Python numpy.repeat() Examples
The following are 30 code examples for showing how to use numpy.repeat(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: mmdetection Author: open-mmlab File: reppoints_head.py License: Apache License 2.0 | 6 votes |
def offset_to_pts(self, center_list, pred_list): """Change from point offset to point coordinate.""" pts_list = [] for i_lvl in range(len(self.point_strides)): pts_lvl = [] for i_img in range(len(center_list)): pts_center = center_list[i_img][i_lvl][:, :2].repeat( 1, self.num_points) pts_shift = pred_list[i_lvl][i_img] yx_pts_shift = pts_shift.permute(1, 2, 0).view( -1, 2 * self.num_points) y_pts_shift = yx_pts_shift[..., 0::2] x_pts_shift = yx_pts_shift[..., 1::2] xy_pts_shift = torch.stack([x_pts_shift, y_pts_shift], -1) xy_pts_shift = xy_pts_shift.view(*yx_pts_shift.shape[:-1], -1) pts = xy_pts_shift * self.point_strides[i_lvl] + pts_center pts_lvl.append(pts) pts_lvl = torch.stack(pts_lvl, 0) pts_list.append(pts_lvl) return pts_list
Example 2
Project: view-finding-network Author: yiling-chen File: vfn_eval.py License: GNU General Public License v3.0 | 6 votes |
def evaluate_sliding_window(img_filename, crops): img = io.imread(img_filename).astype(np.float32)/255 if img.ndim == 2: # Handle B/W images img = np.expand_dims(img, axis=-1) img = np.repeat(img, 3, 2) img_crops = np.zeros((batch_size, 227, 227, 3)) for i in xrange(len(crops)): crop = crops[i] img_crop = transform.resize(img[crop[1]:crop[1]+crop[3],crop[0]:crop[0]+crop[2]], (227, 227))-0.5 img_crop = np.expand_dims(img_crop, axis=0) img_crops[i,:,:,:] = img_crop # compute ranking scores scores = sess.run([score_func], feed_dict={image_placeholder: img_crops}) # find the optimal crop idx = np.argmax(scores[:len(crops)]) best_window = crops[idx] # return the best crop return (best_window[0], best_window[1], best_window[2], best_window[3])
Example 3
Project: fine-lm Author: akzaidi File: metrics_test.py License: MIT License | 6 votes |
def testMultilabelMatch3(self): predictions = np.random.randint(1, 5, size=(100, 1, 1, 1)) targets = np.random.randint(1, 5, size=(100, 10, 1, 1)) weights = np.random.randint(0, 2, size=(100, 1, 1, 1)) targets *= weights predictions_repeat = np.repeat(predictions, 10, axis=1) expected = (predictions_repeat == targets).astype(float) expected = np.sum(expected, axis=(1, 2, 3)) expected = np.minimum(expected / 3.0, 1.) expected = np.sum(expected * weights[:, 0, 0, 0]) / weights.shape[0] with self.test_session() as session: scores, weights_ = metrics.multilabel_accuracy_match3( tf.one_hot(predictions, depth=5, dtype=tf.float32), tf.constant(targets, dtype=tf.int32)) a, a_op = tf.metrics.mean(scores, weights_) session.run(tf.local_variables_initializer()) session.run(tf.global_variables_initializer()) _ = session.run(a_op) actual = session.run(a) self.assertAlmostEqual(actual, expected, places=6)
Example 4
Project: Modeling-Cloth Author: the3dadvantage File: ModelingCloth.py License: MIT License | 6 votes |
def zxy_grid(co_y, tymin, tymax, subs, c, t, c_peat, t_peat): # create linespace grid between bottom and top of tri z #subs = 7 t_min = np.min(tymin) t_max = np.max(tymax) divs = np.linspace(t_min, t_max, num=subs, dtype=np.float32) # figure out which triangles and which co are in each section co_bools = (co_y > divs[:-1][:, nax]) & (co_y < divs[1:][:, nax]) tri_bools = (tymin < divs[1:][:, nax]) & (tymax > divs[:-1][:, nax]) for i, j in zip(co_bools, tri_bools): if (np.sum(i) > 0) & (np.sum(j) > 0): c3 = c[i] t3 = t[j] c_peat.append(np.repeat(c3, t3.shape[0])) t_peat.append(np.tile(t3, c3.shape[0]))
Example 5
Project: pymoo Author: msu-coinlab File: out_of_bounds_repair.py License: Apache License 2.0 | 6 votes |
def repair_out_of_bounds_manually(X, xl, xu): only_1d = (X.ndim == 1) X = at_least_2d_array(X) if xl is not None: xl = np.repeat(xl[None, :], X.shape[0], axis=0) X[X < xl] = xl[X < xl] if xu is not None: xu = np.repeat(xu[None, :], X.shape[0], axis=0) X[X > xu] = xu[X > xu] if only_1d: return X[0, :] else: return X
Example 6
Project: pymoo Author: msu-coinlab File: bounds_back_repair.py License: Apache License 2.0 | 6 votes |
def bounds_back(problem, X): only_1d = (X.ndim == 1) X = at_least_2d_array(X) if problem.xl is not None and problem.xu is not None: xl = np.repeat(problem.xl[None, :], X.shape[0], axis=0) xu = np.repeat(problem.xu[None, :], X.shape[0], axis=0) # otherwise bounds back into the feasible space _range = xu - xl X[X < xl] = (xl + np.mod((xl - X), _range))[X < xl] X[X > xu] = (xu - np.mod((X - xu), _range))[X > xu] if only_1d: return X[0, :] else: return X
Example 7
Project: HorizonNet Author: sunset1995 File: pano_lsd_align.py License: MIT License | 6 votes |
def computeUVN_vec(n, in_, planeID): ''' vectorization version of computeUVN @n N x 3 @in_ MN x 1 @planeID N ''' n = n.copy() if (planeID == 2).sum(): n[planeID == 2] = np.roll(n[planeID == 2], 2, axis=1) if (planeID == 3).sum(): n[planeID == 3] = np.roll(n[planeID == 3], 1, axis=1) n = np.repeat(n, in_.shape[0] // n.shape[0], axis=0) assert n.shape[0] == in_.shape[0] bc = n[:, [0]] * np.sin(in_) + n[:, [1]] * np.cos(in_) bs = n[:, [2]] out = np.arctan(-bc / (bs + 1e-9)) return out
Example 8
Project: dataflow Author: tensorpack File: deform.py License: Apache License 2.0 | 6 votes |
def np_sample(img, coords): # a numpy implementation of ImageSample layer coords = np.maximum(coords, 0) coords = np.minimum(coords, np.array([img.shape[0] - 1, img.shape[1] - 1])) lcoor = np.floor(coords).astype('int32') ucoor = lcoor + 1 ucoor = np.minimum(ucoor, np.array([img.shape[0] - 1, img.shape[1] - 1])) diff = coords - lcoor neg_diff = 1.0 - diff lcoory, lcoorx = np.split(lcoor, 2, axis=2) ucoory, ucoorx = np.split(ucoor, 2, axis=2) diff = np.repeat(diff, 3, 2).reshape((diff.shape[0], diff.shape[1], 2, 3)) neg_diff = np.repeat(neg_diff, 3, 2).reshape((diff.shape[0], diff.shape[1], 2, 3)) diffy, diffx = np.split(diff, 2, axis=2) ndiffy, ndiffx = np.split(neg_diff, 2, axis=2) ret = img[lcoory, lcoorx, :] * ndiffx * ndiffy + \ img[ucoory, ucoorx, :] * diffx * diffy + \ img[lcoory, ucoorx, :] * ndiffy * diffx + \ img[ucoory, lcoorx, :] * diffy * ndiffx return ret[:, :, 0, :]
Example 9
Project: Keras-GAN Author: eriklindernoren File: data_loader.py License: MIT License | 6 votes |
def setup_mnist(self, img_res): print ("Setting up MNIST...") if not os.path.exists('datasets/mnist_x.npy'): # Load the dataset (mnist_X, mnist_y), (_, _) = mnist.load_data() # Normalize and rescale images mnist_X = self.normalize(mnist_X) mnist_X = np.array([imresize(x, img_res) for x in mnist_X]) mnist_X = np.expand_dims(mnist_X, axis=-1) mnist_X = np.repeat(mnist_X, 3, axis=-1) self.mnist_X, self.mnist_y = mnist_X, mnist_y # Save formatted images np.save('datasets/mnist_x.npy', self.mnist_X) np.save('datasets/mnist_y.npy', self.mnist_y) else: self.mnist_X = np.load('datasets/mnist_x.npy') self.mnist_y = np.load('datasets/mnist_y.npy') print ("+ Done.")
Example 10
Project: ncvx Author: cvxgrp File: group_assign.py License: GNU General Public License v3.0 | 6 votes |
def _project(self, matrix): if self.is_scalar(): return 1 else: # Note that we use Munkres algorithm, but expand columns from n to m # by replicating each column by group size. mm = np.repeat(matrix, self.col_sum, axis=1) indexes = lap.lapjv(np.asarray(-mm)) result = np.zeros(self.shape) reduce = np.repeat(range(len(self.col_sum)), self.col_sum) for row, column in enumerate(indexes[1]): # map expanded column index to reduced group index. result[row, reduce[column]] = 1 return result # Constrain all entries to be zero that correspond to # zeros in the matrix.
Example 11
Project: chainerrl Author: chainer File: atari_wrappers.py License: MIT License | 6 votes |
def __init__(self, env, k, channel_order='hwc'): """Stack k last frames. Returns lazy array, which is much more memory efficient. See Also -------- baselines.common.atari_wrappers.LazyFrames """ gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) self.stack_axis = {'hwc': 2, 'chw': 0}[channel_order] orig_obs_space = env.observation_space low = np.repeat(orig_obs_space.low, k, axis=self.stack_axis) high = np.repeat(orig_obs_space.high, k, axis=self.stack_axis) self.observation_space = spaces.Box( low=low, high=high, dtype=orig_obs_space.dtype)
Example 12
Project: DualFisheye Author: ooterness File: fisheye.py License: MIT License | 6 votes |
def render_cubemap(self, out_size, mode='blend'): # Create coordinate arrays. cvec = np.arange(out_size, dtype='float32') - out_size/2 # Coordinate range [-S/2, S/2) vec0 = np.ones(out_size*out_size, dtype='float32') * out_size/2 # Constant vector +S/2 vec1 = np.repeat(cvec, out_size) # Increment every N steps vec2 = np.tile(cvec, out_size) # Sweep N times # Create XYZ coordinate vectors and render each cubemap face. render = lambda(xyz): self._render(xyz, out_size, out_size, mode) xm = render(np.matrix([-vec0, vec1, vec2])) # -X face xp = render(np.matrix([vec0, vec1, -vec2])) # +X face ym = render(np.matrix([-vec1, -vec0, vec2])) # -Y face yp = render(np.matrix([vec1, vec0, vec2])) # +Y face zm = render(np.matrix([-vec2, vec1, -vec0])) # -Z face zp = render(np.matrix([vec2, vec1, vec0])) # +Z face # Concatenate the individual faces in canonical order: # https://en.wikipedia.org/wiki/Cube_mapping#Memory_Addressing img_mat = np.concatenate([zp, zm, ym, yp, xm, xp], axis=0) return Image.fromarray(img_mat) # Get XYZ vectors for an equirectangular render, in raster order. # (Each row left to right, with rows concatenates from top to bottom.)
Example 13
Project: simnibs Author: simnibs File: electrode_placement.py License: GNU General Public License v3.0 | 6 votes |
def _optimize_2D(nodes, triangles, stay=[]): ''' Optimize the locations of the points by moving them towards the center of their patch. This is done iterativally for all points for a number of iterations and using a .05 step length''' edges, tr_edges, adjacency_list = _edge_list(triangles) boundary = edges[adjacency_list[:, 1] == -1].reshape(-1) stay = np.union1d(boundary, stay) stay = stay.astype(int) n_iter = 5 step_length = .05 mean_bar = np.zeros_like(nodes) new_nodes = np.copy(nodes) k = np.bincount(triangles.reshape(-1), minlength=len(nodes)) for n in range(n_iter): bar = np.mean(new_nodes[triangles], axis=1) for i in range(2): mean_bar[:, i] = np.bincount(triangles.reshape(-1), weights=np.repeat(bar[:, i], 3), minlength=len(nodes)) mean_bar /= k[:, None] new_nodes += step_length * (mean_bar - new_nodes) new_nodes[stay] = nodes[stay] return new_nodes
Example 14
Project: simnibs Author: simnibs File: mesh_io.py License: GNU General Public License v3.0 | 6 votes |
def nodes_areas(self): ''' Areas for all nodes in a surface Returns --------- nd: NodeData NodeData structure with normals for each node ''' areas = self.elements_volumes_and_areas()[self.elm.triangles] triangle_nodes = self.elm[self.elm.triangles, :3] - 1 nd = np.bincount( triangle_nodes.reshape(-1), np.repeat(areas/3., 3), self.nodes.nr ) return NodeData(nd, 'areas')
Example 15
Project: simnibs Author: simnibs File: misc.py License: GNU General Public License v3.0 | 6 votes |
def combvec(arrays, out=None): arrays = [np.asarray(x) for x in arrays] dtype = arrays[0].dtype n = np.prod([x.size for x in arrays]) if out is None: out = np.zeros([n, len(arrays)], dtype=dtype) m = n // arrays[0].size out[:,0] = np.repeat(arrays[0], m) if arrays[1:]: combvec(arrays[1:], out=out[0:m,1:]) for j in range(1, arrays[0].size): out[j*m:(j+1)*m,1:] = out[0:m,1:] return out
Example 16
Project: mmdetection Author: open-mmlab File: reppoints_head.py License: Apache License 2.0 | 5 votes |
def gen_grid_from_reg(self, reg, previous_boxes): """Base on the previous bboxes and regression values, we compute the regressed bboxes and generate the grids on the bboxes. :param reg: the regression value to previous bboxes. :param previous_boxes: previous bboxes. :return: generate grids on the regressed bboxes. """ b, _, h, w = reg.shape bxy = (previous_boxes[:, :2, ...] + previous_boxes[:, 2:, ...]) / 2. bwh = (previous_boxes[:, 2:, ...] - previous_boxes[:, :2, ...]).clamp(min=1e-6) grid_topleft = bxy + bwh * reg[:, :2, ...] - 0.5 * bwh * torch.exp( reg[:, 2:, ...]) grid_wh = bwh * torch.exp(reg[:, 2:, ...]) grid_left = grid_topleft[:, [0], ...] grid_top = grid_topleft[:, [1], ...] grid_width = grid_wh[:, [0], ...] grid_height = grid_wh[:, [1], ...] intervel = torch.linspace(0., 1., self.dcn_kernel).view( 1, self.dcn_kernel, 1, 1).type_as(reg) grid_x = grid_left + grid_width * intervel grid_x = grid_x.unsqueeze(1).repeat(1, self.dcn_kernel, 1, 1, 1) grid_x = grid_x.view(b, -1, h, w) grid_y = grid_top + grid_height * intervel grid_y = grid_y.unsqueeze(2).repeat(1, 1, self.dcn_kernel, 1, 1) grid_y = grid_y.view(b, -1, h, w) grid_yx = torch.stack([grid_y, grid_x], dim=2) grid_yx = grid_yx.view(b, -1, h, w) regressed_bbox = torch.cat([ grid_left, grid_top, grid_left + grid_width, grid_top + grid_height ], 1) return grid_yx, regressed_bbox
Example 17
Project: sklearn-audio-transfer-learning Author: jordipons File: audio_transfer_learning.py License: ISC License | 5 votes |
def extract_vggish_features(paths, path2gt, model): """Extracts VGGish features and their corresponding ground_truth and identifiers (the path). VGGish features are extracted from non-overlapping audio patches of 0.96 seconds, where each audio patch covers 64 mel bands and 96 frames of 10 ms each. We repeat ground_truth and identifiers to fit the number of extracted VGGish features. """ # 1) Extract log-mel spectrograms first_audio = True for p in paths: if first_audio: input_data = vggish_input.wavfile_to_examples(config['audio_folder'] + p) ground_truth = np.repeat(path2gt[p], input_data.shape[0], axis=0) identifiers = np.repeat(p, input_data.shape[0], axis=0) first_audio = False else: tmp_in = vggish_input.wavfile_to_examples(config['audio_folder'] + p) input_data = np.concatenate((input_data, tmp_in), axis=0) tmp_gt = np.repeat(path2gt[p], tmp_in.shape[0], axis=0) ground_truth = np.concatenate((ground_truth, tmp_gt), axis=0) tmp_id = np.repeat(p, tmp_in.shape[0], axis=0) identifiers = np.concatenate((identifiers, tmp_id), axis=0) # 2) Load Tensorflow model to extract VGGish features with tf.Graph().as_default(), tf.Session() as sess: vggish_slim.define_vggish_slim(training=False) vggish_slim.load_vggish_slim_checkpoint(sess, 'vggish_model.ckpt') features_tensor = sess.graph.get_tensor_by_name(vggish_params.INPUT_TENSOR_NAME) embedding_tensor = sess.graph.get_tensor_by_name(vggish_params.OUTPUT_TENSOR_NAME) extracted_feat = sess.run([embedding_tensor], feed_dict={features_tensor: input_data}) feature = np.squeeze(np.asarray(extracted_feat)) return [feature, ground_truth, identifiers]
Example 18
Project: sklearn-audio-transfer-learning Author: jordipons File: audio_transfer_learning.py License: ISC License | 5 votes |
def extract_other_features(paths, path2gt, model_type): """Extracts MusiCNN or OpenL3 features and their corresponding ground_truth and identifiers (the path). OpenL3 features are extracted from non-overlapping audio patches of 1 second, where each audio patch covers 128 mel bands. MusiCNN features are extracted from non-overlapping audio patches of 1 second, where each audio patch covers 96 mel bands. We repeat ground_truth and identifiers to fit the number of extracted OpenL3 features. """ if model_type == 'openl3': model = openl3.models.load_embedding_model(input_repr="mel128", content_type="music", embedding_size=512) first_audio = True for p in paths: if model_type == 'musicnn': taggram, tags, extracted_features = extractor(config['audio_folder'] + p, model='MSD_musicnn', extract_features=True, input_overlap=1) emb = extracted_features['max_pool'] # or choose any other layer, for example: emb = taggram # Documentation: https://github.com/jordipons/musicnn/blob/master/DOCUMENTATION.md elif model_type == 'openl3': wave, sr = wavefile_to_waveform(config['audio_folder'] + p, 'openl3') emb, _ = openl3.get_embedding(wave, sr, hop_size=1, model=model, verbose=False) if first_audio: features = emb ground_truth = np.repeat(path2gt[p], features.shape[0], axis=0) identifiers = np.repeat(p, features.shape[0], axis=0) first_audio = False else: features = np.concatenate((features, emb), axis=0) tmp_gt = np.repeat(path2gt[p], emb.shape[0], axis=0) ground_truth = np.concatenate((ground_truth, tmp_gt), axis=0) tmp_id = np.repeat(p, emb.shape[0], axis=0) identifiers = np.concatenate((identifiers, tmp_id), axis=0) return [features, ground_truth, identifiers]
Example 19
Project: spleeter Author: deezer File: convertor.py License: MIT License | 5 votes |
def to_stereo(waveform): """ Convert a waveform to stereo by duplicating if mono, or truncating if too many channels. :param waveform: a (N, d) numpy array. :returns: A stereo waveform as a (N, 1) numpy array. """ if waveform.shape[1] == 1: return np.repeat(waveform, 2, axis=-1) if waveform.shape[1] > 2: return waveform[:, :2] return waveform
Example 20
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: randomproj.py License: Apache License 2.0 | 5 votes |
def _get_mask(self, idx, in_data): """Returns the mask by which to multiply the parts of the embedding layer. In this version, we have no weights to apply. """ mask = idx >= 0 # bool False for -1 values that should be removed. shape=(b,mnz) mask = np.expand_dims(mask,2) # shape = (b,mnz,1) mask = np.repeat(mask, self._proj_dim, axis=2) # shape = (b,mnz,d) return mask
Example 21
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: randomproj.py License: Apache License 2.0 | 5 votes |
def _get_mask(self, idx, in_data): """Returns the mask by which to multiply the parts of the embedding layer. In this version, we apply the weights. """ val = in_data[1].asnumpy() # shape=(b,mnz) mask = idx >= 0 # bool False for -1 values that should be removed. shape=(b,mnz) mask = np.multiply(mask,val) # All (b,mnz) mask = np.expand_dims(mask,2) # shape = (b,mnz,1) mask = np.repeat(mask, self._proj_dim, axis=2) # shape = (b,mnz,d) return mask
Example 22
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: test_ndarray.py License: Apache License 2.0 | 5 votes |
def test_ndarray_elementwise(): nrepeat = 10 maxdim = 4 all_type = [np.float32, np.float64, np.float16, np.uint8, np.int8, np.int32, np.int64] real_type = [np.float32, np.float64, np.float16] for repeat in range(nrepeat): for dim in range(1, maxdim): check_with_uniform(lambda x, y: x + y, 2, dim, type_list=all_type) check_with_uniform(lambda x, y: x - y, 2, dim, type_list=all_type) check_with_uniform(lambda x, y: x * y, 2, dim, type_list=all_type) check_with_uniform(lambda x, y: x / y, 2, dim, type_list=real_type) check_with_uniform(lambda x, y: x / y, 2, dim, rmin=1, type_list=all_type) check_with_uniform(mx.nd.sqrt, 1, dim, np.sqrt, rmin=0) check_with_uniform(mx.nd.square, 1, dim, np.square, rmin=0) check_with_uniform(lambda x: mx.nd.norm(x).asscalar(), 1, dim, np.linalg.norm)
Example 23
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: test_ndarray.py License: Apache License 2.0 | 5 votes |
def test_ndarray_choose(): shape = (100, 20) npy = np.arange(np.prod(shape)).reshape(shape) arr = mx.nd.array(npy) nrepeat = 3 for repeat in range(nrepeat): indices = np.random.randint(shape[1], size=shape[0]) assert same(npy[np.arange(shape[0]), indices], mx.nd.choose_element_0index(arr, mx.nd.array(indices)).asnumpy())
Example 24
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: test_ndarray.py License: Apache License 2.0 | 5 votes |
def test_ndarray_fill(): shape = (100, 20) npy = np.arange(np.prod(shape)).reshape(shape) arr = mx.nd.array(npy) new_npy = npy.copy() nrepeat = 3 for repeat in range(nrepeat): indices = np.random.randint(shape[1], size=shape[0]) val = np.random.randint(shape[1], size=shape[0]) new_npy[:] = npy new_npy[np.arange(shape[0]), indices] = val assert same(new_npy, mx.nd.fill_element_0index(arr, mx.nd.array(val), mx.nd.array(indices)).asnumpy())
Example 25
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: test_ndarray.py License: Apache License 2.0 | 5 votes |
def test_ndarray_saveload(): nrepeat = 10 fname = 'tmp_list.bin' for repeat in range(nrepeat): data = [] # test save/load as list for i in range(10): data.append(random_ndarray(np.random.randint(1, 5))) mx.nd.save(fname, data) data2 = mx.nd.load(fname) assert len(data) == len(data2) for x, y in zip(data, data2): assert np.sum(x.asnumpy() != y.asnumpy()) == 0 # test save/load as dict dmap = {'ndarray xx %s' % i : x for i, x in enumerate(data)} mx.nd.save(fname, dmap) dmap2 = mx.nd.load(fname) assert len(dmap2) == len(dmap) for k, x in dmap.items(): y = dmap2[k] assert np.sum(x.asnumpy() != y.asnumpy()) == 0 # test save/load as ndarray # we expect the single ndarray to be converted into a list containing the ndarray single_ndarray = data[0] mx.nd.save(fname, single_ndarray) single_ndarray_loaded = mx.nd.load(fname) assert len(single_ndarray_loaded) == 1 single_ndarray_loaded = single_ndarray_loaded[0] assert np.sum(single_ndarray.asnumpy() != single_ndarray_loaded.asnumpy()) == 0 os.remove(fname)
Example 26
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: test_ndarray.py License: Apache License 2.0 | 5 votes |
def test_arange(): for i in range(5): start = np.random.rand() * 10 stop = start + np.random.rand() * 100 step = np.random.rand() * 4 repeat = int(np.random.rand() * 5) + 1 gt = np.arange(start=start, stop=stop, step=step) gt = np.broadcast_to(gt.reshape((gt.shape[0], 1)), shape=(gt.shape[0], repeat)).ravel() pred = mx.nd.arange(start=start, stop=stop, step=step, repeat=repeat).asnumpy() assert_almost_equal(pred, gt) gt = np.arange(start=0, stop=10000**2, step=10001, dtype=np.int32) pred = mx.nd.arange(start=0, stop=10000**2, step=10001, dtype="int32").asnumpy() assert_almost_equal(pred, gt)
Example 27
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: test_operator_gpu.py License: Apache License 2.0 | 5 votes |
def test_ifft(): nrepeat = 2 maxdim = 10 for repeat in range(nrepeat): for order in [2,4]: shape = tuple(np.random.randint(1, maxdim, size=order)) check_ifft(shape)
Example 28
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: test_operator_gpu.py License: Apache License 2.0 | 5 votes |
def check_consistency_NxM(sym_list, ctx_list): # e.g. if sym_list=[sym1, sym2] and ctx_list=[ctx1, ctx2, ctx3], then resulting lists are: # sym_list=[sym1, sym1, sym1, sym2, sym2, sym2] and ctx_list=[ctx1, ctx2, ctx3, ctx1, ctx2, ctx3] check_consistency(np.repeat(sym_list, len(ctx_list)), ctx_list * len(sym_list), scale=0.5)
Example 29
Project: DOTA_models Author: ringringyi File: swiftshader_renderer.py License: Apache License 2.0 | 5 votes |
def sample_points_on_faces(vs, fs, rng, n_samples_per_face): idx = np.repeat(np.arange(fs.shape[0]), n_samples_per_face) r = rng.rand(idx.size, 2) r1 = r[:,:1]; r2 = r[:,1:]; sqrt_r1 = np.sqrt(r1); v1 = vs[fs[idx, 0], :]; v2 = vs[fs[idx, 1], :]; v3 = vs[fs[idx, 2], :]; pts = (1-sqrt_r1)*v1 + sqrt_r1*(1-r2)*v2 + sqrt_r1*r2*v3 v1 = vs[fs[:,0], :]; v2 = vs[fs[:, 1], :]; v3 = vs[fs[:, 2], :]; ar = 0.5*np.sqrt(np.sum(np.cross(v1-v3, v2-v3)**2, 1)) return pts, ar, idx
Example 30
Project: soccer-matlab Author: utra-robosoccer File: wrappers.py License: BSD 2-Clause "Simplified" License | 5 votes |
def observation_space(self): low = self._env.observation_space.low high = self._env.observation_space.high low = np.repeat(low[None, ...], len(self._past_indices), 0) high = np.repeat(high[None, ...], len(self._past_indices), 0) if self._flatten: low = np.reshape(low, (-1,) + low.shape[2:]) high = np.reshape(high, (-1,) + high.shape[2:]) return gym.spaces.Box(low, high)