Python numpy.tile() Examples
The following are 30 code examples for showing how to use numpy.tile(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: Black-Box-Audio Author: rtaori File: run_audio_attack.py License: MIT License | 7 votes |
def __init__(self, input_wave_file, output_wave_file, target_phrase): self.pop_size = 100 self.elite_size = 10 self.mutation_p = 0.005 self.noise_stdev = 40 self.noise_threshold = 1 self.mu = 0.9 self.alpha = 0.001 self.max_iters = 3000 self.num_points_estimate = 100 self.delta_for_gradient = 100 self.delta_for_perturbation = 1e3 self.input_audio = load_wav(input_wave_file).astype(np.float32) self.pop = np.expand_dims(self.input_audio, axis=0) self.pop = np.tile(self.pop, (self.pop_size, 1)) self.output_wave_file = output_wave_file self.target_phrase = target_phrase self.funcs = self.setup_graph(self.pop, np.array([toks.index(x) for x in target_phrase]))
Example 2
Project: DOTA_models Author: ringringyi File: resnet_v2_test.py License: Apache License 2.0 | 6 votes |
def create_test_input(batch_size, height, width, channels): """Create test input tensor. Args: batch_size: The number of images per batch or `None` if unknown. height: The height of each image or `None` if unknown. width: The width of each image or `None` if unknown. channels: The number of channels per image or `None` if unknown. Returns: Either a placeholder `Tensor` of dimension [batch_size, height, width, channels] if any of the inputs are `None` or a constant `Tensor` with the mesh grid values along the spatial dimensions. """ if None in [batch_size, height, width, channels]: return tf.placeholder(tf.float32, (batch_size, height, width, channels)) else: return tf.to_float( np.tile( np.reshape( np.reshape(np.arange(height), [height, 1]) + np.reshape(np.arange(width), [1, width]), [1, height, width, 1]), [batch_size, 1, 1, channels]))
Example 3
Project: DOTA_models Author: ringringyi File: resnet_v1_test.py License: Apache License 2.0 | 6 votes |
def create_test_input(batch_size, height, width, channels): """Create test input tensor. Args: batch_size: The number of images per batch or `None` if unknown. height: The height of each image or `None` if unknown. width: The width of each image or `None` if unknown. channels: The number of channels per image or `None` if unknown. Returns: Either a placeholder `Tensor` of dimension [batch_size, height, width, channels] if any of the inputs are `None` or a constant `Tensor` with the mesh grid values along the spatial dimensions. """ if None in [batch_size, height, width, channels]: return tf.placeholder(tf.float32, (batch_size, height, width, channels)) else: return tf.to_float( np.tile( np.reshape( np.reshape(np.arange(height), [height, 1]) + np.reshape(np.arange(width), [1, width]), [1, height, width, 1]), [batch_size, 1, 1, channels]))
Example 4
Project: Deep_Learning_Weather_Forecasting Author: BruceBinBoxing File: competition_model_class.py License: Apache License 2.0 | 6 votes |
def sample_batch(self, data_inputs, ground_truth, ruitu_inputs, batch_size, certain_id=None, certain_feature=None): max_i, _, max_j, _ = data_inputs.shape # Example: (1148, 37, 10, 9)-(sample_ind, timestep, sta_id, features) if certain_id == None and certain_feature == None: id_ = np.random.randint(max_j, size=batch_size) i = np.random.randint(max_i, size=batch_size) batch_inputs = data_inputs[i,:,id_,:] batch_ouputs = ground_truth[i,:,id_,:] batch_ruitu = ruitu_inputs[i,:,id_,:] # id used for embedding expd_id = np.expand_dims(id_,axis=1) batch_ids = np.tile(expd_id,(1,37)) #batch_time = elif certain_id != None: pass return batch_inputs, batch_ruitu, batch_ouputs, batch_ids
Example 5
Project: Modeling-Cloth Author: the3dadvantage File: ModelingCloth.py License: MIT License | 6 votes |
def zxy_grid(co_y, tymin, tymax, subs, c, t, c_peat, t_peat): # create linespace grid between bottom and top of tri z #subs = 7 t_min = np.min(tymin) t_max = np.max(tymax) divs = np.linspace(t_min, t_max, num=subs, dtype=np.float32) # figure out which triangles and which co are in each section co_bools = (co_y > divs[:-1][:, nax]) & (co_y < divs[1:][:, nax]) tri_bools = (tymin < divs[1:][:, nax]) & (tymax > divs[:-1][:, nax]) for i, j in zip(co_bools, tri_bools): if (np.sum(i) > 0) & (np.sum(j) > 0): c3 = c[i] t3 = t[j] c_peat.append(np.repeat(c3, t3.shape[0])) t_peat.append(np.tile(t3, c3.shape[0]))
Example 6
Project: RingNet Author: soubhiksanyal File: dynamic_contour_embedding.py License: MIT License | 6 votes |
def load_dynamic_contour(template_flame_path='None', contour_embeddings_path='None', static_embedding_path='None', angle=0): template_mesh = Mesh(filename=template_flame_path) contour_embeddings_path = contour_embeddings_path dynamic_lmks_embeddings = np.load(contour_embeddings_path, allow_pickle=True).item() lmk_face_idx_static, lmk_b_coords_static = load_static_embedding(static_embedding_path) lmk_face_idx_dynamic = dynamic_lmks_embeddings['lmk_face_idx'][angle] lmk_b_coords_dynamic = dynamic_lmks_embeddings['lmk_b_coords'][angle] dynamic_lmks = mesh_points_by_barycentric_coordinates(template_mesh.v, template_mesh.f, lmk_face_idx_dynamic, lmk_b_coords_dynamic) static_lmks = mesh_points_by_barycentric_coordinates(template_mesh.v, template_mesh.f, lmk_face_idx_static, lmk_b_coords_static) total_lmks = np.vstack([dynamic_lmks, static_lmks]) # Visualization of the pose dependent contour on the template mesh vertex_colors = np.ones([template_mesh.v.shape[0], 4]) * [0.3, 0.3, 0.3, 0.8] tri_mesh = trimesh.Trimesh(template_mesh.v, template_mesh.f, vertex_colors=vertex_colors) mesh = pyrender.Mesh.from_trimesh(tri_mesh) scene = pyrender.Scene() scene.add(mesh) sm = trimesh.creation.uv_sphere(radius=0.005) sm.visual.vertex_colors = [0.9, 0.1, 0.1, 1.0] tfs = np.tile(np.eye(4), (len(total_lmks), 1, 1)) tfs[:, :3, 3] = total_lmks joints_pcl = pyrender.Mesh.from_trimesh(sm, poses=tfs) scene.add(joints_pcl) pyrender.Viewer(scene, use_raymond_lighting=True)
Example 7
Project: DeepLab_v3 Author: leimao File: resnet_v2_test.py License: MIT License | 6 votes |
def create_test_input(batch_size, height, width, channels): """Create test input tensor. Args: batch_size: The number of images per batch or `None` if unknown. height: The height of each image or `None` if unknown. width: The width of each image or `None` if unknown. channels: The number of channels per image or `None` if unknown. Returns: Either a placeholder `Tensor` of dimension [batch_size, height, width, channels] if any of the inputs are `None` or a constant `Tensor` with the mesh grid values along the spatial dimensions. """ if None in [batch_size, height, width, channels]: return tf.placeholder(tf.float32, (batch_size, height, width, channels)) else: return tf.to_float( np.tile( np.reshape( np.reshape(np.arange(height), [height, 1]) + np.reshape(np.arange(width), [1, width]), [1, height, width, 1]), [batch_size, 1, 1, channels]))
Example 8
Project: DeepLab_v3 Author: leimao File: resnet_v1_test.py License: MIT License | 6 votes |
def create_test_input(batch_size, height, width, channels): """Create test input tensor. Args: batch_size: The number of images per batch or `None` if unknown. height: The height of each image or `None` if unknown. width: The width of each image or `None` if unknown. channels: The number of channels per image or `None` if unknown. Returns: Either a placeholder `Tensor` of dimension [batch_size, height, width, channels] if any of the inputs are `None` or a constant `Tensor` with the mesh grid values along the spatial dimensions. """ if None in [batch_size, height, width, channels]: return tf.placeholder(tf.float32, (batch_size, height, width, channels)) else: return tf.to_float( np.tile( np.reshape( np.reshape(np.arange(height), [height, 1]) + np.reshape(np.arange(width), [1, width]), [1, height, width, 1]), [batch_size, 1, 1, channels]))
Example 9
Project: pymoo Author: msu-coinlab File: sympart.py License: Apache License 2.0 | 6 votes |
def _calc_pareto_set(self, n_pareto_points=500): # The SYM-PART test problem has 9 equivalent Pareto subsets. h = int(n_pareto_points / 9) PS = zeros((h * 9, self.n_var)) cnt = 0 for row in [-1, 0, 1]: for col in [1, 0, -1]: X1 = np.linspace(row * self.c - self.a, row * self.c + self.a, h) X2 = np.tile(col * self.b, h) PS[cnt * h:cnt * h + h, :] = np.vstack((X1, X2)).T cnt = cnt + 1 if self.w != 0: # If rotated, we apply the rotation matrix to PS # Calculate the rotation matrix RM = np.array([ [cos(self.w), -sin(self.w)], [sin(self.w), cos(self.w)] ]) PS = np.array([np.matmul(RM, x) for x in PS]) return PS
Example 10
Project: pyscf Author: pyscf File: test_common.py License: Apache License 2.0 | 6 votes |
def tdhf_frozen_mask(eri, kind="ov"): if isinstance(eri.nocc, int): nocc = int(eri.model.mo_occ.sum() // 2) mask = eri.space else: nocc = numpy.array(tuple(int(i.sum() // 2) for i in eri.model.mo_occ)) assert numpy.all(nocc == nocc[0]) assert numpy.all(eri.space == eri.space[0, numpy.newaxis, :]) nocc = nocc[0] mask = eri.space[0] mask_o = mask[:nocc] mask_v = mask[nocc:] if kind == "ov": mask_ov = numpy.outer(mask_o, mask_v).reshape(-1) return numpy.tile(mask_ov, 2) elif kind == "1ov": return numpy.outer(mask_o, mask_v).reshape(-1) elif kind == "sov": mask_ov = numpy.outer(mask_o, mask_v).reshape(-1) nk = len(eri.model.mo_occ) return numpy.tile(mask_ov, 2 * nk ** 2) elif kind == "o,v": return mask_o, mask_v
Example 11
Project: pyscf Author: pyscf File: test_common.py License: Apache License 2.0 | 6 votes |
def tdhf_frozen_mask(eri, kind="ov"): if isinstance(eri.nocc, int): nocc = int(eri.model.mo_occ.sum() // 2) mask = eri.space else: nocc = numpy.array(tuple(int(i.sum() // 2) for i in eri.model.mo_occ)) assert numpy.all(nocc == nocc[0]) assert numpy.all(eri.space == eri.space[0, numpy.newaxis, :]) nocc = nocc[0] mask = eri.space[0] mask_o = mask[:nocc] mask_v = mask[nocc:] if kind == "ov": mask_ov = numpy.outer(mask_o, mask_v).reshape(-1) return numpy.tile(mask_ov, 2) elif kind == "1ov": return numpy.outer(mask_o, mask_v).reshape(-1) elif kind == "sov": mask_ov = numpy.outer(mask_o, mask_v).reshape(-1) nk = len(eri.model.mo_occ) return numpy.tile(mask_ov, 2 * nk ** 2) elif kind == "o,v": return mask_o, mask_v
Example 12
Project: pyscf Author: pyscf File: test_common.py License: Apache License 2.0 | 6 votes |
def tdhf_frozen_mask(eri, kind="ov"): if isinstance(eri.nocc, int): nocc = int(eri.model.mo_occ.sum() // 2) mask = eri.space else: nocc = numpy.array(tuple(int(i.sum() // 2) for i in eri.model.mo_occ)) assert numpy.all(nocc == nocc[0]) assert numpy.all(eri.space == eri.space[0, numpy.newaxis, :]) nocc = nocc[0] mask = eri.space[0] mask_o = mask[:nocc] mask_v = mask[nocc:] if kind == "ov": mask_ov = numpy.outer(mask_o, mask_v).reshape(-1) return numpy.tile(mask_ov, 2) elif kind == "1ov": return numpy.outer(mask_o, mask_v).reshape(-1) elif kind == "sov": mask_ov = numpy.outer(mask_o, mask_v).reshape(-1) nk = len(eri.model.mo_occ) return numpy.tile(mask_ov, 2 * nk ** 2) elif kind == "o,v": return mask_o, mask_v
Example 13
Project: pyscf Author: pyscf File: test_common.py License: Apache License 2.0 | 6 votes |
def tdhf_frozen_mask(eri, kind="ov"): if isinstance(eri.nocc, int): nocc = int(eri.model.mo_occ.sum() // 2) mask = eri.space else: nocc = numpy.array(tuple(int(i.sum() // 2) for i in eri.model.mo_occ)) assert numpy.all(nocc == nocc[0]) assert numpy.all(eri.space == eri.space[0, numpy.newaxis, :]) nocc = nocc[0] mask = eri.space[0] mask_o = mask[:nocc] mask_v = mask[nocc:] if kind == "ov": mask_ov = numpy.outer(mask_o, mask_v).reshape(-1) return numpy.tile(mask_ov, 2) elif kind == "1ov": return numpy.outer(mask_o, mask_v).reshape(-1) elif kind == "sov": mask_ov = numpy.outer(mask_o, mask_v).reshape(-1) nk = len(eri.model.mo_occ) return numpy.tile(mask_ov, 2 * nk ** 2) elif kind == "o,v": return mask_o, mask_v
Example 14
Project: simpleflow Author: PytLab File: operations.py License: MIT License | 6 votes |
def compute_gradient(self, grad=None): ''' Compute the gradient for negative operation wrt input value. :param grad: The gradient of other operation wrt the negative output. :type grad: ndarray. ''' input_value = self.input_nodes[0].output_value if grad is None: grad = np.ones_like(self.output_value) output_shape = np.array(np.shape(input_value)) output_shape[self.axis] = 1.0 tile_scaling = np.shape(input_value) // output_shape grad = np.reshape(grad, output_shape) return np.tile(grad, tile_scaling)
Example 15
Project: NeuroKit Author: neuropsychology File: tests_complexity.py License: MIT License | 6 votes |
def pyeeg_ap_entropy(X, M, R): N = len(X) Em = pyeeg_embed_seq(X, 1, M) A = np.tile(Em, (len(Em), 1, 1)) B = np.transpose(A, [1, 0, 2]) D = np.abs(A - B) # D[i,j,k] = |Em[i][k] - Em[j][k]| InRange = np.max(D, axis=2) <= R # Probability that random M-sequences are in range Cm = InRange.mean(axis=0) # M+1-sequences in range if M-sequences are in range & last values are close Dp = np.abs(np.tile(X[M:], (N - M, 1)) - np.tile(X[M:], (N - M, 1)).T) Cmp = np.logical_and(Dp <= R, InRange[:-1, :-1]).mean(axis=0) Phi_m, Phi_mp = np.sum(np.log(Cm)), np.sum(np.log(Cmp)) Ap_En = (Phi_m - Phi_mp) / (N - M) return Ap_En
Example 16
Project: NeuroKit Author: neuropsychology File: tests_complexity.py License: MIT License | 6 votes |
def pyeeg_samp_entropy(X, M, R): N = len(X) Em = pyeeg_embed_seq(X, 1, M)[:-1] A = np.tile(Em, (len(Em), 1, 1)) B = np.transpose(A, [1, 0, 2]) D = np.abs(A - B) # D[i,j,k] = |Em[i][k] - Em[j][k]| InRange = np.max(D, axis=2) <= R np.fill_diagonal(InRange, 0) # Don't count self-matches Cm = InRange.sum(axis=0) # Probability that random M-sequences are in range Dp = np.abs(np.tile(X[M:], (N - M, 1)) - np.tile(X[M:], (N - M, 1)).T) Cmp = np.logical_and(Dp <= R, InRange).sum(axis=0) # Avoid taking log(0) Samp_En = np.log(np.sum(Cm + 1e-100) / np.sum(Cmp + 1e-100)) return Samp_En # ============================================================================= # Entropy # =============================================================================
Example 17
Project: me-ica Author: ME-ICA File: mghformat.py License: GNU Lesser General Public License v2.1 | 6 votes |
def update_header(self): ''' Harmonize header with image data and affine ''' hdr = self._header if not self._data is None: hdr.set_data_shape(self._data.shape) if not self._affine is None: # for more information, go through save_mgh.m in FreeSurfer dist MdcD = self._affine[:3, :3] delta = np.sqrt(np.sum(MdcD * MdcD, axis=0)) Mdc = MdcD / np.tile(delta, (3, 1)) Pcrs_c = np.array([0, 0, 0, 1], dtype=np.float) Pcrs_c[:3] = np.array([self._data.shape[0], self._data.shape[1], self._data.shape[2]], dtype=np.float) / 2.0 Pxyz_c = np.dot(self._affine, Pcrs_c) hdr['delta'][:] = delta hdr['Mdc'][:, :] = Mdc.T hdr['Pxyz_c'][:] = Pxyz_c[:3]
Example 18
Project: Black-Box-Audio Author: rtaori File: run_audio_attack.py License: MIT License | 5 votes |
def setup_graph(self, input_audio_batch, target_phrase): batch_size = input_audio_batch.shape[0] weird = (input_audio_batch.shape[1] - 1) // 320 logits_arg2 = np.tile(weird, batch_size) dense_arg1 = np.array(np.tile(target_phrase, (batch_size, 1)), dtype=np.int32) dense_arg2 = np.array(np.tile(target_phrase.shape[0], batch_size), dtype=np.int32) pass_in = np.clip(input_audio_batch, -2**15, 2**15-1) seq_len = np.tile(weird, batch_size).astype(np.int32) with tf.variable_scope('', reuse=tf.AUTO_REUSE): inputs = tf.placeholder(tf.float32, shape=pass_in.shape, name='a') len_batch = tf.placeholder(tf.float32, name='b') arg2_logits = tf.placeholder(tf.int32, shape=logits_arg2.shape, name='c') arg1_dense = tf.placeholder(tf.float32, shape=dense_arg1.shape, name='d') arg2_dense = tf.placeholder(tf.int32, shape=dense_arg2.shape, name='e') len_seq = tf.placeholder(tf.int32, shape=seq_len.shape, name='f') logits = get_logits(inputs, arg2_logits) target = ctc_label_dense_to_sparse(arg1_dense, arg2_dense, len_batch) ctcloss = tf.nn.ctc_loss(labels=tf.cast(target, tf.int32), inputs=logits, sequence_length=len_seq) decoded, _ = tf.nn.ctc_greedy_decoder(logits, arg2_logits, merge_repeated=True) sess = tf.Session() saver = tf.train.Saver(tf.global_variables()) saver.restore(sess, "models/session_dump") func1 = lambda a, b, c, d, e, f: sess.run(ctcloss, feed_dict={inputs: a, len_batch: b, arg2_logits: c, arg1_dense: d, arg2_dense: e, len_seq: f}) func2 = lambda a, b, c, d, e, f: sess.run([ctcloss, decoded], feed_dict={inputs: a, len_batch: b, arg2_logits: c, arg1_dense: d, arg2_dense: e, len_seq: f}) return (func1, func2)
Example 19
Project: Black-Box-Audio Author: rtaori File: run_audio_attack.py License: MIT License | 5 votes |
def getctcloss(self, input_audio_batch, target_phrase, decode=False): batch_size = input_audio_batch.shape[0] weird = (input_audio_batch.shape[1] - 1) // 320 logits_arg2 = np.tile(weird, batch_size) dense_arg1 = np.array(np.tile(target_phrase, (batch_size, 1)), dtype=np.int32) dense_arg2 = np.array(np.tile(target_phrase.shape[0], batch_size), dtype=np.int32) pass_in = np.clip(input_audio_batch, -2**15, 2**15-1) seq_len = np.tile(weird, batch_size).astype(np.int32) if decode: return self.funcs[1](pass_in, batch_size, logits_arg2, dense_arg1, dense_arg2, seq_len) else: return self.funcs[0](pass_in, batch_size, logits_arg2, dense_arg1, dense_arg2, seq_len)
Example 20
Project: mmdetection Author: open-mmlab File: dataset_wrappers.py License: Apache License 2.0 | 5 votes |
def __init__(self, dataset, times): self.dataset = dataset self.times = times self.CLASSES = dataset.CLASSES if hasattr(self.dataset, 'flag'): self.flag = np.tile(self.dataset.flag, times) self._ori_len = len(self.dataset)
Example 21
Project: neural-combinatorial-optimization-rl-tensorflow Author: MichelDeudon File: dataset.py License: MIT License | 5 votes |
def test_batch(self, seed=0): # Generate random TSP-TW instance input_, or_sequence, tw_open, tw_close = self.gen_instance(test_mode=True, seed=seed) # Store batch input_batch = np.tile(input_,(self.batch_size,1,1)) return input_batch, or_sequence, tw_open, tw_close # Plot a tour
Example 22
Project: neural-combinatorial-optimization-rl-tensorflow Author: MichelDeudon File: dataset.py License: MIT License | 5 votes |
def test_batch(self, batch_size, max_length, dimension, seed=0): # Generate random TSP instance input_, or_sequence = self.gen_instance(max_length, dimension, test_mode=True, seed=seed) # Store batch input_batch = np.tile(input_,(batch_size,1,1)) return input_batch, or_sequence # Plot a tour
Example 23
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: rl_data.py License: Apache License 2.0 | 5 votes |
def reset(self): self.state_ = np.tile( np.asarray([env.reset() for env in self.env], dtype=np.uint8).transpose((0, 3, 1, 2)), (1, self.input_length, 1, 1))
Example 24
Project: DOTA_models Author: ringringyi File: ops_test.py License: Apache License 2.0 | 5 votes |
def test_position_sensitive_with_equal_channels(self): num_spatial_bins = [2, 2] image_shape = [1, 3, 3, 4] crop_size = [2, 2] image = tf.constant(range(1, 3 * 3 + 1), dtype=tf.float32, shape=[1, 3, 3, 1]) tiled_image = tf.tile(image, [1, 1, 1, image_shape[3]]) boxes = tf.random_uniform((3, 4)) box_ind = tf.constant([0, 0, 0], dtype=tf.int32) # All channels are equal so position-sensitive crop and resize should # work as the usual crop and resize for just one channel. crop = tf.image.crop_and_resize(image, boxes, box_ind, crop_size) crop_and_pool = tf.reduce_mean(crop, [1, 2], keep_dims=True) ps_crop_and_pool = ops.position_sensitive_crop_regions( tiled_image, boxes, box_ind, crop_size, num_spatial_bins, global_pool=True) with self.test_session() as sess: expected_output, output = sess.run((crop_and_pool, ps_crop_and_pool)) self.assertAllClose(output, expected_output)
Example 25
Project: DOTA_models Author: ringringyi File: ops_test.py License: Apache License 2.0 | 5 votes |
def test_position_sensitive_with_global_pool_false(self): num_spatial_bins = [3, 2] image_shape = [1, 3, 2, 6] num_boxes = 2 # First channel is 1's, second channel is 2's, etc. image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32, shape=image_shape) boxes = tf.random_uniform((num_boxes, 4)) box_ind = tf.constant([0, 0], dtype=tf.int32) expected_output = [] # Expected output, when crop_size = [3, 2]. expected_output.append(np.expand_dims( np.tile(np.array([[1, 2], [3, 4], [5, 6]]), (num_boxes, 1, 1)), axis=-1)) # Expected output, when crop_size = [6, 4]. expected_output.append(np.expand_dims( np.tile(np.array([[1, 1, 2, 2], [1, 1, 2, 2], [3, 3, 4, 4], [3, 3, 4, 4], [5, 5, 6, 6], [5, 5, 6, 6]]), (num_boxes, 1, 1)), axis=-1)) for crop_size_mult in range(1, 3): crop_size = [3 * crop_size_mult, 2 * crop_size_mult] ps_crop = ops.position_sensitive_crop_regions( image, boxes, box_ind, crop_size, num_spatial_bins, global_pool=False) with self.test_session() as sess: output = sess.run(ps_crop) self.assertAllEqual(output, expected_output[crop_size_mult - 1])
Example 26
Project: Deep_Learning_Weather_Forecasting Author: BruceBinBoxing File: seq2seq_class.py License: Apache License 2.0 | 5 votes |
def sample_batch(self, data_inputs, ground_truth, ruitu_inputs, batch_size, certain_id=None, certain_feature=None): max_i, _, max_j, _ = data_inputs.shape # Example: (1148, 37, 10, 9)-(sample_ind, timestep, sta_id, features) id_ = np.random.randint(max_j, size=batch_size) i = np.random.randint(max_i, size=batch_size) batch_inputs = data_inputs[i,:,id_,:] batch_ouputs = ground_truth[i,:,id_,:] batch_ruitu = ruitu_inputs[i,:,id_,:] # id used for embedding if self.id_embd and (not self.time_embd): expd_id = np.expand_dims(id_,axis=1) batch_ids = np.tile(expd_id,(1,37)) return batch_inputs, batch_ruitu, batch_ouputs, batch_ids elif (not self.id_embd) and (self.time_embd): time_range = np.array(range(37)) batch_time = np.tile(time_range,(batch_size,1)) #batch_time = np.expand_dims(batch_time, axis=-1) return batch_inputs, batch_ruitu, batch_ouputs, batch_time elif (self.id_embd) and (self.time_embd): expd_id = np.expand_dims(id_,axis=1) batch_ids = np.tile(expd_id,(1,37)) time_range = np.array(range(37)) batch_time = np.tile(time_range,(batch_size,1)) #batch_time = np.expand_dims(batch_time, axis=-1) return batch_inputs, batch_ruitu, batch_ouputs, batch_ids, batch_time elif (not self.id_embd) and (not self.time_embd): return batch_inputs, batch_ruitu, batch_ouputs
Example 27
Project: Deep_Learning_Weather_Forecasting Author: BruceBinBoxing File: competition_model_class.py License: Apache License 2.0 | 5 votes |
def sample_batch(self, data_inputs, ground_truth, ruitu_inputs, batch_size, certain_id=None, certain_feature=None): max_i, _, max_j, _ = data_inputs.shape # Example: (1148, 37, 10, 9)-(sample_ind, timestep, sta_id, features) id_ = np.random.randint(max_j, size=batch_size) i = np.random.randint(max_i, size=batch_size) batch_inputs = data_inputs[i,:,id_,:] batch_ouputs = ground_truth[i,:,id_,:] batch_ruitu = ruitu_inputs[i,:,id_,:] # id used for embedding if self.id_embd and (not self.time_embd): expd_id = np.expand_dims(id_,axis=1) batch_ids = np.tile(expd_id,(1,37)) return batch_inputs, batch_ruitu, batch_ouputs, batch_ids elif (not self.id_embd) and (self.time_embd): time_range = np.array(range(37)) batch_time = np.tile(time_range,(batch_size,1)) #batch_time = np.expand_dims(batch_time, axis=-1) return batch_inputs, batch_ruitu, batch_ouputs, batch_time elif (self.id_embd) and (self.time_embd): expd_id = np.expand_dims(id_,axis=1) batch_ids = np.tile(expd_id,(1,37)) time_range = np.array(range(37)) batch_time = np.tile(time_range,(batch_size,1)) #batch_time = np.expand_dims(batch_time, axis=-1) return batch_inputs, batch_ruitu, batch_ouputs, batch_ids, batch_time elif (not self.id_embd) and (not self.time_embd): return batch_inputs, batch_ruitu, batch_ouputs
Example 28
Project: Deep_Learning_Weather_Forecasting Author: BruceBinBoxing File: Train_from_scratch.py License: Apache License 2.0 | 5 votes |
def train(processed_path, train_data, val_data, model_save_path, model_name): train_dict = load_pkl(processed_path, train_data) val_dict = load_pkl(processed_path, val_data) print(train_dict.keys()) print('Original input_obs data shape:') print(train_dict['input_obs'].shape) print(val_dict['input_obs'].shape) print('After clipping the 9 days, input_obs data shape:') train_dict['input_obs'] = train_dict['input_obs'][:,:-9,:,:] val_dict['input_obs'] = val_dict['input_obs'][:,:-9,:,:] print(train_dict['input_obs'].shape) print(val_dict['input_obs'].shape) enc_dec = Seq2Seq_Class(model_save_path=model_save_path, model_structure_name=model_name, model_weights_name=model_name, model_name=model_name) enc_dec.build_graph() val_size=val_dict['input_ruitu'].shape[0] # 87 val samples val_ids=[] val_times=[] for i in range(10): val_ids.append(np.ones(shape=(val_size,37))*i) val_ids = np.stack(val_ids, axis=-1) print('val_ids.shape is:', val_ids.shape) val_times = np.array(range(37)) val_times = np.tile(val_times,(val_size,1)) print('val_times.shape is:',val_times.shape) enc_dec.fit(train_dict['input_obs'], train_dict['input_ruitu'], train_dict['ground_truth'], val_dict['input_obs'], val_dict['input_ruitu'], val_dict['ground_truth'], val_ids = val_ids, val_times=val_times, iterations=10000, batch_size=512, validation=True) print('Training finished!')
Example 29
Project: graph-neural-networks Author: alelab-upenn File: graphTools.py License: GNU General Public License v3.0 | 5 votes |
def matrixPowers(S,K): """ matrixPowers(A, K) Computes the matrix powers A^k for k = 0, ..., K-1 Inputs: A: either a single N x N matrix or a collection E x N x N of E matrices. K: integer, maximum power to be computed (up to K-1) Outputs: AK: either a collection of K matrices K x N x N (if the input was a single matrix) or a collection E x K x N x N (if the input was a collection of E matrices). """ # S can be either a single GSO (N x N) or a collection of GSOs (E x N x N) if len(S.shape) == 2: N = S.shape[0] assert S.shape[1] == N E = 1 S = S.reshape(1, N, N) scalarWeights = True elif len(S.shape) == 3: E = S.shape[0] N = S.shape[1] assert S.shape[2] == N scalarWeights = False # Now, let's build the powers of S: thisSK = np.tile(np.eye(N, N).reshape(1,N,N), [E, 1, 1]) SK = thisSK.reshape(E, 1, N, N) for k in range(1,K): thisSK = thisSK @ S SK = np.concatenate((SK, thisSK.reshape(E, 1, N, N)), axis = 1) # Take out the first dimension if it was a single GSO if scalarWeights: SK = SK.reshape(K, N, N) return SK
Example 30
Project: python-toolbox-for-rapid Author: Esri File: CreateDischargeTable.py License: Apache License 2.0 | 5 votes |
def createFlatTable(self, in_nc, out_table): """Create discharge table""" # obtain numpy array from the netCDF data data_nc = NET.Dataset(in_nc) comid = data_nc.variables[self.vars_oi[0]][:] qout = data_nc.variables[self.vars_oi[1]][:] time_size = len(data_nc.dimensions[self.dims_oi[0]]) # to adapt to the changes of Qout dimensions comid_size = len(data_nc.dimensions[self.dims_oi[1]]) # to adapt to the changes of Qout dimensions total_size = time_size * comid_size qout_arr = qout.reshape(total_size, 1) time_arr = NUM.repeat(NUM.arange(1,time_size+1), comid_size) time_arr = time_arr.reshape(total_size, 1) comid_arr = NUM.tile(comid, time_size) comid_arr = comid_arr.reshape(total_size, 1) data_table = NUM.hstack((time_arr, comid_arr, qout_arr)) # convert to numpy structured array str_arr = NUM.core.records.fromarrays(data_table.transpose(), NUM.dtype([(self.fields_oi[0], NUM.int32), (self.fields_oi[1], NUM.int32), (self.fields_oi[2], NUM.float32)])) data_nc.close() # numpy structured array to table arcpy.da.NumPyArrayToTable(str_arr, out_table) return