Python numpy.compress() Examples
The following are 30 code examples for showing how to use numpy.compress(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: pyscf Author: pyscf File: m_dens_elec_vec.py License: Apache License 2.0 | 6 votes |
def dens_elec_vec(sv, crds, dm): """ Compute the electronic density using vectorized oprators """ from pyscf.nao.m_rsphar_vec import rsphar_vec as rsphar_vec_python assert crds.ndim==2 assert crds.shape[-1]==3 nc = crds.shape[0] lmax = sv.ao_log.jmx for ia,[ra,sp] in enumerate(zip(sv.atom2coord,sv.atom2sp)): lngs = cdist(crds, sv.atom2coord[ia:ia+1,:]) bmask = lngs<sv.ao_log.sp2rcut[sp] crds_selec = compress(bmask[:,0], crds, axis=0) t1 = timer() rsh1 = rsphar_vec_python(crds_selec, lmax) t2 = timer(); print(t2-t1); t1 = timer() return 0
Example 2
Project: recruit Author: Frank-qlu File: test_analytics.py License: Apache License 2.0 | 6 votes |
def test_numpy_compress(self): cond = [True, False, True, False, False] s = Series([1, -1, 5, 8, 7], index=list('abcde'), name='foo') expected = Series(s.values.compress(cond), index=list('ac'), name='foo') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): tm.assert_series_equal(np.compress(cond, s), expected) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.compress(cond, s, axis=1) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.compress(cond, s, out=s)
Example 3
Project: lambda-packs Author: ryfeus File: data.py License: MIT License | 6 votes |
def _min_or_max_axis(self, axis, min_or_max): N = self.shape[axis] if N == 0: raise ValueError("zero-size array to reduction operation") M = self.shape[1 - axis] mat = self.tocsc() if axis == 0 else self.tocsr() mat.sum_duplicates() major_index, value = mat._minor_reduce(min_or_max) not_full = np.diff(mat.indptr)[major_index] < N value[not_full] = min_or_max(value[not_full], 0) mask = value != 0 major_index = np.compress(mask, major_index) value = np.compress(mask, value) from . import coo_matrix if axis == 0: return coo_matrix((value, (np.zeros(len(value)), major_index)), dtype=self.dtype, shape=(1, M)) else: return coo_matrix((value, (major_index, np.zeros(len(value)))), dtype=self.dtype, shape=(M, 1))
Example 4
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: sparsefuncs.py License: MIT License | 6 votes |
def _min_or_max_axis(X, axis, min_or_max): N = X.shape[axis] if N == 0: raise ValueError("zero-size array to reduction operation") M = X.shape[1 - axis] mat = X.tocsc() if axis == 0 else X.tocsr() mat.sum_duplicates() major_index, value = _minor_reduce(mat, min_or_max) not_full = np.diff(mat.indptr)[major_index] < N value[not_full] = min_or_max(value[not_full], 0) mask = value != 0 major_index = np.compress(mask, major_index) value = np.compress(mask, value) if axis == 0: res = sp.coo_matrix((value, (np.zeros(len(value)), major_index)), dtype=X.dtype, shape=(1, M)) else: res = sp.coo_matrix((value, (major_index, np.zeros(len(value)))), dtype=X.dtype, shape=(M, 1)) return res.A.ravel()
Example 5
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_analytics.py License: Apache License 2.0 | 6 votes |
def test_numpy_compress(self): cond = [True, False, True, False, False] s = Series([1, -1, 5, 8, 7], index=list('abcde'), name='foo') expected = Series(s.values.compress(cond), index=list('ac'), name='foo') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): tm.assert_series_equal(np.compress(cond, s), expected) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.compress(cond, s, axis=1) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.compress(cond, s, out=s)
Example 6
Project: recruit Author: Frank-qlu File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_small_large(self): # test the small and large code paths, current cutoff 400 elements for s in [5, 20, 51, 200, 1000]: d = np.random.randn(4, s) # Randomly set some elements to NaN: w = np.random.randint(0, d.size, size=d.size // 5) d.ravel()[w] = np.nan d[:,0] = 1. # ensure at least one good value # use normal median without nans to compare tgt = [] for x in d: nonan = np.compress(~np.isnan(x), x) tgt.append(np.median(nonan, overwrite_input=True)) assert_array_equal(np.nanmedian(d, axis=-1), tgt)
Example 7
Project: recruit Author: Frank-qlu File: test_numeric.py License: Apache License 2.0 | 5 votes |
def test_compress(self): arr = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] tgt = [[5, 6, 7, 8, 9]] out = np.compress([0, 1], arr, axis=0) assert_equal(out, tgt)
Example 8
Project: recruit Author: Frank-qlu File: _converter.py License: Apache License 2.0 | 5 votes |
def _get_default_locs(self, vmin, vmax): "Returns the default locations of ticks." if self.plot_obj.date_axis_info is None: self.plot_obj.date_axis_info = self.finder(vmin, vmax, self.freq) locator = self.plot_obj.date_axis_info if self.isminor: return np.compress(locator['min'], locator['val']) return np.compress(locator['maj'], locator['val'])
Example 9
Project: recruit Author: Frank-qlu File: test_analytics.py License: Apache License 2.0 | 5 votes |
def test_compress(self): cond = [True, False, True, False, False] s = Series([1, -1, 5, 8, 7], index=list('abcde'), name='foo') expected = Series(s.values.compress(cond), index=list('ac'), name='foo') with tm.assert_produces_warning(FutureWarning): result = s.compress(cond) tm.assert_series_equal(result, expected)
Example 10
Project: lambda-packs Author: ryfeus File: compressed.py License: MIT License | 5 votes |
def _get_single_element(self, row, col): M, N = self.shape if (row < 0): row += M if (col < 0): col += N if not (0 <= row < M) or not (0 <= col < N): raise IndexError("index out of bounds: 0<=%d<%d, 0<=%d<%d" % (row, M, col, N)) major_index, minor_index = self._swap((row, col)) start = self.indptr[major_index] end = self.indptr[major_index + 1] if self.has_sorted_indices: # Copies may be made, if dtypes of indices are not identical minor_index = self.indices.dtype.type(minor_index) minor_indices = self.indices[start:end] insert_pos_left = np.searchsorted( minor_indices, minor_index, side='left') insert_pos_right = insert_pos_left + np.searchsorted( minor_indices[insert_pos_left:], minor_index, side='right') return self.data[start + insert_pos_left: start + insert_pos_right].sum(dtype=self.dtype) else: return np.compress(minor_index == self.indices[start:end], self.data[start:end]).sum(dtype=self.dtype)
Example 11
Project: lambda-packs Author: ryfeus File: test_nanfunctions.py License: MIT License | 5 votes |
def test_small_large(self): # test the small and large code paths, current cutoff 400 elements for s in [5, 20, 51, 200, 1000]: d = np.random.randn(4, s) # Randomly set some elements to NaN: w = np.random.randint(0, d.size, size=d.size // 5) d.ravel()[w] = np.nan d[:,0] = 1. # ensure at least one good value # use normal median without nans to compare tgt = [] for x in d: nonan = np.compress(~np.isnan(x), x) tgt.append(np.median(nonan, overwrite_input=True)) assert_array_equal(np.nanmedian(d, axis=-1), tgt)
Example 12
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_nanfunctions.py License: MIT License | 5 votes |
def test_small_large(self): # test the small and large code paths, current cutoff 400 elements for s in [5, 20, 51, 200, 1000]: d = np.random.randn(4, s) # Randomly set some elements to NaN: w = np.random.randint(0, d.size, size=d.size // 5) d.ravel()[w] = np.nan d[:,0] = 1. # ensure at least one good value # use normal median without nans to compare tgt = [] for x in d: nonan = np.compress(~np.isnan(x), x) tgt.append(np.median(nonan, overwrite_input=True)) assert_array_equal(np.nanmedian(d, axis=-1), tgt)
Example 13
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_numeric.py License: MIT License | 5 votes |
def test_compress(self): arr = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] tgt = [[5, 6, 7, 8, 9]] out = np.compress([0, 1], arr, axis=0) assert_equal(out, tgt)
Example 14
Project: D-VAE Author: muhanzhang File: extra_ops.py License: MIT License | 5 votes |
def compress(condition, x, axis=None): """ Return selected slices of an array along given axis. It returns the input tensor, but with selected slices along a given axis retained. If no axis is provided, the tensor is flattened. Corresponds to numpy.compress .. versionadded:: 0.7 Parameters ---------- x Input data, tensor variable. condition 1 dimensional array of non-zero and zero values corresponding to indices of slices along a selected axis. Returns ------- object `x` with selected slices. """ indices = theano.tensor.basic.flatnonzero(condition) return x.take(indices, axis=axis)
Example 15
Project: D-VAE Author: muhanzhang File: test_extra_ops.py License: MIT License | 5 votes |
def test_op(self): for axis, cond, shape in zip(self.axis_list, self.cond_list, self.shape_list): cond_var = theano.tensor.ivector() data = numpy.random.random(size=shape).astype(theano.config.floatX) data_var = theano.tensor.matrix() f = theano.function([cond_var, data_var], self.op(cond_var, data_var, axis=axis)) expected = numpy.compress(cond, data, axis=axis) tested = f(cond, data) assert tested.shape == expected.shape assert numpy.allclose(tested, expected)
Example 16
Project: vnpy_crypto Author: birforce File: test_nanfunctions.py License: MIT License | 5 votes |
def test_small_large(self): # test the small and large code paths, current cutoff 400 elements for s in [5, 20, 51, 200, 1000]: d = np.random.randn(4, s) # Randomly set some elements to NaN: w = np.random.randint(0, d.size, size=d.size // 5) d.ravel()[w] = np.nan d[:,0] = 1. # ensure at least one good value # use normal median without nans to compare tgt = [] for x in d: nonan = np.compress(~np.isnan(x), x) tgt.append(np.median(nonan, overwrite_input=True)) assert_array_equal(np.nanmedian(d, axis=-1), tgt)
Example 17
Project: vnpy_crypto Author: birforce File: test_numeric.py License: MIT License | 5 votes |
def test_compress(self): arr = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] tgt = [[5, 6, 7, 8, 9]] out = np.compress([0, 1], arr, axis=0) assert_equal(out, tgt)
Example 18
Project: vnpy_crypto Author: birforce File: _converter.py License: MIT License | 5 votes |
def _get_default_locs(self, vmin, vmax): "Returns the default locations of ticks." if self.plot_obj.date_axis_info is None: self.plot_obj.date_axis_info = self.finder(vmin, vmax, self.freq) locator = self.plot_obj.date_axis_info if self.isminor: return np.compress(locator['min'], locator['val']) return np.compress(locator['maj'], locator['val'])
Example 19
Project: vnpy_crypto Author: birforce File: test_analytics.py License: MIT License | 5 votes |
def test_compress(self): cond = [True, False, True, False, False] s = Series([1, -1, 5, 8, 7], index=list('abcde'), name='foo') expected = Series(s.values.compress(cond), index=list('ac'), name='foo') tm.assert_series_equal(s.compress(cond), expected)
Example 20
Project: vnpy_crypto Author: birforce File: test_analytics.py License: MIT License | 5 votes |
def test_numpy_compress(self): cond = [True, False, True, False, False] s = Series([1, -1, 5, 8, 7], index=list('abcde'), name='foo') expected = Series(s.values.compress(cond), index=list('ac'), name='foo') tm.assert_series_equal(np.compress(cond, s), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex(ValueError, msg, np.compress, cond, s, axis=1) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, np.compress, cond, s, out=s)
Example 21
Project: onnx-tensorflow Author: onnx File: test_node.py License: Apache License 2.0 | 5 votes |
def test_compress(self): if legacy_opset_pre_ver(9): raise unittest.SkipTest( "ONNX version {} doesn't support Compress.".format( defs.onnx_opset_version())) axis = 1 node_def = helper.make_node("Compress", inputs=['X', 'condition'], outputs=['Y'], axis=axis) x = self._get_rnd_float32(shape=[5, 5, 5]) cond = np.array([1, 0, 1]) output = run_node(node_def, inputs=[x, cond]) np.testing.assert_almost_equal(output['Y'], np.compress(cond, x, axis=axis))
Example 22
Project: onnx-tensorflow Author: onnx File: test_dynamic_shape.py License: Apache License 2.0 | 5 votes |
def test_compress(self): if legacy_opset_pre_ver(9): raise unittest.SkipTest( "ONNX version {} doesn't support Compress.".format( defs.onnx_opset_version())) axis = 1 node_def = helper.make_node("Compress", inputs=['X', 'condition'], outputs=['Y'], axis=axis) graph_def = helper.make_graph( [node_def], name="test_unknown_shape", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, [None, None, None]), helper.make_tensor_value_info("condition", TensorProto.BOOL, [None]) ], outputs=[ helper.make_tensor_value_info("Y", TensorProto.FLOAT, [None, None, None]) ]) x = self._get_rnd_float32(shape=[5, 5, 5]) cond = np.array([1, 0, 1]) tf_rep = onnx_graph_to_tensorflow_rep(graph_def) output = tf_rep.run({"X": x, "condition": cond}) np.testing.assert_almost_equal(output['Y'], np.compress(cond, x, axis=axis))
Example 23
Project: Computable Author: ktraunmueller File: functions.py License: MIT License | 5 votes |
def compress(condition, a, axis=0): return np.compress(condition, a, axis) # only returns a view
Example 24
Project: Computable Author: ktraunmueller File: functions.py License: MIT License | 5 votes |
def compress(condition, m, axis=-1): return np.compress(condition, m, axis)
Example 25
Project: Computable Author: ktraunmueller File: converter.py License: MIT License | 5 votes |
def _set_default_format(self, vmin, vmax): "Returns the default ticks spacing." if self.plot_obj.date_axis_info is None: self.plot_obj.date_axis_info = self.finder(vmin, vmax, self.freq) info = self.plot_obj.date_axis_info if self.isminor: format = np.compress(info['min'] & np.logical_not(info['maj']), info) else: format = np.compress(info['maj'], info) self.formatdict = dict([(x, f) for (x, _, _, f) in format]) return self.formatdict
Example 26
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_nanfunctions.py License: MIT License | 5 votes |
def test_small_large(self): # test the small and large code paths, current cutoff 400 elements for s in [5, 20, 51, 200, 1000]: d = np.random.randn(4, s) # Randomly set some elements to NaN: w = np.random.randint(0, d.size, size=d.size // 5) d.ravel()[w] = np.nan d[:,0] = 1. # ensure at least one good value # use normal median without nans to compare tgt = [] for x in d: nonan = np.compress(~np.isnan(x), x) tgt.append(np.median(nonan, overwrite_input=True)) assert_array_equal(np.nanmedian(d, axis=-1), tgt)
Example 27
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_numeric.py License: MIT License | 5 votes |
def test_compress(self): arr = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] tgt = [[5, 6, 7, 8, 9]] out = np.compress([0, 1], arr, axis=0) assert_equal(out, tgt)
Example 28
Project: trax Author: google File: array_ops_test.py License: Apache License 2.0 | 5 votes |
def testCompress(self): def run_test(condition, arr, *args, **kwargs): for fn1 in self.array_transforms: for fn2 in self.array_transforms: arg1 = fn1(condition) arg2 = fn2(arr) self.match( array_ops.compress(arg1, arg2, *args, **kwargs), np.compress( np.asarray(arg1).astype(np.bool), arg2, *args, **kwargs)) run_test([True], 5) run_test([False], 5) run_test([], 5) run_test([True, False, True], [1, 2, 3]) run_test([True, False], [1, 2, 3]) run_test([False, True], [[1, 2], [3, 4]]) run_test([1, 0, 1], [1, 2, 3]) run_test([1, 0], [1, 2, 3]) run_test([0, 1], [[1, 2], [3, 4]]) run_test([True], [[1, 2], [3, 4]]) run_test([False, True], [[1, 2], [3, 4]], axis=1) run_test([False, True], [[1, 2], [3, 4]], axis=0) run_test([False, True], [[1, 2], [3, 4]], axis=-1) run_test([False, True], [[1, 2], [3, 4]], axis=-2)
Example 29
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_nanfunctions.py License: MIT License | 5 votes |
def test_small_large(self): # test the small and large code paths, current cutoff 400 elements for s in [5, 20, 51, 200, 1000]: d = np.random.randn(4, s) # Randomly set some elements to NaN: w = np.random.randint(0, d.size, size=d.size // 5) d.ravel()[w] = np.nan d[:,0] = 1. # ensure at least one good value # use normal median without nans to compare tgt = [] for x in d: nonan = np.compress(~np.isnan(x), x) tgt.append(np.median(nonan, overwrite_input=True)) assert_array_equal(np.nanmedian(d, axis=-1), tgt)
Example 30
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_numeric.py License: MIT License | 5 votes |
def test_compress(self): arr = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] tgt = [[5, 6, 7, 8, 9]] out = np.compress([0, 1], arr, axis=0) assert_equal(out, tgt)