arange(3) * u.m x, residuals, rank, s = np.linalg.lstsq(m, b, rcond=1.*u.percent) assert_array_equal(x, b) assert np.all(residuals == 0 * u.m**2) assert rank == 3 assert_array_equal(s, np.array([1., 1., 1.]) << u.one) with pytest.raises(u.UnitsError): np.linalg.lstsq(m, b, rcond=1.*u.s)
Example 19
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: test_deprecations.py License: MIT License | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 20
Project: twitter-stock-recommendation Author: alvarobartt File: test_deprecations.py License: MIT License | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 21
Project: keras-lambda Author: sunilmallya File: test_deprecations.py License: MIT License | 5 votes |
def test(self): a = np.arange(10) assert_warns(np.VisibleDeprecationWarning, np.rank, a)
Example 22
Project: auto-alt-text-lambda-api Author: abhisuri97 File: fromnumeric.py License: MIT License | 4 votes |
def rank(a): """ Return the number of dimensions of an array. If `a` is not already an array, a conversion is attempted. Scalars are zero dimensional. .. note:: This function is deprecated in NumPy 1.9 to avoid confusion with `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function should be used instead. Parameters ---------- a : array_like Array whose number of dimensions is desired. If `a` is not an array, a conversion is attempted. Returns ------- number_of_dimensions : int The number of dimensions in the array. See Also -------- ndim : equivalent function ndarray.ndim : equivalent property shape : dimensions of array ndarray.shape : dimensions of array Notes ----- In the old Numeric package, `rank` was the term used for the number of dimensions, but in Numpy `ndim` is used instead. Examples -------- >>> np.rank([1,2,3]) 1 >>> np.rank(np.array([[1,2,3],[4,5,6]])) 2 >>> np.rank(1) 0 """ # 2014-04-12, 1.9 warnings.warn( "`rank` is deprecated; use the `ndim` attribute or function instead. " "To find the rank of a matrix see `numpy.linalg.matrix_rank`.", VisibleDeprecationWarning) try: return a.ndim except AttributeError: return asarray(a).ndim
Example 23
Project: vnpy_crypto Author: birforce File: fromnumeric.py License: MIT License | 4 votes |
def rank(a): """ Return the number of dimensions of an array. If `a` is not already an array, a conversion is attempted. Scalars are zero dimensional. .. note:: This function is deprecated in NumPy 1.9 to avoid confusion with `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function should be used instead. Parameters ---------- a : array_like Array whose number of dimensions is desired. If `a` is not an array, a conversion is attempted. Returns ------- number_of_dimensions : int The number of dimensions in the array. See Also -------- ndim : equivalent function ndarray.ndim : equivalent property shape : dimensions of array ndarray.shape : dimensions of array Notes ----- In the old Numeric package, `rank` was the term used for the number of dimensions, but in NumPy `ndim` is used instead. Examples -------- >>> np.rank([1,2,3]) 1 >>> np.rank(np.array([[1,2,3],[4,5,6]])) 2 >>> np.rank(1) 0 """ # 2014-04-12, 1.9 warnings.warn( "`rank` is deprecated; use the `ndim` attribute or function instead. " "To find the rank of a matrix see `numpy.linalg.matrix_rank`.", VisibleDeprecationWarning, stacklevel=2) try: return a.ndim except AttributeError: return asarray(a).ndim
Example 24
Project: Computable Author: ktraunmueller File: bsr.py License: MIT License | 4 votes |
def check_format(self, full_check=True): """check whether the matrix format is valid *Parameters*: full_check: True - rigorous check, O(N) operations : default False - basic check, O(1) operations """ M,N = self.shape R,C = self.blocksize # index arrays should have integer data types if self.indptr.dtype.kind != 'i': warn("indptr array has non-integer dtype (%s)" % self.indptr.dtype.name) if self.indices.dtype.kind != 'i': warn("indices array has non-integer dtype (%s)" % self.indices.dtype.name) # only support 32-bit ints for now self.indptr = np.asarray(self.indptr, np.intc) self.indices = np.asarray(self.indices, np.intc) self.data = to_native(self.data) # check array shapes if np.rank(self.indices) != 1 or np.rank(self.indptr) != 1: raise ValueError("indices, and indptr should be rank 1") if np.rank(self.data) != 3: raise ValueError("data should be rank 3") # check index pointer if (len(self.indptr) != M//R + 1): raise ValueError("index pointer size (%d) should be (%d)" % (len(self.indptr), M//R + 1)) if (self.indptr[0] != 0): raise ValueError("index pointer should start with 0") # check index and data arrays if (len(self.indices) != len(self.data)): raise ValueError("indices and data should have the same size") if (self.indptr[-1] > len(self.indices)): raise ValueError("Last value of index pointer should be less than " "the size of index and data arrays") self.prune() if full_check: # check format validity (more expensive) if self.nnz > 0: if self.indices.max() >= N//C: raise ValueError("column index values must be < %d (now max %d)" % (N//C, self.indices.max())) if self.indices.min() < 0: raise ValueError("column index values must be >= 0") if np.diff(self.indptr).min() < 0: raise ValueError("index pointer values must form a " "non-decreasing sequence") # if not self.has_sorted_indices(): # warn('Indices were not in sorted order. Sorting indices.') # self.sort_indices(check_first=False)
Example 25
Project: mxnet-lambda Author: awslabs File: fromnumeric.py License: Apache License 2.0 | 4 votes |
def rank(a): """ Return the number of dimensions of an array. If `a` is not already an array, a conversion is attempted. Scalars are zero dimensional. .. note:: This function is deprecated in NumPy 1.9 to avoid confusion with `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function should be used instead. Parameters ---------- a : array_like Array whose number of dimensions is desired. If `a` is not an array, a conversion is attempted. Returns ------- number_of_dimensions : int The number of dimensions in the array. See Also -------- ndim : equivalent function ndarray.ndim : equivalent property shape : dimensions of array ndarray.shape : dimensions of array Notes ----- In the old Numeric package, `rank` was the term used for the number of dimensions, but in NumPy `ndim` is used instead. Examples -------- >>> np.rank([1,2,3]) 1 >>> np.rank(np.array([[1,2,3],[4,5,6]])) 2 >>> np.rank(1) 0 """ # 2014-04-12, 1.9 warnings.warn( "`rank` is deprecated; use the `ndim` attribute or function instead. " "To find the rank of a matrix see `numpy.linalg.matrix_rank`.", VisibleDeprecationWarning, stacklevel=2) try: return a.ndim except AttributeError: return asarray(a).ndim
Example 26
Project: Splunking-Crime Author: nccgroup File: fromnumeric.py License: GNU Affero General Public License v3.0 | 4 votes |
def rank(a): """ Return the number of dimensions of an array. If `a` is not already an array, a conversion is attempted. Scalars are zero dimensional. .. note:: This function is deprecated in NumPy 1.9 to avoid confusion with `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function should be used instead. Parameters ---------- a : array_like Array whose number of dimensions is desired. If `a` is not an array, a conversion is attempted. Returns ------- number_of_dimensions : int The number of dimensions in the array. See Also -------- ndim : equivalent function ndarray.ndim : equivalent property shape : dimensions of array ndarray.shape : dimensions of array Notes ----- In the old Numeric package, `rank` was the term used for the number of dimensions, but in NumPy `ndim` is used instead. Examples -------- >>> np.rank([1,2,3]) 1 >>> np.rank(np.array([[1,2,3],[4,5,6]])) 2 >>> np.rank(1) 0 """ # 2014-04-12, 1.9 warnings.warn( "`rank` is deprecated; use the `ndim` attribute or function instead. " "To find the rank of a matrix see `numpy.linalg.matrix_rank`.", VisibleDeprecationWarning, stacklevel=2) try: return a.ndim except AttributeError: return asarray(a).ndim
Example 27
Project: elasticintel Author: securityclippy File: fromnumeric.py License: GNU General Public License v3.0 | 4 votes |
def rank(a): """ Return the number of dimensions of an array. If `a` is not already an array, a conversion is attempted. Scalars are zero dimensional. .. note:: This function is deprecated in NumPy 1.9 to avoid confusion with `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function should be used instead. Parameters ---------- a : array_like Array whose number of dimensions is desired. If `a` is not an array, a conversion is attempted. Returns ------- number_of_dimensions : int The number of dimensions in the array. See Also -------- ndim : equivalent function ndarray.ndim : equivalent property shape : dimensions of array ndarray.shape : dimensions of array Notes ----- In the old Numeric package, `rank` was the term used for the number of dimensions, but in NumPy `ndim` is used instead. Examples -------- >>> np.rank([1,2,3]) 1 >>> np.rank(np.array([[1,2,3],[4,5,6]])) 2 >>> np.rank(1) 0 """ # 2014-04-12, 1.9 warnings.warn( "`rank` is deprecated; use the `ndim` attribute or function instead. " "To find the rank of a matrix see `numpy.linalg.matrix_rank`.", VisibleDeprecationWarning, stacklevel=2) try: return a.ndim except AttributeError: return asarray(a).ndim
Example 28
Project: keras-lambda Author: sunilmallya File: fromnumeric.py License: MIT License | 4 votes |
def rank(a): """ Return the number of dimensions of an array. If `a` is not already an array, a conversion is attempted. Scalars are zero dimensional. .. note:: This function is deprecated in NumPy 1.9 to avoid confusion with `numpy.linalg.matrix_rank`. The ``ndim`` attribute or function should be used instead. Parameters ---------- a : array_like Array whose number of dimensions is desired. If `a` is not an array, a conversion is attempted. Returns ------- number_of_dimensions : int The number of dimensions in the array. See Also -------- ndim : equivalent function ndarray.ndim : equivalent property shape : dimensions of array ndarray.shape : dimensions of array Notes ----- In the old Numeric package, `rank` was the term used for the number of dimensions, but in Numpy `ndim` is used instead. Examples -------- >>> np.rank([1,2,3]) 1 >>> np.rank(np.array([[1,2,3],[4,5,6]])) 2 >>> np.rank(1) 0 """ # 2014-04-12, 1.9 warnings.warn( "`rank` is deprecated; use the `ndim` attribute or function instead. " "To find the rank of a matrix see `numpy.linalg.matrix_rank`.", VisibleDeprecationWarning) try: return a.ndim except AttributeError: return asarray(a).ndim