Python numpy.recarray() Examples
The following are 30 code examples for showing how to use numpy.recarray(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: me-ica Author: ME-ICA File: ecat.py License: GNU Lesser General Public License v2.1 | 6 votes |
def __init__(self,fileobj, hdr): """ gets list of frames and subheaders in pet file Parameters ----------- fileobj : ECAT file <filename>.v fileholder or file object with read, seek methods Returns ------- mlist : numpy recarray nframes X 4 columns 1 - Matrix identifier. 2 - subheader record number 3 - Last record number of matrix data block. 4 - Matrix status: 1 - exists - rw 2 - exists - ro 3 - matrix deleted """ self.hdr = hdr self._mlist = self.get_mlist(fileobj)
Example 2
Project: recruit Author: Frank-qlu File: recfunctions.py License: Apache License 2.0 | 6 votes |
def _keep_fields(base, keep_names, usemask=True, asrecarray=False): """ Return a new array keeping only the fields in `keep_names`, and preserving the order of those fields. Parameters ---------- base : array Input array keep_names : string or sequence String or sequence of strings corresponding to the names of the fields to keep. Order of the names will be preserved. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : string or sequence, optional Whether to return a recarray or a mrecarray (`asrecarray=True`) or a plain ndarray or masked array with flexible dtype. The default is False. """ newdtype = [(n, base.dtype[n]) for n in keep_names] output = np.empty(base.shape, dtype=newdtype) output = recursive_fill_fields(base, output) return _fix_output(output, usemask=usemask, asrecarray=asrecarray)
Example 3
Project: recruit Author: Frank-qlu File: test_io.py License: Apache License 2.0 | 6 votes |
def test_recfromtxt(self): # data = TextIO('A,B\n0,1\n2,3') kwargs = dict(delimiter=",", missing_values="N/A", names=True) test = np.recfromtxt(data, **kwargs) control = np.array([(0, 1), (2, 3)], dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) # data = TextIO('A,B\n0,1\n2,N/A') test = np.recfromtxt(data, dtype=None, usemask=True, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], dtype=[('A', int), ('B', int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.A, [0, 2])
Example 4
Project: lambda-packs Author: ryfeus File: recfunctions.py License: MIT License | 6 votes |
def _keep_fields(base, keep_names, usemask=True, asrecarray=False): """ Return a new array keeping only the fields in `keep_names`, and preserving the order of those fields. Parameters ---------- base : array Input array keep_names : string or sequence String or sequence of strings corresponding to the names of the fields to keep. Order of the names will be preserved. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : string or sequence, optional Whether to return a recarray or a mrecarray (`asrecarray=True`) or a plain ndarray or masked array with flexible dtype. The default is False. """ newdtype = [(n, base.dtype[n]) for n in keep_names] output = np.empty(base.shape, dtype=newdtype) output = recursive_fill_fields(base, output) return _fix_output(output, usemask=usemask, asrecarray=asrecarray)
Example 5
Project: lambda-packs Author: ryfeus File: test_io.py License: MIT License | 6 votes |
def test_recfromtxt(self): # data = TextIO('A,B\n0,1\n2,3') kwargs = dict(delimiter=",", missing_values="N/A", names=True) test = np.recfromtxt(data, **kwargs) control = np.array([(0, 1), (2, 3)], dtype=[('A', np.int), ('B', np.int)]) self.assertTrue(isinstance(test, np.recarray)) assert_equal(test, control) # data = TextIO('A,B\n0,1\n2,N/A') test = np.recfromtxt(data, dtype=None, usemask=True, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], dtype=[('A', np.int), ('B', np.int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.A, [0, 2])
Example 6
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_records.py License: MIT License | 6 votes |
def test_recarray_from_repr(self): a = np.array([(1,'ABC'), (2, "DEF")], dtype=[('foo', int), ('bar', 'S4')]) recordarr = np.rec.array(a) recarr = a.view(np.recarray) recordview = a.view(np.dtype((np.record, a.dtype))) recordarr_r = eval("numpy." + repr(recordarr), {'numpy': np}) recarr_r = eval("numpy." + repr(recarr), {'numpy': np}) recordview_r = eval("numpy." + repr(recordview), {'numpy': np}) assert_equal(type(recordarr_r), np.recarray) assert_equal(recordarr_r.dtype.type, np.record) assert_equal(recordarr, recordarr_r) assert_equal(type(recarr_r), np.recarray) assert_equal(recarr_r.dtype.type, np.record) assert_equal(recarr, recarr_r) assert_equal(type(recordview_r), np.ndarray) assert_equal(recordview.dtype.type, np.record) assert_equal(recordview, recordview_r)
Example 7
Project: vnpy_crypto Author: birforce File: recfunctions.py License: MIT License | 6 votes |
def _keep_fields(base, keep_names, usemask=True, asrecarray=False): """ Return a new array keeping only the fields in `keep_names`, and preserving the order of those fields. Parameters ---------- base : array Input array keep_names : string or sequence String or sequence of strings corresponding to the names of the fields to keep. Order of the names will be preserved. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : string or sequence, optional Whether to return a recarray or a mrecarray (`asrecarray=True`) or a plain ndarray or masked array with flexible dtype. The default is False. """ newdtype = [(n, base.dtype[n]) for n in keep_names] output = np.empty(base.shape, dtype=newdtype) output = recursive_fill_fields(base, output) return _fix_output(output, usemask=usemask, asrecarray=asrecarray)
Example 8
Project: vnpy_crypto Author: birforce File: test_io.py License: MIT License | 6 votes |
def test_recfromtxt(self): # data = TextIO('A,B\n0,1\n2,3') kwargs = dict(delimiter=",", missing_values="N/A", names=True) test = np.recfromtxt(data, **kwargs) control = np.array([(0, 1), (2, 3)], dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) # data = TextIO('A,B\n0,1\n2,N/A') test = np.recfromtxt(data, dtype=None, usemask=True, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], dtype=[('A', int), ('B', int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.A, [0, 2])
Example 9
Project: vnpy_crypto Author: birforce File: test_records.py License: MIT License | 6 votes |
def test_recarray_from_repr(self): a = np.array([(1,'ABC'), (2, "DEF")], dtype=[('foo', int), ('bar', 'S4')]) recordarr = np.rec.array(a) recarr = a.view(np.recarray) recordview = a.view(np.dtype((np.record, a.dtype))) recordarr_r = eval("numpy." + repr(recordarr), {'numpy': np}) recarr_r = eval("numpy." + repr(recarr), {'numpy': np}) recordview_r = eval("numpy." + repr(recordview), {'numpy': np}) assert_equal(type(recordarr_r), np.recarray) assert_equal(recordarr_r.dtype.type, np.record) assert_equal(recordarr, recordarr_r) assert_equal(type(recarr_r), np.recarray) assert_equal(recarr_r.dtype.type, np.record) assert_equal(recarr, recarr_r) assert_equal(type(recordview_r), np.ndarray) assert_equal(recordview.dtype.type, np.record) assert_equal(recordview, recordview_r)
Example 10
Project: me-ica Author: ME-ICA File: ecat.py License: GNU Lesser General Public License v2.1 | 5 votes |
def get_mlist(self, fileobj): fileobj.seek(512) dat=fileobj.read(128*32) dt = np.dtype([('matlist',np.int32)]) if not self.hdr.endianness is native_code: dt = dt.newbyteorder(self.hdr.endianness) nframes = self.hdr['num_frames'] mlist = np.zeros((nframes,4), dtype='uint32') record_count = 0 done = False while not done: #mats['matlist'][0,1] == 2: mats = np.recarray(shape=(32,4), dtype=dt, buf=dat) if not (mats['matlist'][0,0] + mats['matlist'][0,3]) == 31: mlist = [] return mlist nrecords = mats['matlist'][0,3] mlist[record_count:nrecords+record_count,:] = mats['matlist'][1:nrecords+1,:] record_count+= nrecords if mats['matlist'][0,1] == 2 or mats['matlist'][0,1] == 0: done = True else: # Find next subheader tmp = int(mats['matlist'][0,1]-1)#cast to int fileobj.seek(0) fileobj.seek(tmp*512) dat = fileobj.read(128*32) return mlist
Example 11
Project: me-ica Author: ME-ICA File: ecat.py License: GNU Lesser General Public License v2.1 | 5 votes |
def _get_subheaders(self): """retreive all subheaders and return list of subheader recarrays """ subheaders = [] header = self._header endianness = self.endianness dt = self._subhdrdtype if not self.endianness is native_code: dt = self._subhdrdtype.newbyteorder(self.endianness) if self._header['num_frames'] > 1: for item in self._mlist._mlist: if item[1] == 0: break self.fileobj.seek(0) offset = (int(item[1])-1)*512 self.fileobj.seek(offset) tmpdat = self.fileobj.read(512) sh = (np.recarray(shape=(), dtype=dt, buf=tmpdat)) subheaders.append(sh.copy()) else: self.fileobj.seek(0) offset = (int(self._mlist._mlist[0][1])-1)*512 self.fileobj.seek(offset) tmpdat = self.fileobj.read(512) sh = (np.recarray(shape=(), dtype=dt, buf=tmpdat)) subheaders.append(sh) return subheaders
Example 12
Project: me-ica Author: ME-ICA File: test_ecat.py License: GNU Lesser General Public License v2.1 | 5 votes |
def test_mlist(self): fid = open(self.example_file, 'rb') hdr = self.header_class.from_fileobj(fid) mlist = self.mlist_class(fid, hdr) fid.seek(0) fid.seek(512) dat=fid.read(128*32) dt = np.dtype([('matlist',np.int32)]) dt = dt.newbyteorder('>') mats = np.recarray(shape=(32,4), dtype=dt, buf=dat) fid.close() #tests assert_true(mats['matlist'][0,0] + mats['matlist'][0,3] == 31) assert_true(mlist.get_frame_order()[0][0] == 0) assert_true(mlist.get_frame_order()[0][1] == 16842758.0) # test badly ordered mlist badordermlist = mlist badordermlist._mlist = np.array([[ 1.68427540e+07, 3.00000000e+00, 1.20350000e+04, 1.00000000e+00], [ 1.68427530e+07, 1.20360000e+04, 2.40680000e+04, 1.00000000e+00], [ 1.68427550e+07, 2.40690000e+04, 3.61010000e+04, 1.00000000e+00], [ 1.68427560e+07, 3.61020000e+04, 4.81340000e+04, 1.00000000e+00], [ 1.68427570e+07, 4.81350000e+04, 6.01670000e+04, 1.00000000e+00], [ 1.68427580e+07, 6.01680000e+04, 7.22000000e+04, 1.00000000e+00]]) assert_true(badordermlist.get_frame_order()[0][0] == 1)
Example 13
Project: arctic Author: man-group File: _pandas_ndarray_store.py License: GNU Lesser General Public License v2.1 | 5 votes |
def _datetime64_index(self, recarr): """ Given a np.recarray find the first datetime64 column """ # TODO: Handle multi-indexes names = recarr.dtype.names for name in names: if recarr[name].dtype == DTN64_DTYPE: return name return None
Example 14
Project: recruit Author: Frank-qlu File: recfunctions.py License: Apache License 2.0 | 5 votes |
def _fix_output(output, usemask=True, asrecarray=False): """ Private function: return a recarray, a ndarray, a MaskedArray or a MaskedRecords depending on the input parameters """ if not isinstance(output, MaskedArray): usemask = False if usemask: if asrecarray: output = output.view(MaskedRecords) else: output = ma.filled(output) if asrecarray: output = output.view(recarray) return output
Example 15
Project: recruit Author: Frank-qlu File: recfunctions.py License: Apache License 2.0 | 5 votes |
def rec_drop_fields(base, drop_names): """ Returns a new numpy.recarray with fields in `drop_names` dropped. """ return drop_fields(base, drop_names, usemask=False, asrecarray=True)
Example 16
Project: recruit Author: Frank-qlu File: recfunctions.py License: Apache License 2.0 | 5 votes |
def rename_fields(base, namemapper): """ Rename the fields from a flexible-datatype ndarray or recarray. Nested fields are supported. Parameters ---------- base : ndarray Input array whose fields must be modified. namemapper : dictionary Dictionary mapping old field names to their new version. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))], ... dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])]) >>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'}) array([(1, (2.0, [3.0, 30.0])), (4, (5.0, [6.0, 60.0]))], dtype=[('A', '<i4'), ('b', [('ba', '<f8'), ('BB', '<f8', 2)])]) """ def _recursive_rename_fields(ndtype, namemapper): newdtype = [] for name in ndtype.names: newname = namemapper.get(name, name) current = ndtype[name] if current.names: newdtype.append( (newname, _recursive_rename_fields(current, namemapper)) ) else: newdtype.append((newname, current)) return newdtype newdtype = _recursive_rename_fields(base.dtype, namemapper) return base.view(newdtype)
Example 17
Project: recruit Author: Frank-qlu File: recfunctions.py License: Apache License 2.0 | 5 votes |
def rec_append_fields(base, names, data, dtypes=None): """ Add new fields to an existing array. The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values. Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes, optional Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. See Also -------- append_fields Returns ------- appended_array : np.recarray """ return append_fields(base, names, data=data, dtypes=dtypes, asrecarray=True, usemask=False)
Example 18
Project: recruit Author: Frank-qlu File: test_io.py License: Apache License 2.0 | 5 votes |
def test_recfromcsv(self): # data = TextIO('A,B\n0,1\n2,3') kwargs = dict(missing_values="N/A", names=True, case_sensitive=True) test = np.recfromcsv(data, dtype=None, **kwargs) control = np.array([(0, 1), (2, 3)], dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) # data = TextIO('A,B\n0,1\n2,N/A') test = np.recfromcsv(data, dtype=None, usemask=True, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], dtype=[('A', int), ('B', int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.A, [0, 2]) # data = TextIO('A,B\n0,1\n2,3') test = np.recfromcsv(data, missing_values='N/A',) control = np.array([(0, 1), (2, 3)], dtype=[('a', int), ('b', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) # data = TextIO('A,B\n0,1\n2,3') dtype = [('a', int), ('b', float)] test = np.recfromcsv(data, missing_values='N/A', dtype=dtype) control = np.array([(0, 1), (2, 3)], dtype=dtype) assert_(isinstance(test, np.recarray)) assert_equal(test, control) #gh-10394 data = TextIO('color\n"red"\n"blue"') test = np.recfromcsv(data, converters={0: lambda x: x.strip(b'\"')}) control = np.array([('red',), ('blue',)], dtype=[('color', (bytes, 4))]) assert_equal(test.dtype, control.dtype) assert_equal(test, control)
Example 19
Project: recruit Author: Frank-qlu File: test_io.py License: Apache License 2.0 | 5 votes |
def test_recfromtxt(self): with temppath(suffix='.txt') as path: path = Path(path) with path.open('w') as f: f.write(u'A,B\n0,1\n2,3') kwargs = dict(delimiter=",", missing_values="N/A", names=True) test = np.recfromtxt(path, **kwargs) control = np.array([(0, 1), (2, 3)], dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control)
Example 20
Project: recruit Author: Frank-qlu File: test_io.py License: Apache License 2.0 | 5 votes |
def test_recfromcsv(self): with temppath(suffix='.txt') as path: path = Path(path) with path.open('w') as f: f.write(u'A,B\n0,1\n2,3') kwargs = dict(missing_values="N/A", names=True, case_sensitive=True) test = np.recfromcsv(path, dtype=None, **kwargs) control = np.array([(0, 1), (2, 3)], dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control)
Example 21
Project: recruit Author: Frank-qlu File: npyio.py License: Apache License 2.0 | 5 votes |
def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
Example 22
Project: recruit Author: Frank-qlu File: test_mrecords.py License: Apache License 2.0 | 5 votes |
def test_byview(self): # Test creation by view base = self.base mbase = base.view(mrecarray) assert_equal(mbase.recordmask, base.recordmask) assert_equal_records(mbase._mask, base._mask) assert_(isinstance(mbase._data, recarray)) assert_equal_records(mbase._data, base._data.view(recarray)) for field in ('a', 'b', 'c'): assert_equal(base[field], mbase[field]) assert_equal_records(mbase.view(mrecarray), mbase)
Example 23
Project: recruit Author: Frank-qlu File: test_core.py License: Apache License 2.0 | 5 votes |
def test_pickling_subbaseclass(self): # Test pickling w/ a subclass of ndarray x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)]).view(np.recarray) a = masked_array(x, mask=[(True, False), (False, True)]) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): a_pickled = pickle.loads(pickle.dumps(a, protocol=proto)) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled, a) assert_(isinstance(a_pickled._data, np.recarray))
Example 24
Project: recruit Author: Frank-qlu File: test_core.py License: Apache License 2.0 | 5 votes |
def test_view_to_dtype_and_type(self): (data, a, controlmask) = self.data test = a.view((float, 2), np.recarray) assert_equal(test, data) assert_(isinstance(test, np.recarray)) assert_(not isinstance(test, MaskedArray))
Example 25
Project: recruit Author: Frank-qlu File: test_random.py License: Apache License 2.0 | 5 votes |
def test_shuffle(self): # Test lists, arrays (of various dtypes), and multidimensional versions # of both, c-contiguous or not: for conv in [lambda x: np.array([]), lambda x: x, lambda x: np.asarray(x).astype(np.int8), lambda x: np.asarray(x).astype(np.float32), lambda x: np.asarray(x).astype(np.complex64), lambda x: np.asarray(x).astype(object), lambda x: [(i, i) for i in x], lambda x: np.asarray([[i, i] for i in x]), lambda x: np.vstack([x, x]).T, # gh-11442 lambda x: (np.asarray([(i, i) for i in x], [("a", int), ("b", int)]) .view(np.recarray)), # gh-4270 lambda x: np.asarray([(i, i) for i in x], [("a", object, 1), ("b", np.int32, 1)])]: np.random.seed(self.seed) alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) np.random.shuffle(alist) actual = alist desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3]) assert_array_equal(actual, desired)
Example 26
Project: recruit Author: Frank-qlu File: test_records.py License: Apache License 2.0 | 5 votes |
def test_recarray_stringtypes(self): # Issue #3993 a = np.array([('abc ', 1), ('abc', 2)], dtype=[('foo', 'S4'), ('bar', int)]) a = a.view(np.recarray) assert_equal(a.foo[0] == a.foo[1], False)
Example 27
Project: recruit Author: Frank-qlu File: test_records.py License: Apache License 2.0 | 5 votes |
def test_recarray_returntypes(self): qux_fields = {'C': (np.dtype('S5'), 0), 'D': (np.dtype('S5'), 6)} a = np.rec.array([('abc ', (1,1), 1, ('abcde', 'fgehi')), ('abc', (2,3), 1, ('abcde', 'jklmn'))], dtype=[('foo', 'S4'), ('bar', [('A', int), ('B', int)]), ('baz', int), ('qux', qux_fields)]) assert_equal(type(a.foo), np.ndarray) assert_equal(type(a['foo']), np.ndarray) assert_equal(type(a.bar), np.recarray) assert_equal(type(a['bar']), np.recarray) assert_equal(a.bar.dtype.type, np.record) assert_equal(type(a['qux']), np.recarray) assert_equal(a.qux.dtype.type, np.record) assert_equal(dict(a.qux.dtype.fields), qux_fields) assert_equal(type(a.baz), np.ndarray) assert_equal(type(a['baz']), np.ndarray) assert_equal(type(a[0].bar), np.record) assert_equal(type(a[0]['bar']), np.record) assert_equal(a[0].bar.A, 1) assert_equal(a[0].bar['A'], 1) assert_equal(a[0]['bar'].A, 1) assert_equal(a[0]['bar']['A'], 1) assert_equal(a[0].qux.D, b'fgehi') assert_equal(a[0].qux['D'], b'fgehi') assert_equal(a[0]['qux'].D, b'fgehi') assert_equal(a[0]['qux']['D'], b'fgehi')
Example 28
Project: recruit Author: Frank-qlu File: test_records.py License: Apache License 2.0 | 5 votes |
def test_objview_record(self): # https://github.com/numpy/numpy/issues/2599 dt = np.dtype([('foo', 'i8'), ('bar', 'O')]) r = np.zeros((1,3), dtype=dt).view(np.recarray) r.foo = np.array([1, 2, 3]) # TypeError? # https://github.com/numpy/numpy/issues/3256 ra = np.recarray((2,), dtype=[('x', object), ('y', float), ('z', int)]) ra[['x','y']] # TypeError?
Example 29
Project: recruit Author: Frank-qlu File: test_records.py License: Apache License 2.0 | 5 votes |
def test_record_scalar_setitem(self): # https://github.com/numpy/numpy/issues/3561 rec = np.recarray(1, dtype=[('x', float, 5)]) rec[0].x = 1 assert_equal(rec[0].x, np.ones(5))
Example 30
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_recarray_tolist(self): # Ticket #793, changeset r5215 # Comparisons fail for NaN, so we can't use random memory # for the test. buf = np.zeros(40, dtype=np.int8) a = np.recarray(2, formats="i4,f8,f8", names="id,x,y", buf=buf) b = a.tolist() assert_( a[0].tolist() == b[0]) assert_( a[1].tolist() == b[1])