Python numpy.sinh() Examples
The following are 30 code examples for showing how to use numpy.sinh(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: EXOSIMS Author: dsavransky File: keplerSTM.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def psi2c2c3(self, psi0): c2 = np.zeros(len(psi0)) c3 = np.zeros(len(psi0)) psi12 = np.sqrt(np.abs(psi0)) pos = psi0 >= 0 neg = psi0 < 0 if np.any(pos): c2[pos] = (1 - np.cos(psi12[pos]))/psi0[pos] c3[pos] = (psi12[pos] - np.sin(psi12[pos]))/psi12[pos]**3. if any(neg): c2[neg] = (1 - np.cosh(psi12[neg]))/psi0[neg] c3[neg] = (np.sinh(psi12[neg]) - psi12[neg])/psi12[neg]**3. tmp = c2+c3 == 0 if any(tmp): c2[tmp] = 1./2. c3[tmp] = 1./6. return c2,c3
Example 2
Project: scarlet Author: pmelchior File: display.py License: MIT License | 6 votes |
def __init__(self, img, percentiles=[1, 99]): """Create norm that is linear between lower and upper percentile of img Parameters ---------- img: array_like Image to normalize percentile: array_like, default=[1,99] Lower and upper percentile to consider. Pixel values below will be set to zero, above to saturated. """ assert len(percentiles) == 2 vmin, vmax = np.percentile(img, percentiles) # solution for beta assumes flat spectrum at vmax stretch = vmax - vmin beta = stretch / np.sinh(1) super().__init__(minimum=vmin, stretch=stretch, Q=beta)
Example 3
Project: solar-system Author: lukekulik File: uvf.py License: MIT License | 6 votes |
def c2c3(psi): # Stumpff functions definitions c2, c3 = 0, 0 if np.any(psi > 1e-6): c2 = (1 - np.cos(np.sqrt(psi))) / psi c3 = (np.sqrt(psi) - np.sin(np.sqrt(psi))) / np.sqrt(psi ** 3) if np.any(psi < -1e-6): c2 = (1 - np.cosh(np.sqrt(-psi))) / psi c3 = (np.sinh(np.sqrt(-psi)) - np.sqrt(-psi)) / np.sqrt(-psi ** 3) if np.any(abs(psi) <= 1e-6): c2 = 0.5 c3 = 1. / 6. return c2, c3
Example 4
Project: tf-pose Author: SrikanthVelpuri File: relativity.py License: Apache License 2.0 | 6 votes |
def tauStep(dtau, v0, x0, t0, g): ## linear step in proper time of clock. ## If an object has proper acceleration g and starts at position x0 with speed v0 at time t0 ## as seen from an inertial frame, then return the new v, x, t after proper time dtau has elapsed. ## Compute how much t will change given a proper-time step of dtau gamma = (1. - v0**2)**-0.5 if g == 0: dt = dtau * gamma else: v0g = v0 * gamma dt = (np.sinh(dtau * g + np.arcsinh(v0g)) - v0g) / g #return v0 + dtau * g, x0 + v0*dt, t0 + dt v1, x1, t1 = Simulation.hypTStep(dt, v0, x0, t0, g) return v1, x1, t0+dt
Example 5
Project: lambda-packs Author: ryfeus File: matfuncs.py License: MIT License | 6 votes |
def _eq_10_42(lam_1, lam_2, t_12): """ Equation (10.42) of Functions of Matrices: Theory and Computation. Notes ----- This is a helper function for _fragment_2_1 of expm_2009. Equation (10.42) is on page 251 in the section on Schur algorithms. In particular, section 10.4.3 explains the Schur-Parlett algorithm. expm([[lam_1, t_12], [0, lam_1]) = [[exp(lam_1), t_12*exp((lam_1 + lam_2)/2)*sinch((lam_1 - lam_2)/2)], [0, exp(lam_2)] """ # The plain formula t_12 * (exp(lam_2) - exp(lam_2)) / (lam_2 - lam_1) # apparently suffers from cancellation, according to Higham's textbook. # A nice implementation of sinch, defined as sinh(x)/x, # will apparently work around the cancellation. a = 0.5 * (lam_1 + lam_2) b = 0.5 * (lam_1 - lam_2) return t_12 * np.exp(a) * _sinch(b)
Example 6
Project: ocelot Author: ocelot-collab File: rk_py.py License: GNU General Public License v3.0 | 6 votes |
def fields(x,y,z, kx, ky, kz, B0): k1 = -B0*kx/ky k2 = -B0*kz/ky kx_x = kx*x ky_y = ky*y kz_z = kz*z cosx = np.cos(kx_x) sinhy = np.sinh(ky_y) cosz = np.cos(kz_z) Bx = k1*np.sin(kx_x)*sinhy*cosz #// here kx is only real By = B0*cosx*np.cosh(ky_y)*cosz Bz = k2*cosx*sinhy*np.sin(kz_z) #Bx = ne.evaluate("k1*sin(kx*x)*sinhy*cosz") #By = ne.evaluate("B0*cosx*cosh(ky*y)*cosz") #Bz = ne.evaluate("k2*cosx*sinhy*sin(kz*z)") return Bx, By, Bz
Example 7
Project: strawberryfields Author: XanaduAI File: test_circuitspecs_X8.py License: Apache License 2.0 | 6 votes |
def TMS(r, phi): """Two-mode squeezing. Args: r (float): squeezing magnitude phi (float): rotation parameter Returns: array: symplectic transformation matrix """ cp = np.cos(phi) sp = np.sin(phi) ch = np.cosh(r) sh = np.sinh(r) S = np.array( [ [ch, cp * sh, 0, sp * sh], [cp * sh, ch, sp * sh, 0], [0, sp * sh, ch, -cp * sh], [sp * sh, 0, -cp * sh, ch], ] ) return S
Example 8
Project: strawberryfields Author: XanaduAI File: test_circuitspecs_X12.py License: Apache License 2.0 | 6 votes |
def TMS(r, phi): """Two-mode squeezing. Args: r (float): squeezing magnitude phi (float): rotation parameter Returns: array: symplectic transformation matrix """ cp = np.cos(phi) sp = np.sin(phi) ch = np.cosh(r) sh = np.sinh(r) S = np.array( [ [ch, cp * sh, 0, sp * sh], [cp * sh, ch, sp * sh, 0], [0, sp * sh, ch, -cp * sh], [sp * sh, 0, -cp * sh, ch], ] ) return S
Example 9
Project: strawberryfields Author: XanaduAI File: test_utils.py License: Apache License 2.0 | 6 votes |
def test_squeezed_state_gaussian(self, r, phi, hbar, tol): """test squeezed state returns correct means and covariance""" means, cov = utils.squeezed_state(r, phi, basis="gaussian", hbar=hbar) cov_expected = (hbar / 2) * np.array( [ [ np.cosh(2 * r) - np.cos(phi) * np.sinh(2 * r), -2 * np.cosh(r) * np.sin(phi) * np.sinh(r), ], [ -2 * np.cosh(r) * np.sin(phi) * np.sinh(r), np.cosh(2 * r) + np.cos(phi) * np.sinh(2 * r), ], ] ) assert np.all(means == np.zeros([2])) assert np.allclose(cov, cov_expected, atol=tol, rtol=0)
Example 10
Project: strawberryfields Author: XanaduAI File: test_utils.py License: Apache License 2.0 | 6 votes |
def test_displaced_squeezed_state_gaussian(self, r_d, phi_d, r_s, phi_s, hbar, tol): """test displaced squeezed state returns correct means and covariance""" means, cov = utils.displaced_squeezed_state(r_d, phi_d, r_s, phi_s, basis="gaussian", hbar=hbar) a = r_d * np.exp(1j * phi_d) means_expected = np.array([[a.real, a.imag]]) * np.sqrt(2 * hbar) cov_expected = (hbar / 2) * np.array( [ [ np.cosh(2 * r_s) - np.cos(phi_s) * np.sinh(2 * r_s), -2 * np.cosh(r_s) * np.sin(phi_s) * np.sinh(r_s), ], [ -2 * np.cosh(r_s) * np.sin(phi_s) * np.sinh(r_s), np.cosh(2 * r_s) + np.cos(phi_s) * np.sinh(2 * r_s), ], ] ) assert np.allclose(means, means_expected, atol=tol, rtol=0) assert np.allclose(cov, cov_expected, atol=tol, rtol=0)
Example 11
Project: strawberryfields Author: XanaduAI File: test_utils.py License: Apache License 2.0 | 6 votes |
def test_displaced_squeezed_state_fock(self, r_d, phi_d, r_s, phi_s, hbar, cutoff, tol): """test displaced squeezed state returns correct Fock basis state vector""" state = utils.displaced_squeezed_state(r_d, phi_d, r_s, phi_s, basis="fock", fock_dim=cutoff, hbar=hbar) a = r_d * np.exp(1j * phi_d) if r_s == 0: pytest.skip("test only non-zero squeezing") n = np.arange(cutoff) gamma = a * np.cosh(r_s) + np.conj(a) * np.exp(1j * phi_s) * np.sinh(r_s) coeff = np.diag( (0.5 * np.exp(1j * phi_s) * np.tanh(r_s)) ** (n / 2) / np.sqrt(fac(n) * np.cosh(r_s)) ) expected = H(gamma / np.sqrt(np.exp(1j * phi_s) * np.sinh(2 * r_s)), coeff) expected *= np.exp( -0.5 * np.abs(a) ** 2 - 0.5 * np.conj(a) ** 2 * np.exp(1j * phi_s) * np.tanh(r_s) ) assert np.allclose(state, expected, atol=tol, rtol=0)
Example 12
Project: strawberryfields Author: XanaduAI File: test_squeeze_operation.py License: Apache License 2.0 | 6 votes |
def matrix_elem(n, r, m): """Matrix element corresponding to squeezed density matrix[n, m]""" eps = 1e-10 if n % 2 != m % 2: return 0.0 if r == 0.0: return np.complex(n == m) # delta function k = np.arange(m % 2, min([m, n]) + 1, 2) res = np.sum( (-1) ** ((n - k) / 2) * np.exp( (lg(m + 1) + lg(n + 1)) / 2 - lg(k + 1) - lg((m - k) / 2 + 1) - lg((n - k) / 2 + 1) ) * (np.sinh(r) / 2 + eps) ** ((n + m - 2 * k) / 2) / (np.cosh(r) ** ((n + m + 1) / 2)) ) return res
Example 13
Project: strawberryfields Author: XanaduAI File: test_states_wigner.py License: Apache License 2.0 | 6 votes |
def test_squeezed_coherent(setup_backend, hbar, tol): """Test Wigner function for a squeezed coherent state matches the analytic result""" backend = setup_backend(1) backend.prepare_coherent_state(np.abs(A), np.angle(A), 0) backend.squeeze(R, PHI, 0) state = backend.state() W = state.wigner(0, XVEC, XVEC) rot = rotm(PHI / 2) # exact wigner function alpha = A * np.cosh(R) - np.conjugate(A) * np.exp(1j * PHI) * np.sinh(R) mu = np.array([alpha.real, alpha.imag]) * np.sqrt(2 * hbar) cov = np.diag([np.exp(-2 * R), np.exp(2 * R)]) cov = np.dot(rot, np.dot(cov, rot.T)) * hbar / 2.0 Wexact = wigner(GRID, mu, cov) assert np.allclose(W, Wexact, atol=0.01, rtol=0)
Example 14
Project: strawberryfields Author: XanaduAI File: test_states.py License: Apache License 2.0 | 6 votes |
def test_squeezed_coherent(self, setup_backend, hbar, batch_size, tol): """Test squeezed coherent state has correct mean and variance""" # quadrature rotation angle backend = setup_backend(1) qphi = 0.78 backend.prepare_displaced_squeezed_state(np.abs(a), np.angle(a), r, phi, 0) state = backend.state() res = np.array(state.quad_expectation(0, phi=qphi)).T xphi_mean = (a.real * np.cos(qphi) + a.imag * np.sin(qphi)) * np.sqrt(2 * hbar) xphi_var = (np.cosh(2 * r) - np.cos(phi - 2 * qphi) * np.sinh(2 * r)) * hbar / 2 res_exact = np.array([xphi_mean, xphi_var]) if batch_size is not None: res_exact = np.tile(res_exact, batch_size) assert np.allclose(res.flatten(), res_exact.flatten(), atol=tol, rtol=0)
Example 15
Project: strawberryfields Author: XanaduAI File: test_states.py License: Apache License 2.0 | 6 votes |
def test_number_expectation_two_mode_squeezed(self, setup_backend, tol, batch_size): """Tests the expectation value of photon numbers when there is correlation""" if batch_size is not None: pytest.skip("Does not support batch mode") backend = setup_backend(3) state = backend.state() r = 0.2 phi = 0.0 backend.prepare_squeezed_state(r, phi, 0) backend.prepare_squeezed_state(-r, phi, 2) backend.beamsplitter(np.pi/4, np.pi, 0, 2) state = backend.state() nbar = np.sinh(r) ** 2 res = state.number_expectation([2, 0]) assert np.allclose(res[0], 2 * nbar ** 2 + nbar, atol=tol, rtol=0) res = state.number_expectation([0]) assert np.allclose(res[0], nbar, atol=tol, rtol=0) res = state.number_expectation([2]) assert np.allclose(res[0], nbar, atol=tol, rtol=0)
Example 16
Project: Computable Author: ktraunmueller File: matfuncs.py License: MIT License | 6 votes |
def _eq_10_42(lam_1, lam_2, t_12): """ Equation (10.42) of Functions of Matrices: Theory and Computation. Notes ----- This is a helper function for _fragment_2_1 of expm_2009. Equation (10.42) is on page 251 in the section on Schur algorithms. In particular, section 10.4.3 explains the Schur-Parlett algorithm. expm([[lam_1, t_12], [0, lam_1]) = [[exp(lam_1), t_12*exp((lam_1 + lam_2)/2)*sinch((lam_1 - lam_2)/2)], [0, exp(lam_2)] """ # The plain formula t_12 * (exp(lam_2) - exp(lam_2)) / (lam_2 - lam_1) # apparently suffers from cancellation, according to Higham's textbook. # A nice implementation of sinch, defined as sinh(x)/x, # will apparently work around the cancellation. a = 0.5 * (lam_1 + lam_2) b = 0.5 * (lam_1 - lam_2) return t_12 * np.exp(a) * _sinch(b)
Example 17
Project: Computable Author: ktraunmueller File: filter_design.py License: MIT License | 6 votes |
def cheb2ap(N, rs): """Return (z,p,k) zero, pole, gain for Nth order Chebyshev type II lowpass analog filter prototype with `rs` decibels of ripple in the stopband. The filter's angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first reaches -`rs`. """ de = 1.0 / sqrt(10 ** (0.1 * rs) - 1) mu = arcsinh(1.0 / de) / N if N % 2: n = numpy.concatenate((numpy.arange(1, N - 1, 2), numpy.arange(N + 2, 2 * N, 2))) else: n = numpy.arange(1, 2 * N, 2) z = conjugate(1j / cos(n * pi / (2.0 * N))) p = exp(1j * (pi * numpy.arange(1, 2 * N, 2) / (2.0 * N) + pi / 2.0)) p = sinh(mu) * p.real + 1j * cosh(mu) * p.imag p = 1.0 / p k = (numpy.prod(-p, axis=0) / numpy.prod(-z, axis=0)).real return z, p, k
Example 18
Project: easyGalaxy Author: cmancone File: cosmology.py License: MIT License | 6 votes |
def Dm(self, z, cm=False, meter=False, pc=False, kpc=False, mpc=False): Ok = self.Ok() sOk = num.sqrt(num.abs(Ok)) Dc = self.Dc(z) Dh = self.Dh() conversion = self.lengthConversion(cm=cm, meter=meter, pc=pc, kpc=kpc, mpc=mpc) if Ok > 0: return Dh / sOk * num.sinh(sOk * Dc / Dh) * conversion elif Ok == 0: return Dc * conversion else: return Dh / sOk * num.sin(sOk * Dc / Dh) * conversion # Angular diameter distance # Ratio of an objects physical transvserse size to its angular size in radians
Example 19
Project: tangent Author: google File: functions.py License: Apache License 2.0 | 5 votes |
def numpy_sinh(a): return np.sinh(a)
Example 20
Project: tangent Author: google File: functions.py License: Apache License 2.0 | 5 votes |
def tfe_sinh(t): return tf.sinh(t)
Example 21
Project: tangent Author: google File: grads.py License: Apache License 2.0 | 5 votes |
def cosh(y, x): d[x] = d[y] * numpy.sinh(x)
Example 22
Project: tangent Author: google File: grads.py License: Apache License 2.0 | 5 votes |
def sinh(y, x): d[x] = d[y] * numpy.cosh(x)
Example 23
Project: tangent Author: google File: tangents.py License: Apache License 2.0 | 5 votes |
def tcosh(z, x): d[z] = d[x] * numpy.sinh(x)
Example 24
Project: feets Author: quatrope File: ls_fap.py License: MIT License | 5 votes |
def tau_davies(Z, fmax, t, y, dy, normalization="standard", dH=1, dK=3): """tau factor for estimating Davies bound (Baluev 2008, Table 1)""" N = len(t) NH = N - dH # DOF for null hypothesis NK = N - dK # DOF for periodic hypothesis Dt = _weighted_var(t, dy) Teff = np.sqrt(4 * np.pi * Dt) W = fmax * Teff if normalization == "psd": # 'psd' normalization is same as Baluev's z return W * np.exp(-Z) * np.sqrt(Z) elif normalization == "standard": # 'standard' normalization is Z = 2/NH * z_1 return ( _gamma(NH) * W * (1 - Z) ** (0.5 * (NK - 1)) * np.sqrt(0.5 * NH * Z) ) elif normalization == "model": # 'model' normalization is Z = 2/NK * z_2 return _gamma(NK) * W * (1 + Z) ** (-0.5 * NK) * np.sqrt(0.5 * NK * Z) elif normalization == "log": # 'log' normalization is Z = 2/NK * z_3 return ( _gamma(NK) * W * np.exp(-0.5 * Z * (NK - 0.5)) * np.sqrt(NK * np.sinh(0.5 * Z)) ) else: raise NotImplementedError("normalization={0}".format(normalization))
Example 25
Project: recruit Author: Frank-qlu File: test_old_ma.py License: Apache License 2.0 | 5 votes |
def test_testUfuncs1(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d assert_(eq(np.cos(x), cos(xm))) assert_(eq(np.cosh(x), cosh(xm))) assert_(eq(np.sin(x), sin(xm))) assert_(eq(np.sinh(x), sinh(xm))) assert_(eq(np.tan(x), tan(xm))) assert_(eq(np.tanh(x), tanh(xm))) with np.errstate(divide='ignore', invalid='ignore'): assert_(eq(np.sqrt(abs(x)), sqrt(xm))) assert_(eq(np.log(abs(x)), log(xm))) assert_(eq(np.log10(abs(x)), log10(xm))) assert_(eq(np.exp(x), exp(xm))) assert_(eq(np.arcsin(z), arcsin(zm))) assert_(eq(np.arccos(z), arccos(zm))) assert_(eq(np.arctan(z), arctan(zm))) assert_(eq(np.arctan2(x, y), arctan2(xm, ym))) assert_(eq(np.absolute(x), absolute(xm))) assert_(eq(np.equal(x, y), equal(xm, ym))) assert_(eq(np.not_equal(x, y), not_equal(xm, ym))) assert_(eq(np.less(x, y), less(xm, ym))) assert_(eq(np.greater(x, y), greater(xm, ym))) assert_(eq(np.less_equal(x, y), less_equal(xm, ym))) assert_(eq(np.greater_equal(x, y), greater_equal(xm, ym))) assert_(eq(np.conjugate(x), conjugate(xm))) assert_(eq(np.concatenate((x, y)), concatenate((xm, ym)))) assert_(eq(np.concatenate((x, y)), concatenate((x, y)))) assert_(eq(np.concatenate((x, y)), concatenate((xm, y)))) assert_(eq(np.concatenate((x, y, x)), concatenate((x, ym, x))))
Example 26
Project: recruit Author: Frank-qlu File: test_old_ma.py License: Apache License 2.0 | 5 votes |
def test_testUfuncRegression(self): f_invalid_ignore = [ 'sqrt', 'arctanh', 'arcsin', 'arccos', 'arccosh', 'arctanh', 'log', 'log10', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod'] for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor']: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(np.ma, f) args = self.d[:uf.nin] with np.errstate(): if f in f_invalid_ignore: np.seterr(invalid='ignore') if f in ['arctanh', 'log', 'log10']: np.seterr(divide='ignore') ur = uf(*args) mr = mf(*args) assert_(eq(ur.filled(0), mr.filled(0), f)) assert_(eqmask(ur.mask, mr.mask))
Example 27
Project: recruit Author: Frank-qlu File: test_core.py License: Apache License 2.0 | 5 votes |
def test_basic_ufuncs(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.cos(x), cos(xm)) assert_equal(np.cosh(x), cosh(xm)) assert_equal(np.sin(x), sin(xm)) assert_equal(np.sinh(x), sinh(xm)) assert_equal(np.tan(x), tan(xm)) assert_equal(np.tanh(x), tanh(xm)) assert_equal(np.sqrt(abs(x)), sqrt(xm)) assert_equal(np.log(abs(x)), log(xm)) assert_equal(np.log10(abs(x)), log10(xm)) assert_equal(np.exp(x), exp(xm)) assert_equal(np.arcsin(z), arcsin(zm)) assert_equal(np.arccos(z), arccos(zm)) assert_equal(np.arctan(z), arctan(zm)) assert_equal(np.arctan2(x, y), arctan2(xm, ym)) assert_equal(np.absolute(x), absolute(xm)) assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym)) assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True)) assert_equal(np.equal(x, y), equal(xm, ym)) assert_equal(np.not_equal(x, y), not_equal(xm, ym)) assert_equal(np.less(x, y), less(xm, ym)) assert_equal(np.greater(x, y), greater(xm, ym)) assert_equal(np.less_equal(x, y), less_equal(xm, ym)) assert_equal(np.greater_equal(x, y), greater_equal(xm, ym)) assert_equal(np.conjugate(x), conjugate(xm))
Example 28
Project: recruit Author: Frank-qlu File: test_core.py License: Apache License 2.0 | 5 votes |
def test_testUfuncRegression(self): # Tests new ufuncs on MaskedArrays. for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor', ]: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(numpy.ma.core, f) args = self.d[:uf.nin] ur = uf(*args) mr = mf(*args) assert_equal(ur.filled(0), mr.filled(0), f) assert_mask_equal(ur.mask, mr.mask, err_msg=f)
Example 29
Project: lambda-packs Author: ryfeus File: _continuous_distns.py License: MIT License | 5 votes |
def _ppf(self, q, a, b): return np.sinh((_norm_ppf(q) - a) / b)
Example 30
Project: lambda-packs Author: ryfeus File: _discrete_distns.py License: MIT License | 5 votes |
def _entropy(self, a): return a / sinh(a) - log(tanh(a/2.0))