Python numpy.intp() Examples
The following are 30 code examples for showing how to use numpy.intp(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: OpenFermion-Cirq Author: quantumlib File: fermionic_simulation.py License: Apache License 2.0 | 6 votes |
def _eigen_components(self): components = [(0, np.diag([1, 1, 1, 0, 1, 0, 0, 1]))] nontrivial_part = np.zeros((3, 3), dtype=np.complex128) for ij, w in zip([(1, 2), (0, 2), (0, 1)], self.weights): nontrivial_part[ij] = w nontrivial_part[ij[::-1]] = w.conjugate() assert np.allclose(nontrivial_part, nontrivial_part.conj().T) eig_vals, eig_vecs = np.linalg.eigh(nontrivial_part) for eig_val, eig_vec in zip(eig_vals, eig_vecs.T): exp_factor = -eig_val / np.pi proj = np.zeros((8, 8), dtype=np.complex128) nontrivial_indices = np.array([3, 5, 6], dtype=np.intp) proj[nontrivial_indices[:, np.newaxis], nontrivial_indices] = ( np.outer(eig_vec.conjugate(), eig_vec)) components.append((exp_factor, proj)) return components
Example 2
Project: recruit Author: Frank-qlu File: test_index_tricks.py License: Apache License 2.0 | 6 votes |
def test_big_indices(self): # ravel_multi_index for big indices (issue #7546) if np.intp == np.int64: arr = ([1, 29], [3, 5], [3, 117], [19, 2], [2379, 1284], [2, 2], [0, 1]) assert_equal( np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)), [5627771580, 117259570957]) # test overflow checking for too big array (issue #7546) dummy_arr = ([0],[0]) half_max = np.iinfo(np.intp).max // 2 assert_equal( np.ravel_multi_index(dummy_arr, (half_max, 2)), [0]) assert_raises(ValueError, np.ravel_multi_index, dummy_arr, (half_max+1, 2)) assert_equal( np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0]) assert_raises(ValueError, np.ravel_multi_index, dummy_arr, (half_max+1, 2), order='F')
Example 3
Project: recruit Author: Frank-qlu File: test_shape_base.py License: Apache License 2.0 | 6 votes |
def test_invalid(self): """ Test it errors when indices has too few dimensions """ a = np.ones((10, 10)) ai = np.ones((10, 2), dtype=np.intp) # sanity check take_along_axis(a, ai, axis=1) # not enough indices assert_raises(ValueError, take_along_axis, a, np.array(1), axis=1) # bool arrays not allowed assert_raises(IndexError, take_along_axis, a, ai.astype(bool), axis=1) # float arrays not allowed assert_raises(IndexError, take_along_axis, a, ai.astype(float), axis=1) # invalid axis assert_raises(np.AxisError, take_along_axis, a, ai, axis=10)
Example 4
Project: recruit Author: Frank-qlu File: test_core.py License: Apache License 2.0 | 6 votes |
def test_count_func(self): # Tests count assert_equal(1, count(1)) assert_equal(0, array(1, mask=[1])) ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) res = count(ott) assert_(res.dtype.type is np.intp) assert_equal(3, res) ott = ott.reshape((2, 2)) res = count(ott) assert_(res.dtype.type is np.intp) assert_equal(3, res) res = count(ott, 0) assert_(isinstance(res, ndarray)) assert_equal([1, 2], res) assert_(getmask(res) is nomask) ott = array([0., 1., 2., 3.]) res = count(ott, 0) assert_(isinstance(res, ndarray)) assert_(res.dtype.type is np.intp) assert_raises(np.AxisError, ott.count, axis=1)
Example 5
Project: recruit Author: Frank-qlu File: _internal.py License: Apache License 2.0 | 6 votes |
def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example 6
Project: recruit Author: Frank-qlu File: test_indexing.py License: Apache License 2.0 | 6 votes |
def test_reverse_strides_and_subspace_bufferinit(self): # This tests that the strides are not reversed for simple and # subspace fancy indexing. a = np.ones(5) b = np.zeros(5, dtype=np.intp)[::-1] c = np.arange(5)[::-1] a[b] = c # If the strides are not reversed, the 0 in the arange comes last. assert_equal(a[0], 0) # This also tests that the subspace buffer is initialized: a = np.ones((5, 2)) c = np.arange(10).reshape(5, 2)[::-1] a[b, :] = c assert_equal(a[0], [0, 1])
Example 7
Project: recruit Author: Frank-qlu File: test_indexing.py License: Apache License 2.0 | 6 votes |
def test_unaligned(self): v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7] d = v.view(np.dtype("S8")) # unaligned source x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7] x = x.view(np.dtype("S8")) x[...] = np.array("b" * 8, dtype="S") b = np.arange(d.size) #trivial assert_equal(d[b], d) d[b] = x # nontrivial # unaligned index array b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)] b = b.view(np.intp)[:d.size] b[...] = np.arange(d.size) assert_equal(d[b.astype(np.int16)], d) d[b.astype(np.int16)] = x # boolean d[b % 2 == 0] d[b % 2 == 0] = x[::2]
Example 8
Project: recruit Author: Frank-qlu File: methods.py License: Apache License 2.0 | 6 votes |
def test_searchsorted(self, data_for_sorting, as_series): b, c, a = data_for_sorting arr = type(data_for_sorting)._from_sequence([a, b, c]) if as_series: arr = pd.Series(arr) assert arr.searchsorted(a) == 0 assert arr.searchsorted(a, side="right") == 1 assert arr.searchsorted(b) == 1 assert arr.searchsorted(b, side="right") == 2 assert arr.searchsorted(c) == 2 assert arr.searchsorted(c, side="right") == 3 result = arr.searchsorted(arr.take([0, 2])) expected = np.array([0, 2], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) # sorter sorter = np.array([1, 2, 0]) assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
Example 9
Project: recruit Author: Frank-qlu File: test_timedelta.py License: Apache License 2.0 | 6 votes |
def test_factorize(self): idx1 = TimedeltaIndex(['1 day', '1 day', '2 day', '2 day', '3 day', '3 day']) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp) exp_idx = TimedeltaIndex(['1 day', '2 day', '3 day']) arr, idx = idx1.factorize() tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) arr, idx = idx1.factorize(sort=True) tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) # freq must be preserved idx3 = timedelta_range('1 day', periods=4, freq='s') exp_arr = np.array([0, 1, 2, 3], dtype=np.intp) arr, idx = idx3.factorize() tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, idx3)
Example 10
Project: recruit Author: Frank-qlu File: test_ops.py License: Apache License 2.0 | 6 votes |
def test_nat(self): assert pd.TimedeltaIndex._na_value is pd.NaT assert pd.TimedeltaIndex([])._na_value is pd.NaT idx = pd.TimedeltaIndex(['1 days', '2 days']) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) assert idx.hasnans is False tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) assert idx.hasnans is True tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp))
Example 11
Project: recruit Author: Frank-qlu File: test_range.py License: Apache License 2.0 | 6 votes |
def test_join_left(self): # Join with Int64Index other = Int64Index(np.arange(25, 14, -1)) res, lidx, ridx = self.index.join(other, how='left', return_indexers=True) eres = self.index eridx = np.array([-1, -1, -1, -1, -1, -1, -1, -1, 9, 7], dtype=np.intp) assert isinstance(res, RangeIndex) tm.assert_index_equal(res, eres) assert lidx is None tm.assert_numpy_array_equal(ridx, eridx) # Join withRangeIndex other = Int64Index(np.arange(25, 14, -1)) res, lidx, ridx = self.index.join(other, how='left', return_indexers=True) assert isinstance(res, RangeIndex) tm.assert_index_equal(res, eres) assert lidx is None tm.assert_numpy_array_equal(ridx, eridx)
Example 12
Project: recruit Author: Frank-qlu File: common.py License: Apache License 2.0 | 6 votes |
def test_get_indexer_consistency(self): # See GH 16819 for name, index in self.indices.items(): if isinstance(index, IntervalIndex): continue if index.is_unique or isinstance(index, CategoricalIndex): indexer = index.get_indexer(index[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp else: e = "Reindexing only valid with uniquely valued Index objects" with pytest.raises(InvalidIndexError, match=e): index.get_indexer(index[0:2]) indexer, _ = index.get_indexer_non_unique(index[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp
Example 13
Project: recruit Author: Frank-qlu File: test_numeric.py License: Apache License 2.0 | 6 votes |
def test_get_indexer(self): target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63) indexer = self.index.get_indexer(target) expected = np.array([0, -1, 1, 2, 3, 4, -1, -1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63) indexer = self.index.get_indexer(target, method='pad') expected = np.array([0, 0, 1, 2, 3, 4, 4, 4, 4, 4], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63) indexer = self.index.get_indexer(target, method='backfill') expected = np.array([0, 1, 1, 2, 3, 4, -1, -1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected)
Example 14
Project: recruit Author: Frank-qlu File: test_datetime.py License: Apache License 2.0 | 6 votes |
def test_sort_values(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) ordered = idx.sort_values() assert ordered.is_monotonic ordered = idx.sort_values(ascending=False) assert ordered[::-1].is_monotonic ordered, dexer = idx.sort_values(return_indexer=True) assert ordered.is_monotonic tm.assert_numpy_array_equal(dexer, np.array([1, 2, 0], dtype=np.intp)) ordered, dexer = idx.sort_values(return_indexer=True, ascending=False) assert ordered[::-1].is_monotonic tm.assert_numpy_array_equal(dexer, np.array([0, 2, 1], dtype=np.intp))
Example 15
Project: recruit Author: Frank-qlu File: test_datetime.py License: Apache License 2.0 | 6 votes |
def test_factorize_dst(self): # GH 13750 idx = pd.date_range('2016-11-06', freq='H', periods=12, tz='US/Eastern') for obj in [idx, pd.Series(idx)]: arr, res = obj.factorize() tm.assert_numpy_array_equal(arr, np.arange(12, dtype=np.intp)) tm.assert_index_equal(res, idx) idx = pd.date_range('2016-06-13', freq='H', periods=12, tz='US/Eastern') for obj in [idx, pd.Series(idx)]: arr, res = obj.factorize() tm.assert_numpy_array_equal(arr, np.arange(12, dtype=np.intp)) tm.assert_index_equal(res, idx)
Example 16
Project: recruit Author: Frank-qlu File: test_ops.py License: Apache License 2.0 | 6 votes |
def test_nat(self, tz_naive_fixture): tz = tz_naive_fixture assert pd.DatetimeIndex._na_value is pd.NaT assert pd.DatetimeIndex([])._na_value is pd.NaT idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) assert idx.hasnans is False tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) assert idx.hasnans is True tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp))
Example 17
Project: recruit Author: Frank-qlu File: test_indexing.py License: Apache License 2.0 | 6 votes |
def test_get_indexer_non_unique(self): # GH 17717 p1 = pd.Period('2017-09-02') p2 = pd.Period('2017-09-03') p3 = pd.Period('2017-09-04') p4 = pd.Period('2017-09-05') idx1 = pd.PeriodIndex([p1, p2, p1]) idx2 = pd.PeriodIndex([p2, p1, p3, p4]) result = idx1.get_indexer_non_unique(idx2) expected_indexer = np.array([1, 0, 2, -1, -1], dtype=np.intp) expected_missing = np.array([2, 3], dtype=np.int64) tm.assert_numpy_array_equal(result[0], expected_indexer) tm.assert_numpy_array_equal(result[1], expected_missing) # TODO: This method came from test_period; de-dup with version above
Example 18
Project: recruit Author: Frank-qlu File: test_ops.py License: Apache License 2.0 | 6 votes |
def test_nat(self): assert pd.PeriodIndex._na_value is NaT assert pd.PeriodIndex([], freq='M')._na_value is NaT idx = pd.PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) assert idx.hasnans is False tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.PeriodIndex(['2011-01-01', 'NaT'], freq='D') assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) assert idx.hasnans is True tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp))
Example 19
Project: recruit Author: Frank-qlu File: test_indexing.py License: Apache License 2.0 | 6 votes |
def test_get_indexer_consistency(idx): # See GH 16819 if isinstance(idx, IntervalIndex): pass if idx.is_unique or isinstance(idx, CategoricalIndex): indexer = idx.get_indexer(idx[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp else: e = "Reindexing only valid with uniquely valued Index objects" with pytest.raises(InvalidIndexError, match=e): idx.get_indexer(idx[0:2]) indexer, _ = idx.get_indexer_non_unique(idx[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp
Example 20
Project: pyscf Author: pyscf File: m_log_interp.py License: Apache License 2.0 | 5 votes |
def coeffs_vv(self, rr): """ Compute an array of interpolation coefficients (6, rr.shape) """ ir2c = np.zeros(tuple([6])+rr.shape[:]) lr = np.ma.log(rr) #print('lr', lr) r2k = np.zeros(rr.shape, dtype=np.intp) r2k[...] = (lr-self.gammin_jt)/self.dg_jt-2 #print('r2r 1', r2k) r2k = np.where(r2k<0,0,r2k) r2k = np.where(r2k>self.nr-6,self.nr-6,r2k) hp = self.gg[0]/2 r2k = np.where(rr<hp, 0, r2k) #print('r2k 2 ', r2k) dy = (lr-self.gammin_jt-(r2k+2)*self.dg_jt)/self.dg_jt #print('dy ', dy) ir2c[0] = np.where(rr<hp, 1.0, -dy*(dy**2-1.0)*(dy-2.0)*(dy-3.0)/120.0) ir2c[1] = np.where(rr<hp, 0.0, +5.0*dy*(dy-1.0)*(dy**2-4.0)*(dy-3.0)/120.0) ir2c[2] = np.where(rr<hp, 0.0, -10.0*(dy**2-1.0)*(dy**2-4.0)*(dy-3.0)/120.0) ir2c[3] = np.where(rr<hp, 0.0, +10.0*dy*(dy+1.0)*(dy**2-4.0)*(dy-3.0)/120.0) ir2c[4] = np.where(rr<hp, 0.0, -5.0*dy*(dy**2-1.0)*(dy+2.0)*(dy-3.0)/120.0) ir2c[5] = np.where(rr<hp, 0.0, dy*(dy**2-1.0)*(dy**2-4.0)/120.0) #print('ir2c[0] ', ir2c[0]) #print('ir2c[1] ', ir2c[1]) return r2k,ir2c
Example 21
Project: me-ica Author: ME-ICA File: test_round_trip.py License: GNU Lesser General Public License v2.1 | 5 votes |
def test_round_trip(): scaling_type = np.float32 rng = np.random.RandomState(20111121) N = 10000 sd_10s = range(-20, 51, 5) iuint_types = np.sctypes['int'] + np.sctypes['uint'] # Remove intp types, which cannot be set into nifti header datatype iuint_types.remove(np.intp) iuint_types.remove(np.uintp) f_types = [np.float32, np.float64] # Expanding standard deviations for i, sd_10 in enumerate(sd_10s): sd = 10.0**sd_10 V_in = rng.normal(0, sd, size=(N,1)) for j, in_type in enumerate(f_types): for k, out_type in enumerate(iuint_types): check_arr(sd_10, V_in, in_type, out_type, scaling_type) # Spread integers across range for i, sd in enumerate(np.linspace(0.05, 0.5, 5)): for j, in_type in enumerate(iuint_types): info = np.iinfo(in_type) mn, mx = info.min, info.max type_range = mx - mn center = type_range / 2.0 + mn # float(sd) because type_range can be type 'long' width = type_range * float(sd) V_in = rng.normal(center, width, size=(N,1)) for k, out_type in enumerate(iuint_types): check_arr(sd, V_in, in_type, out_type, scaling_type)
Example 22
Project: me-ica Author: ME-ICA File: test_utils.py License: GNU Lesser General Public License v2.1 | 5 votes |
def test_working_type(): # Which type do input types with slope and inter cast to in numpy? # Wrapper function because we need to use the dtype str for comparison. We # need this because of the very confusing np.int32 != np.intp (on 32 bit). def wt(*args, **kwargs): return np.dtype(working_type(*args, **kwargs)).str d1 = np.atleast_1d for in_type in NUMERIC_TYPES: in_ts = np.dtype(in_type).str assert_equal(wt(in_type), in_ts) assert_equal(wt(in_type, 1, 0), in_ts) assert_equal(wt(in_type, 1.0, 0.0), in_ts) in_val = d1(in_type(0)) for slope_type in NUMERIC_TYPES: sl_val = slope_type(1) # no scaling, regardless of type assert_equal(wt(in_type, sl_val, 0.0), in_ts) sl_val = slope_type(2) # actual scaling out_val = in_val / d1(sl_val) assert_equal(wt(in_type, sl_val), out_val.dtype.str) for inter_type in NUMERIC_TYPES: i_val = inter_type(0) # no scaling, regardless of type assert_equal(wt(in_type, 1, i_val), in_ts) i_val = inter_type(1) # actual scaling out_val = in_val - d1(i_val) assert_equal(wt(in_type, 1, i_val), out_val.dtype.str) # Combine scaling and intercept out_val = (in_val - d1(i_val)) / d1(sl_val) assert_equal(wt(in_type, sl_val, i_val), out_val.dtype.str) # Confirm that type codes and dtypes work as well f32s = np.dtype(np.float32).str assert_equal(wt('f4', 1, 0), f32s) assert_equal(wt(np.dtype('f4'), 1, 0), f32s)
Example 23
Project: recruit Author: Frank-qlu File: arraysetops.py License: Apache License 2.0 | 5 votes |
def _unique1d(ar, return_index=False, return_inverse=False, return_counts=False): """ Find the unique elements of an array, ignoring shape. """ ar = np.asanyarray(ar).flatten() optional_indices = return_index or return_inverse if optional_indices: perm = ar.argsort(kind='mergesort' if return_index else 'quicksort') aux = ar[perm] else: ar.sort() aux = ar mask = np.empty(aux.shape, dtype=np.bool_) mask[:1] = True mask[1:] = aux[1:] != aux[:-1] ret = (aux[mask],) if return_index: ret += (perm[mask],) if return_inverse: imask = np.cumsum(mask) - 1 inv_idx = np.empty(mask.shape, dtype=np.intp) inv_idx[perm] = imask ret += (inv_idx,) if return_counts: idx = np.concatenate(np.nonzero(mask) + ([mask.size],)) ret += (np.diff(idx),) return ret
Example 24
Project: recruit Author: Frank-qlu File: test_function_base.py License: Apache License 2.0 | 5 votes |
def _check_inverse_of_slicing(self, indices): a_del = delete(self.a, indices) nd_a_del = delete(self.nd_a, indices, axis=1) msg = 'Delete failed for obj: %r' % indices # NOTE: The cast should be removed after warning phase for bools if not isinstance(indices, (slice, int, long, np.integer)): indices = np.asarray(indices, dtype=np.intp) indices = indices[(indices >= 0) & (indices < 5)] assert_array_equal(setxor1d(a_del, self.a[indices, ]), self.a, err_msg=msg) xor = setxor1d(nd_a_del[0,:, 0], self.nd_a[0, indices, 0]) assert_array_equal(xor, self.nd_a[0,:, 0], err_msg=msg)
Example 25
Project: recruit Author: Frank-qlu File: test_function_base.py License: Apache License 2.0 | 5 votes |
def test_dtype_reference_leaks(self): # gh-6805 intp_refcount = sys.getrefcount(np.dtype(np.intp)) double_refcount = sys.getrefcount(np.dtype(np.double)) for j in range(10): np.bincount([1, 2, 3]) assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) for j in range(10): np.bincount([1, 2, 3], [4, 5, 6]) assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount)
Example 26
Project: recruit Author: Frank-qlu File: test_arraypad.py License: Apache License 2.0 | 5 votes |
def test_as_index(self): """Test results if `as_index=True`.""" assert_equal( _as_pairs([2.6, 3.3], 10, as_index=True), np.array([[3, 3]] * 10, dtype=np.intp) ) assert_equal( _as_pairs([2.6, 4.49], 10, as_index=True), np.array([[3, 4]] * 10, dtype=np.intp) ) for x in (-3, [-3], [[-3]], [-3, 4], [3, -4], [[-3, 4]], [[4, -3]], [[1, 2]] * 9 + [[1, -2]]): with pytest.raises(ValueError, match="negative values"): _as_pairs(x, 10, as_index=True)
Example 27
Project: recruit Author: Frank-qlu File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_keepdims(self): mat = np.eye(3) for axis in [None, 0, 1]: tgt = np.median(mat, axis=axis, out=None, overwrite_input=False) res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False) assert_(res.ndim == tgt.ndim) d = np.ones((3, 5, 7, 11)) # Randomly set some elements to NaN: w = np.random.random((4, 200)) * np.array(d.shape)[:, None] w = w.astype(np.intp) d[tuple(w)] = np.nan with suppress_warnings() as sup: sup.filter(RuntimeWarning) res = np.nanmedian(d, axis=None, keepdims=True) assert_equal(res.shape, (1, 1, 1, 1)) res = np.nanmedian(d, axis=(0, 1), keepdims=True) assert_equal(res.shape, (1, 1, 7, 11)) res = np.nanmedian(d, axis=(0, 3), keepdims=True) assert_equal(res.shape, (1, 5, 7, 1)) res = np.nanmedian(d, axis=(1,), keepdims=True) assert_equal(res.shape, (3, 1, 7, 11)) res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True) assert_equal(res.shape, (1, 1, 1, 1)) res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True) assert_equal(res.shape, (1, 1, 7, 1))
Example 28
Project: recruit Author: Frank-qlu File: test_index_tricks.py License: Apache License 2.0 | 5 votes |
def test_regression_1(self): # Test empty inputs create outputs of indexing type, gh-5804 # Test both lists and arrays for func in (range, np.arange): a, = np.ix_(func(0)) assert_equal(a.dtype, np.intp)
Example 29
Project: recruit Author: Frank-qlu File: test_shape_base.py License: Apache License 2.0 | 5 votes |
def test_empty(self): """ Test everything is ok with empty results, even with inserted dims """ a = np.ones((3, 4, 5)) ai = np.ones((3, 0, 5), dtype=np.intp) actual = take_along_axis(a, ai, axis=1) assert_equal(actual.shape, ai.shape)
Example 30
Project: recruit Author: Frank-qlu File: test_shape_base.py License: Apache License 2.0 | 5 votes |
def test_broadcast(self): """ Test that non-indexing dimensions are broadcast in both directions """ a = np.ones((3, 4, 1)) ai = np.ones((1, 2, 5), dtype=np.intp) actual = take_along_axis(a, ai, axis=1) assert_equal(actual.shape, (3, 2, 5))