Python numpy.Inf() Examples
The following are 30 code examples for showing how to use numpy.Inf(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: controlpy Author: markwmuller File: test_analysis.py License: GNU General Public License v3.0 | 6 votes |
def sys_norm_h2_LMI(Acl, Bdisturbance, C): #doesn't work very well, if problem poorly scaled Riccati works better. #Dullerud p 210 n = Acl.shape[0] X = cvxpy.Semidef(n) Y = cvxpy.Semidef(n) constraints = [ Acl*X + X*Acl.T + Bdisturbance*Bdisturbance.T == -Y, ] obj = cvxpy.Minimize(cvxpy.trace(Y)) prob = cvxpy.Problem(obj, constraints) prob.solve() eps = 1e-16 if np.max(np.linalg.eigvals((-Acl*X - X*Acl.T - Bdisturbance*Bdisturbance.T).value)) > -eps: print('Acl*X + X*Acl.T +Bdisturbance*Bdisturbance.T is not neg def.') return np.Inf if np.min(np.linalg.eigvals(X.value)) < eps: print('X is not pos def.') return np.Inf return np.sqrt(np.trace(C*X.value*C.T))
Example 2
Project: Monotonic-WOE-Binning-Algorithm Author: jstephenj14 File: monotonic_woe_binning.py License: MIT License | 6 votes |
def generate_final_dataset(self): if self.sign == False: shift_var = 1 self.bucket = True else: shift_var = -1 self.bucket = False self.woe_summary[self.column + "_shift"] = self.woe_summary[self.column].shift(shift_var) if self.sign == False: self.woe_summary.loc[0, self.column + "_shift"] = -np.inf self.bins = np.sort(list(self.woe_summary[self.column]) + [np.Inf,-np.Inf]) else: self.woe_summary.loc[len(self.woe_summary) - 1, self.column + "_shift"] = np.inf self.bins = np.sort(list(self.woe_summary[self.column]) + [np.Inf,-np.Inf]) self.woe_summary["labels"] = self.woe_summary.apply(self.generate_bin_labels, axis=1) self.dataset["bins"] = pd.cut(self.dataset[self.column], self.bins, right=self.bucket, precision=0) self.dataset["bins"] = self.dataset["bins"].astype(str) self.dataset['bins'] = self.dataset['bins'].map(lambda x: x.lstrip('[').rstrip(')'))
Example 3
Project: Monotonic-WOE-Binning-Algorithm Author: jstephenj14 File: monotonic_woe_binning.py License: MIT License | 6 votes |
def generate_final_dataset(self): if self.sign == False: shift_var = 1 self.bucket = True else: shift_var = -1 self.bucket = False self.woe_summary[self.column + "_shift"] = self.woe_summary[self.column].shift(shift_var) if self.sign == False: self.woe_summary.loc[0, self.column + "_shift"] = -np.inf self.bins = np.sort(list(self.woe_summary[self.column]) + [np.Inf,-np.Inf]) else: self.woe_summary.loc[len(self.woe_summary) - 1, self.column + "_shift"] = np.inf self.bins = np.sort(list(self.woe_summary[self.column]) + [np.Inf,-np.Inf]) self.woe_summary["labels"] = self.woe_summary.apply(self.generate_bin_labels, axis=1) self.dataset["bins"] = pd.cut(self.dataset[self.column], self.bins, right=self.bucket, precision=0) self.dataset["bins"] = self.dataset["bins"].astype(str) self.dataset['bins'] = self.dataset['bins'].map(lambda x: x.lstrip('[').rstrip(')'))
Example 4
Project: DropEdge Author: DropEdge File: earlystopping.py License: MIT License | 6 votes |
def __init__(self, datasets="tmp", patience=7, fname=None, clean=False, verbose=False): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf timstr = datetime.datetime.now().strftime("%m%d-%H%M%S") if fname is None: fname = datasets + "-" + timstr + "-" + self._random_str() + ".pt" self.fname = os.path.join(folder, fname) self.clean = clean
Example 5
Project: lambda-packs Author: ryfeus File: callbacks.py License: MIT License | 6 votes |
def _reset(self): """Resets wait counter and cooldown counter. """ if self.mode not in ['auto', 'min', 'max']: warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, ' 'fallback to auto mode.' % (self.mode), RuntimeWarning) self.mode = 'auto' if (self.mode == 'min' or (self.mode == 'auto' and 'acc' not in self.monitor)): self.monitor_op = lambda a, b: np.less(a, b - self.epsilon) self.best = np.Inf else: self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon) self.best = -np.Inf self.cooldown_counter = 0 self.wait = 0 self.lr_epsilon = self.min_lr * 1e-4
Example 6
Project: spikeextractors Author: SpikeInterface File: subsortingextractor.py License: MIT License | 6 votes |
def __init__(self, parent_sorting, *, unit_ids=None, renamed_unit_ids=None, start_frame=None, end_frame=None): SortingExtractor.__init__(self) start_frame, end_frame = self._cast_start_end_frame(start_frame, end_frame) self._parent_sorting = parent_sorting self._unit_ids = unit_ids self._renamed_unit_ids = renamed_unit_ids self._start_frame = start_frame self._end_frame = end_frame if self._unit_ids is None: self._unit_ids = self._parent_sorting.get_unit_ids() if self._renamed_unit_ids is None: self._renamed_unit_ids = self._unit_ids if self._start_frame is None: self._start_frame = 0 if self._end_frame is None: self._end_frame = np.Inf self._original_unit_id_lookup = {} for i in range(len(self._unit_ids)): self._original_unit_id_lookup[self._renamed_unit_ids[i]] = self._unit_ids[i] self.copy_unit_properties(parent_sorting, unit_ids=self._renamed_unit_ids) self.copy_unit_spike_features(parent_sorting, unit_ids=self._renamed_unit_ids, start_frame=start_frame, end_frame=end_frame) self._kwargs = {'parent_sorting': parent_sorting.make_serialized_dict(), 'unit_ids': unit_ids, 'renamed_unit_ids': renamed_unit_ids, 'start_frame': start_frame, 'end_frame': end_frame}
Example 7
Project: spikeextractors Author: SpikeInterface File: subsortingextractor.py License: MIT License | 6 votes |
def get_unit_spike_train(self, unit_id, start_frame=None, end_frame=None): start_frame, end_frame = self._cast_start_end_frame(start_frame, end_frame) if start_frame is None: start_frame = 0 if end_frame is None: end_frame = np.Inf original_unit_id = self._original_unit_id_lookup[unit_id] sf = self._start_frame + start_frame ef = self._start_frame + end_frame if sf < self._start_frame: sf = self._start_frame if ef > self._end_frame: ef = self._end_frame if ef == np.Inf: ef = None return self._parent_sorting.get_unit_spike_train(unit_id=original_unit_id, start_frame=sf, end_frame=ef) - self._start_frame
Example 8
Project: KitNET-py Author: ymirsky File: dA.py License: MIT License | 6 votes |
def __init__(self, params): self.params = params if self.params.hiddenRatio is not None: self.params.n_hidden = int(numpy.ceil(self.params.n_visible*self.params.hiddenRatio)) # for 0-1 normlaization self.norm_max = numpy.ones((self.params.n_visible,)) * -numpy.Inf self.norm_min = numpy.ones((self.params.n_visible,)) * numpy.Inf self.n = 0 self.rng = numpy.random.RandomState(1234) a = 1. / self.params.n_visible self.W = numpy.array(self.rng.uniform( # initialize W uniformly low=-a, high=a, size=(self.params.n_visible, self.params.n_hidden))) self.hbias = numpy.zeros(self.params.n_hidden) # initialize h bias 0 self.vbias = numpy.zeros(self.params.n_visible) # initialize v bias 0 self.W_prime = self.W.T
Example 9
Project: Att-ChemdNER Author: lingluodlut File: utils.py License: Apache License 2.0 | 5 votes |
def on_train_begin(self): self.wait = 0 # Allow instances to be re-used self.best = np.Inf if self.monitor_op == np.less else -np.Inf
Example 10
Project: EXOSIMS Author: dsavransky File: SotoStarshade.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def calculate_dV(self, TL, old_sInd, sInds, sd, slewTimes, tmpCurrentTimeAbs): """Finds the change in velocity needed to transfer to a new star line of sight This method sums the total delta-V needed to transfer from one star line of sight to another. It determines the change in velocity to move from one station-keeping orbit to a transfer orbit at the current time, then from the transfer orbit to the next station-keeping orbit at currentTime + dt. Station-keeping orbits are modeled as discrete boundary value problems. This method can handle multiple indeces for the next target stars and calculates the dVs of each trajectory from the same starting star. Args: dt (float 1x1 ndarray): Number of days corresponding to starshade slew time TL (float 1x3 ndarray): TargetList class object nA (integer): Integer index of the current star of interest N (integer): Integer index of the next star(s) of interest tA (astropy Time array): Current absolute mission time in MJD Returns: float nx6 ndarray: State vectors in rotating frame in normalized units """ if old_sInd is None: dV = np.zeros(slewTimes.shape) else: dV = np.zeros(slewTimes.shape) badSlews_i,badSlew_j = np.where(slewTimes.value < self.occ_dtmin.value) for i in range(len(sInds)): for t in range(len(slewTimes.T)): dV[i,t] = self.dV_interp(slewTimes[i,t],sd[i].to('deg')) dV[badSlews_i,badSlew_j] = np.Inf return dV*u.m/u.s
Example 11
Project: vampyre Author: GAMPTeam File: relu.py License: MIT License | 5 votes |
def __init__(self,shape,var_axes=[(0,),(0,)], name=None, map_est=False): self.map_est = map_est # Initial variances self.zvar0_init= np.Inf self.zvar1_init= np.Inf nvars = 2 dtype = np.float64 BaseEst.__init__(self,shape=[shape,shape], var_axes=var_axes, dtype=dtype, name=name,\ type_name='ReLUEst', nvars=nvars, cost_avail=True)
Example 12
Project: vampyre Author: GAMPTeam File: interval.py License: MIT License | 5 votes |
def __init__(self,y,shape,var_axes=(0,),thresh=0,perr=1e-6,\ name=None,var_init=np.Inf,dtype=np.float64): BaseEst.__init__(self, shape=shape, var_axes=var_axes, dtype=dtype,\ name=name,type_name='BinaryQuantEst', nvars=1, cost_avail=True) self.y = y self.shape = shape self.thresh = thresh self.perr = perr self.cost_avail = True self.var_init = var_init
Example 13
Project: MKLpy Author: IvanoLauriola File: callbacks.py License: GNU General Public License v3.0 | 5 votes |
def register(self, model): self.model = model if self.metric in ['auc', 'accuracy'] or model.direction=='max': self.monitor_op = np.greater self.best = -np.Inf else: self.monitor_op = np.less self.best = np.Inf
Example 14
Project: mabwiser Author: fidelity File: mab.py License: Apache License 2.0 | 5 votes |
def _validate_mab_args(arms, learning_policy, context_policy, seed, n_jobs, backend) -> NoReturn: """ Validates arguments for the MAB constructor. """ # Arms check_true(isinstance(arms, list), TypeError("The arms should be provided in a list.")) check_true(len(arms) > 1, ValueError("The number of arms should be greater than 1.")) check_false(None in arms, ValueError("The arm list cannot contain None.")) check_false(np.nan in arms, ValueError("The arm list cannot contain NaN.")) check_false(np.Inf in arms, ValueError("The arm list cannot contain Infinity.")) check_true(len(arms) == len(set(arms)), ValueError("The list of arms cannot contain duplicate values.")) # Learning Policy type check_true(isinstance(learning_policy, (LearningPolicy.EpsilonGreedy, LearningPolicy.Popularity, LearningPolicy.Random, LearningPolicy.Softmax, LearningPolicy.ThompsonSampling, LearningPolicy.UCB1, LearningPolicy.LinTS, LearningPolicy.LinUCB)), TypeError("Learning Policy type mismatch.")) # Learning policy value learning_policy._validate() # Contextual Policy if context_policy: check_true(isinstance(context_policy, (NeighborhoodPolicy.KNearest, NeighborhoodPolicy.Radius, NeighborhoodPolicy.Clusters)), TypeError("Context Policy type mismatch.")) context_policy._validate() # Seed check_true(isinstance(seed, int), TypeError("The seed must be an integer.")) # Parallel jobs check_true(isinstance(n_jobs, int), TypeError("Number of parallel jobs must be an integer.")) check_true(n_jobs != 0, ValueError('Number of parallel jobs cannot be zero.')) if backend is not None: check_true(isinstance(backend, str), TypeError("Parallel backend must be a string."))
Example 15
Project: recruit Author: Frank-qlu File: test_linalg.py License: Apache License 2.0 | 5 votes |
def test_axis(self): # Vector norms. # Compare the use of `axis` with computing the norm of each row # or column separately. A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt) for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]: expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])] assert_almost_equal(norm(A, ord=order, axis=0), expected0) expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])] assert_almost_equal(norm(A, ord=order, axis=1), expected1) # Matrix norms. B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) nd = B.ndim for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro']: for axis in itertools.combinations(range(-nd, nd), 2): row_axis, col_axis = axis if row_axis < 0: row_axis += nd if col_axis < 0: col_axis += nd if row_axis == col_axis: assert_raises(ValueError, norm, B, ord=order, axis=axis) else: n = norm(B, ord=order, axis=axis) # The logic using k_index only works for nd = 3. # This has to be changed if nd is increased. k_index = nd - (row_axis + col_axis) if row_axis < col_axis: expected = [norm(B[:].take(k, axis=k_index), ord=order) for k in range(B.shape[k_index])] else: expected = [norm(B[:].take(k, axis=k_index).T, ord=order) for k in range(B.shape[k_index])] assert_almost_equal(n, expected)
Example 16
Project: recruit Author: Frank-qlu File: test_linalg.py License: Apache License 2.0 | 5 votes |
def test_keepdims(self): A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) allclose_err = 'order {0}, axis = {1}' shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}' # check the order=None, axis=None case expected = norm(A, ord=None, axis=None) found = norm(A, ord=None, axis=None, keepdims=True) assert_allclose(np.squeeze(found), expected, err_msg=allclose_err.format(None, None)) expected_shape = (1, 1, 1) assert_(found.shape == expected_shape, shape_err.format(found.shape, expected_shape, None, None)) # Vector norms. for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]: for k in range(A.ndim): expected = norm(A, ord=order, axis=k) found = norm(A, ord=order, axis=k, keepdims=True) assert_allclose(np.squeeze(found), expected, err_msg=allclose_err.format(order, k)) expected_shape = list(A.shape) expected_shape[k] = 1 expected_shape = tuple(expected_shape) assert_(found.shape == expected_shape, shape_err.format(found.shape, expected_shape, order, k)) # Matrix norms. for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro', 'nuc']: for k in itertools.permutations(range(A.ndim), 2): expected = norm(A, ord=order, axis=k) found = norm(A, ord=order, axis=k, keepdims=True) assert_allclose(np.squeeze(found), expected, err_msg=allclose_err.format(order, k)) expected_shape = list(A.shape) expected_shape[k[0]] = 1 expected_shape[k[1]] = 1 expected_shape = tuple(expected_shape) assert_(found.shape == expected_shape, shape_err.format(found.shape, expected_shape, order, k))
Example 17
Project: optimesh Author: nschloe File: helpers.py License: MIT License | 5 votes |
def run(mesh, volume, convol_norms, ce_ratio_norms, cellvol_norms, tol=1.0e-12): # Check cell volumes. total_cellvolume = fsum(mesh.cell_volumes) assert abs(volume - total_cellvolume) < tol * volume norm2 = numpy.linalg.norm(mesh.cell_volumes, ord=2) norm_inf = numpy.linalg.norm(mesh.cell_volumes, ord=numpy.Inf) assert near_equal(cellvol_norms, [norm2, norm_inf], tol) # If everything is Delaunay and the boundary elements aren't flat, the # volume of the domain is given by # 1/n * edge_lengths * ce_ratios. # Unfortunately, this isn't always the case. # ``` # total_ce_ratio = \ # fsum(mesh.edge_lengths**2 * mesh.get_ce_ratios_per_edge() / dim) # self.assertAlmostEqual(volume, total_ce_ratio, delta=tol * volume) # ``` # Check ce_ratio norms. # TODO reinstate alpha2 = fsum((mesh.get_ce_ratios() ** 2).flat) alpha_inf = max(abs(mesh.get_ce_ratios()).flat) assert near_equal(ce_ratio_norms, [alpha2, alpha_inf], tol) # Check the volume by summing over the absolute value of the control # volumes. vol = fsum(mesh.get_control_volumes()) assert abs(volume - vol) < tol * volume # Check control volume norms. norm2 = numpy.linalg.norm(mesh.get_control_volumes(), ord=2) norm_inf = numpy.linalg.norm(mesh.get_control_volumes(), ord=numpy.Inf) assert near_equal(convol_norms, [norm2, norm_inf], tol) return
Example 18
Project: classification-of-encrypted-traffic Author: SalikLP File: early_stopping.py License: MIT License | 5 votes |
def on_train_begin(self): # Allow instances to be re-used self.wait = 0 self.stopped_epoch = 0 self.best = np.Inf self.stop_training = False
Example 19
Project: ffn Author: pmorissette File: core.py License: MIT License | 5 votes |
def to_drawdown_series(prices): """ Calculates the `drawdown <https://www.investopedia.com/terms/d/drawdown.asp>`_ series. This returns a series representing a drawdown. When the price is at all time highs, the drawdown is 0. However, when prices are below high water marks, the drawdown series = current / hwm - 1 The max drawdown can be obtained by simply calling .min() on the result (since the drawdown series is negative) Method ignores all gaps of NaN's in the price series. Args: * prices (Series or DataFrame): Series of prices. """ # make a copy so that we don't modify original data drawdown = prices.copy() # Fill NaN's with previous values drawdown = drawdown.fillna(method='ffill') # Ignore problems with NaN's in the beginning drawdown[np.isnan(drawdown)] = -np.Inf # Rolling maximum roll_max = np.maximum.accumulate(drawdown) drawdown = drawdown / roll_max - 1. return drawdown
Example 20
Project: neural-odes-segmentation Author: DIAGNijmegen File: metrics.py License: MIT License | 5 votes |
def Hausdorff(S=None, G=None, *args, **kwargs): S = np.array(S).astype(np.uint8) G = np.array(G).astype(np.uint8) listS = np.unique(S) listS = np.delete(listS, np.where(listS == 0)) listG = np.unique(G) listG = np.delete(listG, np.where(listG == 0)) numS = len(listS) numG = len(listG) if numS == 0 and numG == 0: hausdorffDistance = 0 return hausdorffDistance else: if numS == 0 or numG == 0: hausdorffDistance = np.Inf return hausdorffDistance y = np.where(S > 0) x = np.where(G > 0) x = np.vstack((x[0], x[1])).transpose() y = np.vstack((y[0], y[1])).transpose() nbrs = NearestNeighbors(n_neighbors=1).fit(x) distances, indices = nbrs.kneighbors(y) dist1 = np.max(distances) nbrs = NearestNeighbors(n_neighbors=1).fit(y) distances, indices = nbrs.kneighbors(x) dist2 = np.max(distances) hausdorffDistance = np.max((dist1, dist2)) return hausdorffDistance
Example 21
Project: CAPTCHA-breaking Author: lllcho File: callbacks.py License: MIT License | 5 votes |
def __init__(self, monitor='val_loss', patience=0, verbose=0): super(Callback, self).__init__() self.monitor = monitor self.patience = patience self.verbose = verbose self.best = np.Inf self.wait = 0
Example 22
Project: lambda-packs Author: ryfeus File: interpolate_wrapper.py License: MIT License | 5 votes |
def nearest(x, y, new_x): """ Rounds each new x to nearest input x and returns corresponding input y. Parameters ---------- x : array_like Independent values. y : array_like Dependent values. new_x : array_like The x values to return the interpolate y values. Returns ------- nearest : ndarray Rounds each `new_x` to nearest `x` and returns the corresponding `y`. """ shifted_x = np.concatenate((np.array([x[0]-1]), x[0:-1])) midpoints_of_x = atleast_1d_and_contiguous(.5*(x + shifted_x)) new_x = atleast_1d_and_contiguous(new_x) TINY = 1e-10 indices = np.searchsorted(midpoints_of_x, new_x+TINY)-1 indices = np.atleast_1d(np.clip(indices, 0, np.Inf).astype(int)) new_y = np.take(y, indices, axis=-1) return new_y
Example 23
Project: lambda-packs Author: ryfeus File: interpolate_wrapper.py License: MIT License | 5 votes |
def block(x, y, new_x): """ Essentially a step function. For each `new_x`, finds largest j such that``x[j] < new_x[j]`` and returns ``y[j]``. Parameters ---------- x : array_like Independent values. y : array_like Dependent values. new_x : array_like The x values used to calculate the interpolated y. Returns ------- block : ndarray Return array, of same length as `x_new`. """ # find index of values in x that precede values in x # This code is a little strange -- we really want a routine that # returns the index of values where x[j] < x[index] TINY = 1e-10 indices = np.searchsorted(x, new_x+TINY)-1 # If the value is at the front of the list, it'll have -1. # In this case, we will use the first (0), element in the array. # take requires the index array to be an Int indices = np.atleast_1d(np.clip(indices, 0, np.Inf).astype(int)) new_y = np.take(y, indices, axis=-1) return new_y
Example 24
Project: lambda-packs Author: ryfeus File: optimize.py License: MIT License | 5 votes |
def vecnorm(x, ord=2): if ord == Inf: return numpy.amax(numpy.abs(x)) elif ord == -Inf: return numpy.amin(numpy.abs(x)) else: return numpy.sum(numpy.abs(x)**ord, axis=0)**(1.0 / ord)
Example 25
Project: lambda-packs Author: ryfeus File: _trustregion_exact.py License: MIT License | 5 votes |
def __init__(self, x, fun, jac, hess, hessp=None, k_easy=0.1, k_hard=0.2): super(IterativeSubproblem, self).__init__(x, fun, jac, hess) # When the trust-region shrinks in two consecutive # calculations (``tr_radius < previous_tr_radius``) # the lower bound ``lambda_lb`` may be reused, # facilitating the convergence. To indicate no # previous value is known at first ``previous_tr_radius`` # is set to -1 and ``lambda_lb`` to None. self.previous_tr_radius = -1 self.lambda_lb = None self.niter = 0 # ``k_easy`` and ``k_hard`` are parameters used # to detemine the stop criteria to the iterative # subproblem solver. Take a look at pp. 194-197 # from reference _[1] for a more detailed description. self.k_easy = k_easy self.k_hard = k_hard # Get Lapack function for cholesky decomposition. # The implemented Scipy wrapper does not return # the incomplete factorization needed by the method. self.cholesky, = get_lapack_funcs(('potrf',), (self.hess,)) # Get info about Hessian self.dimension = len(self.hess) self.hess_gershgorin_lb,\ self.hess_gershgorin_ub = gershgorin_bounds(self.hess) self.hess_inf = norm(self.hess, np.Inf) self.hess_fro = norm(self.hess, 'fro') # A constant such that for vectors smaler than that # backward substituition is not reliable. It was stabilished # based on Golub, G. H., Van Loan, C. F. (2013). # "Matrix computations". Forth Edition. JHU press., p.165. self.CLOSE_TO_ZERO = self.dimension * self.EPS * self.hess_inf
Example 26
Project: lambda-packs Author: ryfeus File: quadpack.py License: MIT License | 5 votes |
def _quad(func,a,b,args,full_output,epsabs,epsrel,limit,points): infbounds = 0 if (b != Inf and a != -Inf): pass # standard integration elif (b == Inf and a != -Inf): infbounds = 1 bound = a elif (b == Inf and a == -Inf): infbounds = 2 bound = 0 # ignored elif (b != Inf and a == -Inf): infbounds = -1 bound = b else: raise RuntimeError("Infinity comparisons don't work for you.") if points is None: if infbounds == 0: return _quadpack._qagse(func,a,b,args,full_output,epsabs,epsrel,limit) else: return _quadpack._qagie(func,bound,infbounds,args,full_output,epsabs,epsrel,limit) else: if infbounds != 0: raise ValueError("Infinity inputs cannot be used with break points.") else: nl = len(points) the_points = numpy.zeros((nl+2,), float) the_points[:nl] = points return _quadpack._qagpe(func,a,b,the_points,args,full_output,epsabs,epsrel,limit)
Example 27
Project: lambda-packs Author: ryfeus File: callbacks.py License: MIT License | 5 votes |
def __init__(self, filepath, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1): super(ModelCheckpoint, self).__init__() self.monitor = monitor self.verbose = verbose self.filepath = filepath self.save_best_only = save_best_only self.save_weights_only = save_weights_only self.period = period self.epochs_since_last_save = 0 if mode not in ['auto', 'min', 'max']: warnings.warn('ModelCheckpoint mode %s is unknown, ' 'fallback to auto mode.' % (mode), RuntimeWarning) mode = 'auto' if mode == 'min': self.monitor_op = np.less self.best = np.Inf elif mode == 'max': self.monitor_op = np.greater self.best = -np.Inf else: if 'acc' in self.monitor or self.monitor.startswith('fmeasure'): self.monitor_op = np.greater self.best = -np.Inf else: self.monitor_op = np.less self.best = np.Inf
Example 28
Project: lambda-packs Author: ryfeus File: callbacks.py License: MIT License | 5 votes |
def on_train_begin(self, logs=None): self.wait = 0 # Allow instances to be re-used self.best = np.Inf if self.monitor_op == np.less else -np.Inf
Example 29
Project: lambda-packs Author: ryfeus File: test_linalg.py License: MIT License | 5 votes |
def test_axis(self): # Vector norms. # Compare the use of `axis` with computing the norm of each row # or column separately. A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt) for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]: expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])] assert_almost_equal(norm(A, ord=order, axis=0), expected0) expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])] assert_almost_equal(norm(A, ord=order, axis=1), expected1) # Matrix norms. B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) nd = B.ndim for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro']: for axis in itertools.combinations(range(-nd, nd), 2): row_axis, col_axis = axis if row_axis < 0: row_axis += nd if col_axis < 0: col_axis += nd if row_axis == col_axis: assert_raises(ValueError, norm, B, ord=order, axis=axis) else: n = norm(B, ord=order, axis=axis) # The logic using k_index only works for nd = 3. # This has to be changed if nd is increased. k_index = nd - (row_axis + col_axis) if row_axis < col_axis: expected = [norm(B[:].take(k, axis=k_index), ord=order) for k in range(B.shape[k_index])] else: expected = [norm(B[:].take(k, axis=k_index).T, ord=order) for k in range(B.shape[k_index])] assert_almost_equal(n, expected)
Example 30
Project: lambda-packs Author: ryfeus File: test_linalg.py License: MIT License | 5 votes |
def test_keepdims(self): A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) allclose_err = 'order {0}, axis = {1}' shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}' # check the order=None, axis=None case expected = norm(A, ord=None, axis=None) found = norm(A, ord=None, axis=None, keepdims=True) assert_allclose(np.squeeze(found), expected, err_msg=allclose_err.format(None, None)) expected_shape = (1, 1, 1) assert_(found.shape == expected_shape, shape_err.format(found.shape, expected_shape, None, None)) # Vector norms. for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]: for k in range(A.ndim): expected = norm(A, ord=order, axis=k) found = norm(A, ord=order, axis=k, keepdims=True) assert_allclose(np.squeeze(found), expected, err_msg=allclose_err.format(order, k)) expected_shape = list(A.shape) expected_shape[k] = 1 expected_shape = tuple(expected_shape) assert_(found.shape == expected_shape, shape_err.format(found.shape, expected_shape, order, k)) # Matrix norms. for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro', 'nuc']: for k in itertools.permutations(range(A.ndim), 2): expected = norm(A, ord=order, axis=k) found = norm(A, ord=order, axis=k, keepdims=True) assert_allclose(np.squeeze(found), expected, err_msg=allclose_err.format(order, k)) expected_shape = list(A.shape) expected_shape[k[0]] = 1 expected_shape[k[1]] = 1 expected_shape = tuple(expected_shape) assert_(found.shape == expected_shape, shape_err.format(found.shape, expected_shape, order, k))