Python numpy.absolute() Examples
The following are 30 code examples for showing how to use numpy.absolute(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: sparse-subspace-clustering-python Author: abhinav4192 File: BuildAdjacency.py License: MIT License | 6 votes |
def BuildAdjacency(CMat, K): CMat = CMat.astype(float) CKSym = None N, _ = CMat.shape CAbs = np.absolute(CMat).astype(float) for i in range(0, N): c = CAbs[:, i] PInd = np.flip(np.argsort(c), 0) CAbs[:, i] = CAbs[:, i] / float(np.absolute(c[PInd[0]])) CSym = np.add(CAbs, CAbs.T).astype(float) if K != 0: Ind = np.flip(np.argsort(CSym, axis=0), 0) CK = np.zeros([N, N]).astype(float) for i in range(0, N): for j in range(0, K): CK[Ind[j, i], i] = CSym[Ind[j, i], i] / float(np.absolute(CSym[Ind[0, i], i])) CKSym = np.add(CK, CK.T) else: CKSym = CSym return CKSym
Example 2
Project: radiometric_normalization Author: planetlabs File: filtering.py License: Apache License 2.0 | 6 votes |
def filter_by_residuals_from_line_pixel_list(candidate_data, reference_data, threshold=1000, line_gain=1.0, line_offset=0.0): ''' Calculates the residuals from a line and filters by residuals. :param list candidate_band: A list of valid candidate data :param list reference_band: A list of coincident valid reference data :param float line_gain: The gradient of the line :param float line_offset: The intercept of the line :returns: A list of booleans the same length as candidate representing if the data point is still active after filtering or not ''' logging.info('Filtering: Filtering from line: y = ' '{} * x + {} @ {}'.format(line_gain, line_offset, threshold)) def _get_residual(data_1, data_2): return numpy.absolute(line_gain * data_1 - data_2 + line_offset) / \ numpy.sqrt(1 + line_gain * line_gain) residuals = _get_residual(candidate_data, reference_data) return residuals < threshold
Example 3
Project: python-control Author: python-control File: lti.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def damp(self): '''Natural frequency, damping ratio of system poles Returns ------- wn : array Natural frequencies for each system pole zeta : array Damping ratio for each system pole poles : array Array of system poles ''' poles = self.pole() if isdtime(self, strict=True): splane_poles = np.log(poles)/self.dt else: splane_poles = poles wn = absolute(splane_poles) Z = -real(splane_poles)/wn return wn, Z, poles
Example 4
Project: pyGSTi Author: pyGSTio File: reportableqty.py License: Apache License 2.0 | 6 votes |
def absdiff(self, constant_value, separate_re_im=False): """ Returns a ReportableQty that is the (element-wise in the vector case) difference between `constant_value` and this one given by: `abs(self - constant_value)`. """ if separate_re_im: re_v = _np.fabs(_np.real(self.value) - _np.real(constant_value)) im_v = _np.fabs(_np.imag(self.value) - _np.imag(constant_value)) if self.has_eb(): return (ReportableQty(re_v, _np.fabs(_np.real(self.errbar)), self.nonMarkovianEBs), ReportableQty(im_v, _np.fabs(_np.imag(self.errbar)), self.nonMarkovianEBs)) else: return ReportableQty(re_v), ReportableQty(im_v) else: v = _np.absolute(self.value - constant_value) if self.has_eb(): return ReportableQty(v, _np.absolute(self.errbar), self.nonMarkovianEBs) else: return ReportableQty(v)
Example 5
Project: Advanced_Lane_Lines Author: ChengZhongShen File: image_process.py License: MIT License | 6 votes |
def color_grid_thresh(img, s_thresh=(170,255), sx_thresh=(20, 100)): img = np.copy(img) # Convert to HLS color space and separate the V channel hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) l_channel = hls[:,:,1] s_channel = hls[:,:,2] # Sobel x sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivateive in x abs_sobelx = np.absolute(sobelx) # Absolute x derivateive to accentuate lines scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx)) # Threshold x gradient sxbinary = np.zeros_like(scaled_sobel) sxbinary[(scaled_sobel >= sx_thresh[0]) & (scaled_sobel <= sx_thresh[1])] = 1 # Threshold color channel s_binary = np.zeros_like(s_channel) s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1 # combine the two binary binary = sxbinary | s_binary # Stack each channel (for visual check the pixal sourse) # color_binary = np.dstack((np.zeros_like(sxbinary), sxbinary,s_binary)) * 255 return binary
Example 6
Project: recruit Author: Frank-qlu File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_endian(self): msg = "big endian" a = np.arange(6, dtype='>i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) msg = "little endian" a = np.arange(6, dtype='<i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) # Output should always be native-endian Ba = np.arange(1, dtype='>f8') La = np.arange(1, dtype='<f8') assert_equal((Ba+Ba).dtype, np.dtype('f8')) assert_equal((Ba+La).dtype, np.dtype('f8')) assert_equal((La+Ba).dtype, np.dtype('f8')) assert_equal((La+La).dtype, np.dtype('f8')) assert_equal(np.absolute(La).dtype, np.dtype('f8')) assert_equal(np.absolute(Ba).dtype, np.dtype('f8')) assert_equal(np.negative(La).dtype, np.dtype('f8')) assert_equal(np.negative(Ba).dtype, np.dtype('f8'))
Example 7
Project: gmpe-smtk Author: GEMScienceTools File: intensity_measures.py License: GNU Affero General Public License v3.0 | 6 votes |
def get_fourier_spectrum(time_series, time_step): """ Returns the Fourier spectrum of the time series :param numpy.ndarray time_series: Array of values representing the time series :param float time_step: Time step of the time series :returns: Frequency (as numpy array) Fourier Amplitude (as numpy array) """ n_val = nextpow2(len(time_series)) # numpy.fft.fft will zero-pad records whose length is less than the # specified nval # Get Fourier spectrum fspec = np.fft.fft(time_series, n_val) # Get frequency axes d_f = 1. / (n_val * time_step) freq = d_f * np.arange(0., (n_val / 2.0), 1.0) return freq, time_step * np.absolute(fspec[:int(n_val / 2.0)])
Example 8
Project: pi-timolo Author: pageauc File: pi-timolo.py License: MIT License | 6 votes |
def checkForMotion(image1, image2): # Find motion between two data streams based on sensitivity and threshold motionDetected = False pixColor = 3 # red=0 green=1 blue=2 all=3 default=1 if pixColor == 3: pixChanges = (np.absolute(image1-image2)>motionThreshold).sum()/3 else: pixChanges = (np.absolute(image1[...,pixColor]-image2[...,pixColor])>motionThreshold).sum() if pixChanges > motionSensitivity: motionDetected = True if motionDetected: if motionDotsOn: dotCount = showDots(motionDotsMax + 2) # New Line else: print("") logging.info("Found Motion: Threshold=%s Sensitivity=%s changes=%s", motionThreshold, motionSensitivity, pixChanges) return motionDetected #-----------------------------------------------------------------------------------------------
Example 9
Project: TNT Author: GaoangW File: tracklet_classifier_train.py License: GNU General Public License v3.0 | 6 votes |
def h_err_pred(p,bbox,err_sigma): x_center = (bbox[:,0]+bbox[:,2])/2 ymax = bbox[:,1]+bbox[:,3] h = bbox[:,3] A = np.ones((len(bbox),3)) A[:,0] = x_center A[:,1] = ymax h_pred = np.matmul(A,p) #import pdb; pdb.set_trace() err_ratio = np.absolute(h_pred[:,0]-h)/np.absolute(h_pred[:,0]) err_ratio[h_pred[:,0]==0] = 0 import pdb; pdb.set_trace() ''' for n in range(len(h_pred)): if h_pred[n,0]==0: import pdb; pdb.set_trace() ''' return err_ratio
Example 10
Project: NiaPy Author: NiaOrg File: foa.py License: MIT License | 6 votes |
def initPopulation(self, task): r"""Initialize the starting population. Args: task (Task): Optimization task Returns: Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: 1. New population. 2. New population fitness/function values. 3. Additional arguments: * age (numpy.ndarray[int32]): Age of trees. See Also: * :func:`NiaPy.algorithms.Algorithm.initPopulation` """ Trees, Evaluations, _ = Algorithm.initPopulation(self, task) age = zeros(self.NP, dtype=int32) self.dx = absolute(task.benchmark.Upper) / 5 return Trees, Evaluations, {'age': age}
Example 11
Project: lambda-packs Author: ryfeus File: _matfuncs_inv_ssq.py License: MIT License | 6 votes |
def _logm_force_nonsingular_triangular_matrix(T, inplace=False): # The input matrix should be upper triangular. # The eps is ad hoc and is not meant to be machine precision. tri_eps = 1e-20 abs_diag = np.absolute(np.diag(T)) if np.any(abs_diag == 0): exact_singularity_msg = 'The logm input matrix is exactly singular.' warnings.warn(exact_singularity_msg, LogmExactlySingularWarning) if not inplace: T = T.copy() n = T.shape[0] for i in range(n): if not T[i, i]: T[i, i] = tri_eps elif np.any(abs_diag < tri_eps): near_singularity_msg = 'The logm input matrix may be nearly singular.' warnings.warn(near_singularity_msg, LogmNearlySingularWarning) return T
Example 12
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_ufunc.py License: MIT License | 6 votes |
def test_endian(self): msg = "big endian" a = np.arange(6, dtype='>i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) msg = "little endian" a = np.arange(6, dtype='<i4').reshape((2, 3)) assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg) # Output should always be native-endian Ba = np.arange(1, dtype='>f8') La = np.arange(1, dtype='<f8') assert_equal((Ba+Ba).dtype, np.dtype('f8')) assert_equal((Ba+La).dtype, np.dtype('f8')) assert_equal((La+Ba).dtype, np.dtype('f8')) assert_equal((La+La).dtype, np.dtype('f8')) assert_equal(np.absolute(La).dtype, np.dtype('f8')) assert_equal(np.absolute(Ba).dtype, np.dtype('f8')) assert_equal(np.negative(La).dtype, np.dtype('f8')) assert_equal(np.negative(Ba).dtype, np.dtype('f8'))
Example 13
Project: soccer-matlab Author: utra-robosoccer File: motor.py License: BSD 2-Clause "Simplified" License | 5 votes |
def _convert_to_torque_from_pwm(self, pwm, true_motor_velocity): """Convert the pwm signal to torque. Args: pwm: The pulse width modulation. true_motor_velocity: The true motor velocity at the current moment. It is used to compute the back EMF voltage and the viscous damping. Returns: actual_torque: The torque that needs to be applied to the motor. observed_torque: The torque observed by the sensor. """ observed_torque = np.clip( self._torque_constant * (np.asarray(pwm) * self._voltage / self._resistance), -OBSERVED_TORQUE_LIMIT, OBSERVED_TORQUE_LIMIT) # Net voltage is clipped at 50V by diodes on the motor controller. voltage_net = np.clip( np.asarray(pwm) * self._voltage - (self._torque_constant + self._viscous_damping) * np.asarray(true_motor_velocity), -VOLTAGE_CLIPPING, VOLTAGE_CLIPPING) current = voltage_net / self._resistance current_sign = np.sign(current) current_magnitude = np.absolute(current) # Saturate torque based on empirical current relation. actual_torque = np.interp(current_magnitude, self._current_table, self._torque_table) actual_torque = np.multiply(current_sign, actual_torque) actual_torque = np.multiply(self._strength_ratios, actual_torque) return actual_torque, observed_torque
Example 14
Project: soccer-matlab Author: utra-robosoccer File: motor.py License: BSD 2-Clause "Simplified" License | 5 votes |
def _convert_to_torque_from_pwm(self, pwm, current_motor_velocity): """Convert the pwm signal to torque. Args: pwm: The pulse width modulation. current_motor_velocity: The motor velocity at the current time step. Returns: actual_torque: The torque that needs to be applied to the motor. observed_torque: The torque observed by the sensor. """ observed_torque = np.clip( self._torque_constant * (pwm * self._voltage / self._resistance), -OBSERVED_TORQUE_LIMIT, OBSERVED_TORQUE_LIMIT) # Net voltage is clipped at 50V by diodes on the motor controller. voltage_net = np.clip(pwm * self._voltage - (self._torque_constant + self._viscous_damping) * current_motor_velocity, -VOLTAGE_CLIPPING, VOLTAGE_CLIPPING) current = voltage_net / self._resistance current_sign = np.sign(current) current_magnitude = np.absolute(current) # Saturate torque based on empirical current relation. actual_torque = np.interp(current_magnitude, self._current_table, self._torque_table) actual_torque = np.multiply(current_sign, actual_torque) return actual_torque, observed_torque
Example 15
Project: fine-lm Author: akzaidi File: yellowfin_test.py License: MIT License | 5 votes |
def tune_everything(self, x0squared, c, t, gmin, gmax): del t # First tune based on dynamic range if c == 0: dr = gmax / gmin mustar = ((np.sqrt(dr) - 1) / (np.sqrt(dr) + 1))**2 alpha_star = (1 + np.sqrt(mustar))**2/gmax return alpha_star, mustar dist_to_opt = x0squared grad_var = c max_curv = gmax min_curv = gmin const_fact = dist_to_opt * min_curv**2 / 2 / grad_var coef = [-1, 3, -(3 + const_fact), 1] roots = np.roots(coef) roots = roots[np.real(roots) > 0] roots = roots[np.real(roots) < 1] root = roots[np.argmin(np.imag(roots))] assert root > 0 and root < 1 and np.absolute(root.imag) < 1e-6 dr = max_curv / min_curv assert max_curv >= min_curv mu = max(((np.sqrt(dr) - 1) / (np.sqrt(dr) + 1))**2, root**2) lr_min = (1 - np.sqrt(mu))**2 / min_curv alpha_star = lr_min mustar = mu return alpha_star, mustar
Example 16
Project: DeepLung Author: uci-cbcl File: pthumanperformance.py License: GNU General Public License v3.0 | 5 votes |
def worldToVoxelCoord(worldCoord, origin, spacing): stretchedVoxelCoord = np.absolute(worldCoord - origin) voxelCoord = stretchedVoxelCoord / spacing return voxelCoord # read map file
Example 17
Project: DeepLung Author: uci-cbcl File: extclsshpinfo.py License: GNU General Public License v3.0 | 5 votes |
def worldToVoxelCoord(worldCoord, origin, spacing): stretchedVoxelCoord = np.absolute(worldCoord - origin) voxelCoord = stretchedVoxelCoord / spacing return voxelCoord # read map file
Example 18
Project: DeepLung Author: uci-cbcl File: humanperformance.py License: GNU General Public License v3.0 | 5 votes |
def worldToVoxelCoord(worldCoord, origin, spacing): stretchedVoxelCoord = np.absolute(worldCoord - origin) voxelCoord = stretchedVoxelCoord / spacing return voxelCoord # read map file
Example 19
Project: DeepLung Author: uci-cbcl File: dataconverter.py License: GNU General Public License v3.0 | 5 votes |
def worldToVoxelCoord(worldCoord, origin, spacing): stretchedVoxelCoord = np.absolute(worldCoord - origin) voxelCoord = stretchedVoxelCoord / spacing return voxelCoord # read groundtruth from original data space # remove data of 0 value
Example 20
Project: DeepLung Author: uci-cbcl File: prepare.py License: GNU General Public License v3.0 | 5 votes |
def worldToVoxelCoord(worldCoord, origin, spacing): stretchedVoxelCoord = np.absolute(worldCoord - origin) voxelCoord = stretchedVoxelCoord / spacing return voxelCoord
Example 21
Project: pyscf Author: pyscf File: pywannier90.py License: Apache License 2.0 | 5 votes |
def g_r(grids_coor, site, l, mr, r, zona, x_axis = [1,0,0], z_axis = [0,0,1], unit = 'B'): r''' Evaluate the projection function g(r) or \Theta_{l,m_r}(\theta,\phi) on a grid ref: Chapter 3, wannier90 User Guide Attributes: grids_coor : a grids for the cell of interest site : absolute coordinate (in Borh/Angstrom) of the g(r) in the cell l, mr : l and mr value in the Table 3.1 and 3.2 of the ref Return: theta_lmr : an array (ngrid, value) of g(r) ''' unit_conv = 1 if unit == 'A': unit_conv = param.BOHR r_vec = (grids_coor - site) r_vec = np.einsum('iv,uv ->iu', r_vec, transform(x_axis, z_axis)) r_norm = np.linalg.norm(r_vec,axis=1) if (r_norm < 1e-8).any() == True: r_vec = (grids_coor - site - 1e-5) r_vec = np.einsum('iv,uv ->iu', r_vec, transform(x_axis, z_axis)) r_norm = np.linalg.norm(r_vec,axis=1) cost = r_vec[:,2]/r_norm phi = np.empty_like(r_norm) for point in range(phi.shape[0]): if r_vec[point,0] > 1e-8: phi[point] = np.arctan(r_vec[point,1]/r_vec[point,0]) elif r_vec[point,0] < -1e-8: phi[point] = np.arctan(r_vec[point,1]/r_vec[point,0]) + np.pi else: phi[point] = np.sign(r_vec[point,1]) * 0.5 * np.pi return theta_lmr(l, mr, cost, phi) * R_r(r_norm * unit_conv, r = r, zona = zona)
Example 22
Project: pyscf Author: pyscf File: pywannier90.py License: Apache License 2.0 | 5 votes |
def get_wannier(self, supercell = [1,1,1], grid = [50,50,50]): ''' Evaluate the MLWF using a periodic grid ''' grids_coor, weights = periodic_grid(self.cell, grid, supercell = [1,1,1], order = 'C') kpts = self.cell.get_abs_kpts(self.kpt_latt_loc) u_mo = [] for k_id in range(self.num_kpts_loc): mo_included = self.mo_coeff_kpts[k_id][:,self.band_included_list] mo_in_window = self.lwindow[k_id] C_opt = mo_included[:,mo_in_window].dot(self.U_matrix_opt[k_id].T) C_tildle = C_opt.dot(self.U_matrix[k_id].T) kpt = kpts[k_id] ao = numint.eval_ao(self.cell, grids_coor, kpt = kpt) u_ao = np.einsum('x,xi->xi', np.exp(-1j*np.dot(grids_coor, kpt)), ao, optimize = True) u_mo.append(np.einsum('xi,in->xn', u_ao, C_tildle, optimize = True)) u_mo = np.asarray(u_mo) WF0 = libwannier90.get_WF0s(self.kpt_latt_loc.shape[0],self.kpt_latt_loc, supercell, grid, u_mo) # Fix the global phase following the pw2wannier90 procedure max_index = (WF0*WF0.conj()).real.argmax(axis=0) norm_wfs = np.diag(WF0[max_index,:]) norm_wfs = norm_wfs/np.absolute(norm_wfs) WF0 = WF0/norm_wfs/self.num_kpts_loc # Check the 'reality' following the pw2wannier90 procedure for WF_id in range(self.num_wann_loc): ratio_max = np.abs(WF0[np.abs(WF0[:,WF_id].real) >= 0.01,WF_id].imag/WF0[np.abs(WF0[:,WF_id].real) >= 0.01,WF_id].real).max(axis=0) print('The maximum imag/real for wannier function ', WF_id,' : ', ratio_max) return WF0
Example 23
Project: me-ica Author: ME-ICA File: casting.py License: GNU Lesser General Public License v2.1 | 5 votes |
def int_abs(arr): """ Absolute values of array taking care of max negative int values Parameters ---------- arr : array-like Returns ------- abs_arr : array array the same shape as `arr` in which all negative numbers have been changed to positive numbers with the magnitude. Examples -------- This kind of thing is confusing in base numpy: >>> import numpy as np >>> np.abs(np.int8(-128)) -128 ``int_abs`` fixes that: >>> int_abs(np.int8(-128)) 128 >>> int_abs(np.array([-128, 127], dtype=np.int8)) array([128, 127], dtype=uint8) >>> int_abs(np.array([-128, 127], dtype=np.float32)) array([ 128., 127.], dtype=float32) """ arr = np.array(arr, copy=False) dt = arr.dtype if dt.kind == 'u': return arr if dt.kind != 'i': return np.absolute(arr) out = arr.astype(np.dtype(dt.str.replace('i', 'u'))) return np.choose(arr < 0, (arr, arr * -1), out=out)
Example 24
Project: hadrian Author: modelop File: kmeans.py License: Apache License 2.0 | 5 votes |
def __init__(self): self.calculate = lambda dataset, cluster: numpy.absolute(dataset - cluster)
Example 25
Project: hadrian Author: modelop File: kmeans.py License: Apache License 2.0 | 5 votes |
def allChange(threshold): """Generates a stopping condition that stops if all cluster changes are less than a threshold. :type threshold: number :param threshold: maximum change allowed for all clusters :rtype: callable that takes iterationNumber, corrections, values, datasetSize as arguments :return: stopping condition function """ return lambda iterationNumber, corrections, values, datasetSize: not all((numpy.absolute(x) < threshold).all() for x in corrections if x is not None)
Example 26
Project: hadrian Author: modelop File: kmeans.py License: Apache License 2.0 | 5 votes |
def halfChange(threshold): """Generates a stopping condition that stops if half of the cluster changes are less than a threshold. :type threshold: number :param threshold: maximum change allowed for half of the clusters :rtype: callable that takes iterationNumber, corrections, values, datasetSize as arguments :return: stopping condition function """ return lambda iterationNumber, corrections, values, datasetSize: numpy.sum([(numpy.absolute(x) < threshold).all() for x in corrections if x is not None], dtype=numpy.dtype(float)) / numpy.sum([x is not None for x in corrections], dtype=numpy.dtype(float)) < 0.5
Example 27
Project: PyRadarMet Author: nguy File: BeamBlock.py License: GNU General Public License v2.0 | 5 votes |
def _get_array_index(self, value, array): '''Calculate the exact index position within latitude array''' # Find the spacing dp = np.absolute(array[1] - array[0]) # Calculate the relative position pos = np.absolute(value - array[0]) / dp return pos #################### # DEM file methods # ####################
Example 28
Project: PyRadarMet Author: nguy File: attenuation.py License: GNU General Public License v2.0 | 5 votes |
def scat_coeff(D, lam, m): """ Scattering coefficient of a spherical particle. Unitless. Doviak and Zrnic (1993), Eqn 3.14b or Battan (1973), Eqn 6.5 Parameters ---------- D : float or array Particle diameter [m] lam : float Radar wavelength [m] m : float Complex refractive index [unitless] Notes ----- An example from Battan (1973) is for water at 0C m=7.14-2.89j for a wavelength of 3.21 cm and for ice m=1.78-0.0024j for wavelength range from 1-10 cm. See Battan (1973) Ch.4 , Tables 4.1 and 4.2 for values from Gunn and East (1954). Also see Doviak and Zrnic (1993), Fig. 3.3 caption. """ Km = (m**2 - 1) / (m**2 + 2) Qs = (2 * np.pi**5 * np.asarray(D)**6 / (3 * lam**4) * (np.absolute(Km))**2) return Qs
Example 29
Project: python-control Author: python-control File: discrete_test.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_discrete_bode(self): # Create a simple discrete time system and check the calculation sys = TransferFunction([1], [1, 0.5], 1) omega = [1, 2, 3] mag_out, phase_out, omega_out = bode(sys, omega) H_z = list(map(lambda w: 1./(np.exp(1.j * w) + 0.5), omega)) np.testing.assert_array_almost_equal(omega, omega_out) np.testing.assert_array_almost_equal(mag_out, np.absolute(H_z)) np.testing.assert_array_almost_equal(phase_out, np.angle(H_z))
Example 30
Project: seizure-prediction Author: MichaelHills File: transforms.py License: MIT License | 5 votes |
def apply_one(self, data, meta=None): w, v = np.linalg.eig(data) w = np.absolute(w) w.sort() return w # Take the upper right triangle of a matrix