Python numpy.int_() Examples

The following are 30 code examples for showing how to use numpy.int_(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.

You may check out the related API usage on the sidebar.

You may also want to check out all available functions/classes of the module numpy , or try the search function .

Example 1
Project: Advanced_Lane_Lines   Author: ChengZhongShen   File: image_process.py    License: MIT License 6 votes vote down vote up
def draw_lane_fit(undist, warped ,Minv, left_fitx, right_fitx, ploty):
	# Drawing
	# Create an image to draw the lines on
	warp_zero = np.zeros_like(warped).astype(np.uint8)
	color_warp = np.dstack((warp_zero, warp_zero, warp_zero))

	# Recast the x and y points into usable format for cv2.fillPoly()
	pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
	pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
	pts = np.hstack((pts_left, pts_right))

	# Draw the lane onto the warped blank image
	cv2.fillPoly(color_warp, np.int_([pts]), (0,255,0))

	# Warp the blank back to original image space using inverse perspective matrix(Minv)
	newwarp = cv2.warpPerspective(color_warp, Minv, (undist.shape[1], undist.shape[0]))
	# Combine the result with the original image
	result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)

	return result 
Example 2
Project: recruit   Author: Frank-qlu   File: test_core.py    License: Apache License 2.0 6 votes vote down vote up
def test_allclose(self):
        # Tests allclose on arrays
        a = np.random.rand(10)
        b = a + np.random.rand(10) * 1e-8
        assert_(allclose(a, b))
        # Test allclose w/ infs
        a[0] = np.inf
        assert_(not allclose(a, b))
        b[0] = np.inf
        assert_(allclose(a, b))
        # Test allclose w/ masked
        a = masked_array(a)
        a[-1] = masked
        assert_(allclose(a, b, masked_equal=True))
        assert_(not allclose(a, b, masked_equal=False))
        # Test comparison w/ scalar
        a *= 1e-8
        a[0] = 0
        assert_(allclose(a, 0, masked_equal=True))

        # Test that the function works for MIN_INT integer typed arrays
        a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
        assert_(allclose(a, a)) 
Example 3
Project: recruit   Author: Frank-qlu   File: test_linalg.py    License: Apache License 2.0 6 votes vote down vote up
def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res = linalg.eigvals(a)
        assert_(res.dtype.type is np.float64)
        assert_equal((0, 1), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(res, np.ndarray))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res = linalg.eigvals(a)
        assert_(res.dtype.type is np.complex64)
        assert_equal((0,), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(res, np.ndarray)) 
Example 4
Project: recruit   Author: Frank-qlu   File: test_linalg.py    License: Apache License 2.0 6 votes vote down vote up
def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res, res_v = linalg.eig(a)
        assert_(res_v.dtype.type is np.float64)
        assert_(res.dtype.type is np.float64)
        assert_equal(a.shape, res_v.shape)
        assert_equal((0, 1), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(a, np.ndarray))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res, res_v = linalg.eig(a)
        assert_(res_v.dtype.type is np.complex64)
        assert_(res.dtype.type is np.complex64)
        assert_equal(a.shape, res_v.shape)
        assert_equal((0,), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(a, np.ndarray)) 
Example 5
Project: recruit   Author: Frank-qlu   File: test_linalg.py    License: Apache License 2.0 6 votes vote down vote up
def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res, res_v = linalg.eigh(a)
        assert_(res_v.dtype.type is np.float64)
        assert_(res.dtype.type is np.float64)
        assert_equal(a.shape, res_v.shape)
        assert_equal((0, 1), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(a, np.ndarray))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res, res_v = linalg.eigh(a)
        assert_(res_v.dtype.type is np.complex64)
        assert_(res.dtype.type is np.float32)
        assert_equal(a.shape, res_v.shape)
        assert_equal((0,), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(a, np.ndarray)) 
Example 6
Project: recruit   Author: Frank-qlu   File: test_scalarmath.py    License: Apache License 2.0 6 votes vote down vote up
def test_no_seq_repeat_basic_array_like(self):
        # Test that an array-like which does not know how to be multiplied
        # does not attempt sequence repeat (raise TypeError).
        # See also gh-7428.
        class ArrayLike(object):
            def __init__(self, arr):
                self.arr = arr
            def __array__(self):
                return self.arr

        # Test for simple ArrayLike above and memoryviews (original report)
        for arr_like in (ArrayLike(np.ones(3)), memoryview(np.ones(3))):
            assert_array_equal(arr_like * np.float32(3.), np.full(3, 3.))
            assert_array_equal(np.float32(3.) * arr_like, np.full(3, 3.))
            assert_array_equal(arr_like * np.int_(3), np.full(3, 3))
            assert_array_equal(np.int_(3) * arr_like, np.full(3, 3)) 
Example 7
Project: recruit   Author: Frank-qlu   File: test_indexing.py    License: Apache License 2.0 6 votes vote down vote up
def test_dti_business_getitem(self):
        rng = pd.bdate_range(START, END)
        smaller = rng[:5]
        exp = DatetimeIndex(rng.view(np.ndarray)[:5])
        tm.assert_index_equal(smaller, exp)

        assert smaller.freq == rng.freq

        sliced = rng[::5]
        assert sliced.freq == BDay() * 5

        fancy_indexed = rng[[4, 3, 2, 1, 0]]
        assert len(fancy_indexed) == 5
        assert isinstance(fancy_indexed, DatetimeIndex)
        assert fancy_indexed.freq is None

        # 32-bit vs. 64-bit platforms
        assert rng[4] == rng[np.int_(4)] 
Example 8
Project: recruit   Author: Frank-qlu   File: test_indexing.py    License: Apache License 2.0 6 votes vote down vote up
def test_dti_custom_getitem(self):
        rng = pd.bdate_range(START, END, freq='C')
        smaller = rng[:5]
        exp = DatetimeIndex(rng.view(np.ndarray)[:5])
        tm.assert_index_equal(smaller, exp)
        assert smaller.freq == rng.freq

        sliced = rng[::5]
        assert sliced.freq == CDay() * 5

        fancy_indexed = rng[[4, 3, 2, 1, 0]]
        assert len(fancy_indexed) == 5
        assert isinstance(fancy_indexed, DatetimeIndex)
        assert fancy_indexed.freq is None

        # 32-bit vs. 64-bit platforms
        assert rng[4] == rng[np.int_(4)] 
Example 9
Project: tenpy   Author: tenpy   File: lattice.py    License: GNU General Public License v3.0 6 votes vote down vote up
def boundary_conditions(self, bc):
        global bc_choices
        if bc in list(bc_choices.keys()):
            bc = [bc_choices[bc]] * self.dim
            self.bc_shift = None
        else:
            bc = list(bc)  # we modify entries...
            self.bc_shift = np.zeros(self.dim - 1, np.int_)
            for i, bc_i in enumerate(bc):
                if isinstance(bc_i, int):
                    if i == 0:
                        raise ValueError("Invalid bc: first entry can't be a shift")
                    self.bc_shift[i - 1] = bc_i
                    bc[i] = bc_choices['periodic']
                else:
                    bc[i] = bc_choices[bc_i]
            if not np.any(self.bc_shift != 0):
                self.bc_shift = None
        self.bc = np.array(bc) 
Example 10
Project: mars   Author: mars-project   File: test_datasource_execute.py    License: Apache License 2.0 6 votes vote down vote up
def testLinspaceExecution(self):
        a = linspace(2.0, 9.0, num=11, chunk_size=3)

        res = self.executor.execute_tensor(a, concat=True)[0]
        expected = np.linspace(2.0, 9.0, num=11)
        np.testing.assert_allclose(res, expected)

        a = linspace(2.0, 9.0, num=11, endpoint=False, chunk_size=3)

        res = self.executor.execute_tensor(a, concat=True)[0]
        expected = np.linspace(2.0, 9.0, num=11, endpoint=False)
        np.testing.assert_allclose(res, expected)

        a = linspace(2.0, 9.0, num=11, chunk_size=3, dtype=int)

        res = self.executor.execute_tensor(a, concat=True)[0]
        self.assertEqual(res.dtype, np.int_) 
Example 11
Project: mars   Author: mars-project   File: histogram.py    License: Apache License 2.0 6 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:  # pragma: no cover
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example 12
Project: westpa   Author: westpa   File: testyamlfe.py    License: MIT License 6 votes vote down vote up
def initialize(self):
        self.pcoord_ndim = 1
        self.pcoord_dtype = numpy.float32
        self.pcoord_len = 5
        self.bin_mapper = RectilinearBinMapper([ list(numpy.arange(0.0, 10.1, 0.1)) ] )
        self.bin_target_counts = numpy.empty((self.bin_mapper.nbins,), numpy.int_)
        self.bin_target_counts[...] = 10
        self.test_variable_2 = "And I'm the second one"

# YAML Front end tests

# Implemented basic tests
#  - returns the correct system 
#    given a system driver
#  - returns the correct system
#    given a yaml system
#  - returns the correct system
#    given both

# A class to test both paths at the same time
# if it works we assure we can load the driver
# AND overwrite it properly 
Example 13
Project: lambda-packs   Author: ryfeus   File: histograms.py    License: MIT License 6 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example 14
Project: lambda-packs   Author: ryfeus   File: test_core.py    License: MIT License 6 votes vote down vote up
def test_allclose(self):
        # Tests allclose on arrays
        a = np.random.rand(10)
        b = a + np.random.rand(10) * 1e-8
        self.assertTrue(allclose(a, b))
        # Test allclose w/ infs
        a[0] = np.inf
        self.assertTrue(not allclose(a, b))
        b[0] = np.inf
        self.assertTrue(allclose(a, b))
        # Test allclose w/ masked
        a = masked_array(a)
        a[-1] = masked
        self.assertTrue(allclose(a, b, masked_equal=True))
        self.assertTrue(not allclose(a, b, masked_equal=False))
        # Test comparison w/ scalar
        a *= 1e-8
        a[0] = 0
        self.assertTrue(allclose(a, 0, masked_equal=True))

        # Test that the function works for MIN_INT integer typed arrays
        a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
        self.assertTrue(allclose(a, a)) 
Example 15
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: test_core.py    License: MIT License 6 votes vote down vote up
def test_allclose(self):
        # Tests allclose on arrays
        a = np.random.rand(10)
        b = a + np.random.rand(10) * 1e-8
        self.assertTrue(allclose(a, b))
        # Test allclose w/ infs
        a[0] = np.inf
        self.assertTrue(not allclose(a, b))
        b[0] = np.inf
        self.assertTrue(allclose(a, b))
        # Test allclose w/ masked
        a = masked_array(a)
        a[-1] = masked
        self.assertTrue(allclose(a, b, masked_equal=True))
        self.assertTrue(not allclose(a, b, masked_equal=False))
        # Test comparison w/ scalar
        a *= 1e-8
        a[0] = 0
        self.assertTrue(allclose(a, 0, masked_equal=True))

        # Test that the function works for MIN_INT integer typed arrays
        a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
        self.assertTrue(allclose(a, a)) 
Example 16
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: test_indexing.py    License: MIT License 6 votes vote down vote up
def test_empty_tuple_index(self):
        # Empty tuple index creates a view
        a = np.array([1, 2, 3])
        assert_equal(a[()], a)
        assert_(a[()].base is a)
        a = np.array(0)
        assert_(isinstance(a[()], np.int_))

        # Regression, it needs to fall through integer and fancy indexing
        # cases, so need the with statement to ignore the non-integer error.
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', '', DeprecationWarning)
            a = np.array([1.])
            assert_(isinstance(a[0.], np.float_))

            a = np.array([np.array(1)], dtype=object)
            assert_(isinstance(a[0.], np.ndarray)) 
Example 17
Project: vnpy_crypto   Author: birforce   File: test_core.py    License: MIT License 6 votes vote down vote up
def test_allclose(self):
        # Tests allclose on arrays
        a = np.random.rand(10)
        b = a + np.random.rand(10) * 1e-8
        assert_(allclose(a, b))
        # Test allclose w/ infs
        a[0] = np.inf
        assert_(not allclose(a, b))
        b[0] = np.inf
        assert_(allclose(a, b))
        # Test allclose w/ masked
        a = masked_array(a)
        a[-1] = masked
        assert_(allclose(a, b, masked_equal=True))
        assert_(not allclose(a, b, masked_equal=False))
        # Test comparison w/ scalar
        a *= 1e-8
        a[0] = 0
        assert_(allclose(a, 0, masked_equal=True))

        # Test that the function works for MIN_INT integer typed arrays
        a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
        assert_(allclose(a, a)) 
Example 18
Project: vnpy_crypto   Author: birforce   File: test_linalg.py    License: MIT License 6 votes vote down vote up
def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res = linalg.eigvals(a)
        assert_(res.dtype.type is np.float64)
        assert_equal((0, 1), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(res, np.ndarray))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res = linalg.eigvals(a)
        assert_(res.dtype.type is np.complex64)
        assert_equal((0,), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(res, np.ndarray)) 
Example 19
Project: vnpy_crypto   Author: birforce   File: test_linalg.py    License: MIT License 6 votes vote down vote up
def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res, res_v = linalg.eig(a)
        assert_(res_v.dtype.type is np.float64)
        assert_(res.dtype.type is np.float64)
        assert_equal(a.shape, res_v.shape)
        assert_equal((0, 1), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(a, np.ndarray))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res, res_v = linalg.eig(a)
        assert_(res_v.dtype.type is np.complex64)
        assert_(res.dtype.type is np.complex64)
        assert_equal(a.shape, res_v.shape)
        assert_equal((0,), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(a, np.ndarray)) 
Example 20
Project: vnpy_crypto   Author: birforce   File: test_linalg.py    License: MIT License 6 votes vote down vote up
def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res = linalg.eigvalsh(a)
        assert_(res.dtype.type is np.float64)
        assert_equal((0, 1), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(res, np.ndarray))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res = linalg.eigvalsh(a)
        assert_(res.dtype.type is np.float32)
        assert_equal((0,), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(res, np.ndarray)) 
Example 21
Project: vnpy_crypto   Author: birforce   File: test_linalg.py    License: MIT License 6 votes vote down vote up
def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res, res_v = linalg.eigh(a)
        assert_(res_v.dtype.type is np.float64)
        assert_(res.dtype.type is np.float64)
        assert_equal(a.shape, res_v.shape)
        assert_equal((0, 1), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(a, np.ndarray))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res, res_v = linalg.eigh(a)
        assert_(res_v.dtype.type is np.complex64)
        assert_(res.dtype.type is np.float32)
        assert_equal(a.shape, res_v.shape)
        assert_equal((0,), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(a, np.ndarray)) 
Example 22
Project: EXOSIMS   Author: dsavransky   File: test_SurveySimulation.py    License: BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_observation_detection(self):
        r"""Test observation_detection method.

        Approach: Ensure that all outputs are set as expected
        """

        exclude_mods = []
        exclude_mod_type = 'sotoSS'

        for mod in self.allmods:
            if mod.__name__ in exclude_mods:
                continue
            if 'observation_detection' in mod.__dict__ or exclude_mod_type in mod.__name__:

                spec = copy.deepcopy(self.spec)
                if 'tieredScheduler' in mod.__name__:
                    self.script = resource_path('test-scripts/simplest_occ.json')
                    with open(self.script) as f:
                        spec = json.loads(f.read())
                    spec['occHIPs'] = resource_path('SurveySimulation/top100stars.txt')

                with RedirectStreams(stdout=self.dev_null):
                    sim = mod(**spec)

                    #default settings should create dummy planet around first star
                    sInd = 0
                    pInds = np.where(sim.SimulatedUniverse.plan2star == sInd)[0]
                    detected, fZ, systemParams, SNR, FA = \
                            sim.observation_detection(sInd,1.0*u.d,\
                            sim.OpticalSystem.observingModes[0])
                
                self.assertEqual(len(detected),len(pInds),\
                        'len(detected) != len(pInds) for %s'%mod.__name__)
                self.assertIsInstance(detected[0],(int,np.int32,np.int64,np.int_),\
                        'detected elements not ints for %s'%mod.__name__)
                for s in SNR[detected == 1]:
                    self.assertGreaterEqual(s,sim.OpticalSystem.observingModes[0]['SNR'],\
                        'detection SNR < mode requirement for %s'%mod.__name__)
                self.assertIsInstance(FA, bool,\
                        'False Alarm not boolean for %s'%mod.__name__) 
Example 23
Project: risk-slim   Author: ustunb   File: helper_functions.py    License: BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def is_integer(rho):
    """
    checks if numpy array is an integer vector

    Parameters
    ----------
    rho

    Returns
    -------

    """
    return np.array_equal(rho, np.require(rho, dtype=np.int_)) 
Example 24
Project: risk-slim   Author: ustunb   File: helper_functions.py    License: BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def cast_to_integer(rho):
    """
    casts numpy array to integer vector
    Parameters
    ----------
    rho

    Returns
    -------

    """
    original_type = rho.dtype
    return np.require(np.require(rho, dtype=np.int_), dtype=original_type) 
Example 25
Project: risk-slim   Author: ustunb   File: coefficient_set.py    License: BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def _is_integer(self, x):
        return np.array_equal(x, np.require(x, dtype = np.int_)) 
Example 26
Project: MnemonicReader   Author: HKUST-KnowComp   File: data.py    License: BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def __iter__(self):
        lengths = np.array(
            [(-l[0], -l[1], np.random.random()) for l in self.lengths],
            dtype=[('l1', np.int_), ('l2', np.int_), ('rand', np.float_)]
        )
        indices = np.argsort(lengths, order=('l1', 'l2', 'rand'))
        batches = [indices[i:i + self.batch_size]
                   for i in range(0, len(indices), self.batch_size)]
        if self.shuffle:
            np.random.shuffle(batches)
        return iter([i for batch in batches for i in batch]) 
Example 27
Project: recruit   Author: Frank-qlu   File: histograms.py    License: Apache License 2.0 5 votes vote down vote up
def _unsigned_subtract(a, b):
    """
    Subtract two values where a >= b, and produce an unsigned result

    This is needed when finding the difference between the upper and lower
    bound of an int16 histogram
    """
    # coerce to a single type
    signed_to_unsigned = {
        np.byte: np.ubyte,
        np.short: np.ushort,
        np.intc: np.uintc,
        np.int_: np.uint,
        np.longlong: np.ulonglong
    }
    dt = np.result_type(a, b)
    try:
        dt = signed_to_unsigned[dt.type]
    except KeyError:
        return np.subtract(a, b, dtype=dt)
    else:
        # we know the inputs are integers, and we are deliberately casting
        # signed to unsigned
        return np.subtract(a, b, casting='unsafe', dtype=dt) 
Example 28
Project: recruit   Author: Frank-qlu   File: test_function_base.py    License: Apache License 2.0 5 votes vote down vote up
def test_non_bool_deprecation(self):
        choices = self.choices
        conditions = self.conditions[:]
        with warnings.catch_warnings():
            warnings.filterwarnings("always")
            conditions[0] = conditions[0].astype(np.int_)
            assert_warns(DeprecationWarning, select, conditions, choices)
            conditions[0] = conditions[0].astype(np.uint8)
            assert_warns(DeprecationWarning, select, conditions, choices)
            warnings.filterwarnings("error")
            assert_raises(DeprecationWarning, select, conditions, choices) 
Example 29
Project: recruit   Author: Frank-qlu   File: test_function_base.py    License: Apache License 2.0 5 votes vote down vote up
def test_n(self):
        x = list(range(3))
        assert_raises(ValueError, diff, x, n=-1)
        output = [diff(x, n=n) for n in range(1, 5)]
        expected = [[1, 1], [0], [], []]
        assert_(diff(x, n=0) is x)
        for n, (expected, out) in enumerate(zip(expected, output), start=1):
            assert_(type(out) is np.ndarray)
            assert_array_equal(out, expected)
            assert_equal(out.dtype, np.int_)
            assert_equal(len(out), max(0, len(x) - n)) 
Example 30
Project: recruit   Author: Frank-qlu   File: test_nanfunctions.py    License: Apache License 2.0 5 votes vote down vote up
def test_dtype_error(self):
        for f in self.nanfuncs:
            for dtype in [np.bool_, np.int_, np.object_]:
                assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype)