Python numpy.meshgrid() Examples
The following are 30
code examples of numpy.meshgrid().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.

Example #1
Source File: snippets.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def generate_anchors_pre(height, width, feat_stride, anchor_scales=(8,16,32), anchor_ratios=(0.5,1,2)): """ A wrapper function to generate anchors given different scales Also return the number of anchors in variable 'length' """ anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) A = anchors.shape[0] shift_x = np.arange(0, width) * feat_stride shift_y = np.arange(0, height) * feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() K = shifts.shape[0] # width changes faster, so here it is H, W, C anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)) anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False) length = np.int32(anchors.shape[0]) return anchors, length
Example #2
Source File: images.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def image_reslice(image, spec, method=None, fill=0, dtype=None, weights=None, image_type=None): ''' image_reslice(image, spec) yields a duplicate of the given image resliced to have the voxels indicated by the given image spec. Note that spec may be an image itself. Optional arguments that can be passed to image_interpolate() (asside from affine) are allowed here and are passed through. ''' if image_type is None and is_image(image): image_type = to_image_type(image) spec = to_image_spec(spec) image = to_image(image) # we make a big mesh and interpolate at these points... imsh = spec['image_shape'] (args, kw) = ([np.arange(n) for n in imsh[:3]], {'indexing': 'ij'}) ijk = np.asarray([u.flatten() for u in np.meshgrid(*args, **kw)]) ijk = np.dot(spec['affine'], np.vstack([ijk, np.ones([1,ijk.shape[1]])]))[:3] # interpolate here... u = image_interpolate(image, ijk, method=method, fill=fill, dtype=dtype, weights=weights) return to_image((np.reshape(u, imsh), spec), image_type=image_type)
Example #3
Source File: depth_utils.py From DOTA_models with Apache License 2.0 | 6 votes |
def get_point_cloud_from_z(Y, camera_matrix): """Projects the depth image Y into a 3D point cloud. Inputs: Y is ...xHxW camera_matrix Outputs: X is positive going right Y is positive into the image Z is positive up in the image XYZ is ...xHxWx3 """ x, z = np.meshgrid(np.arange(Y.shape[-1]), np.arange(Y.shape[-2]-1, -1, -1)) for i in range(Y.ndim-2): x = np.expand_dims(x, axis=0) z = np.expand_dims(z, axis=0) X = (x-camera_matrix.xc) * Y / camera_matrix.f Z = (z-camera_matrix.zc) * Y / camera_matrix.f XYZ = np.concatenate((X[...,np.newaxis], Y[...,np.newaxis], Z[...,np.newaxis]), axis=X.ndim) return XYZ
Example #4
Source File: test_topfarm.py From TOPFARM with GNU Affero General Public License v3.0 | 6 votes |
def test_2x3(self): # Loading the water depth map dat = loadtxt('data/WaterDepth1.dat') X, Y = meshgrid(linspace(0., 1000., 50), linspace(0., 1000., 50)) depth = array(zip(X.flatten(), Y.flatten(), dat.flatten())) borders = array([[200, 200], [150, 500], [200, 800], [600, 900], [700, 700], [900, 500], [800, 200], [500, 100], [200, 200]]) baseline = array([[587.5, 223.07692308], [525., 346.15384615], [837.5, 530.76923077], [525., 530.76923077], [525., 838.46153846], [837.5, 469.23076923]]) wt_desc = WTDescFromWTG('data/V80-2MW-offshore.wtg').wt_desc wt_layout = GenericWindFarmTurbineLayout([WTPC(wt_desc=wt_desc, position=pos) for pos in baseline]) t = Topfarm( baseline_layout = wt_layout, borders = borders, depth_map = depth, dist_WT_D = 5.0, distribution='spiral', wind_speeds=[4., 8., 20.], wind_directions=linspace(0., 360., 36)[:-1] ) t.run() self.fail('make save function') t.save()
Example #5
Source File: region_proposal_network.py From easy-faster-rcnn.pytorch with MIT License | 6 votes |
def generate_anchors(self, image_width: int, image_height: int, num_x_anchors: int, num_y_anchors: int) -> Tensor: center_ys = np.linspace(start=0, stop=image_height, num=num_y_anchors + 2)[1:-1] center_xs = np.linspace(start=0, stop=image_width, num=num_x_anchors + 2)[1:-1] ratios = np.array(self._anchor_ratios) ratios = ratios[:, 0] / ratios[:, 1] sizes = np.array(self._anchor_sizes) # NOTE: it's important to let `center_ys` be the major index (i.e., move horizontally and then vertically) for consistency with 2D convolution # giving the string 'ij' returns a meshgrid with matrix indexing, i.e., with shape (#center_ys, #center_xs, #ratios) center_ys, center_xs, ratios, sizes = np.meshgrid(center_ys, center_xs, ratios, sizes, indexing='ij') center_ys = center_ys.reshape(-1) center_xs = center_xs.reshape(-1) ratios = ratios.reshape(-1) sizes = sizes.reshape(-1) widths = sizes * np.sqrt(1 / ratios) heights = sizes * np.sqrt(ratios) center_based_anchor_bboxes = np.stack((center_xs, center_ys, widths, heights), axis=1) center_based_anchor_bboxes = torch.from_numpy(center_based_anchor_bboxes).float() anchor_bboxes = BBox.from_center_base(center_based_anchor_bboxes) return anchor_bboxes
Example #6
Source File: test_PlanetPopulation.py From EXOSIMS with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_dist_sma_radius(self): """ Test that sma and radius values outside of the range have zero probability """ for mod in self.allmods: if 'dist_sma_radius' in mod.__dict__: with RedirectStreams(stdout=self.dev_null): pp = mod(**self.spec) a = np.logspace(np.log10(pp.arange[0].value/10.),np.log10(pp.arange[1].value*100),100) Rp = np.logspace(np.log10(pp.Rprange[0].value/10.),np.log10(pp.Rprange[1].value*100),100) aa, RR = np.meshgrid(a,Rp) fr = pp.dist_sma_radius(aa,RR) self.assertTrue(np.all(fr[aa < pp.arange[0].value] == 0),'dist_sma_radius low bound failed on sma for %s'%mod.__name__) self.assertTrue(np.all(fr[aa > pp.arange[1].value] == 0),'dist_sma_radius high bound failed on sma for %s'%mod.__name__) self.assertTrue(np.all(fr[RR < pp.Rprange[0].value] == 0),'dist_sma_radius low bound failed on radius for %s'%mod.__name__) self.assertTrue(np.all(fr[RR > pp.Rprange[1].value] == 0),'dist_sma_radius high bound failed on radius for %s'%mod.__name__) self.assertTrue(np.all(fr[(aa > pp.arange[0].value) & (aa < pp.arange[1].value) & (RR > pp.Rprange[0].value) & (RR < pp.Rprange[1].value)] > 0),'dist_sma_radius is improper pdf for %s'%mod.__name__)
Example #7
Source File: Stark.py From EXOSIMS with BSD 3-Clause "New" or "Revised" License | 6 votes |
def calcfbetaInput(self): # table 17 in Leinert et al. (1998) # Zodiacal Light brightness function of solar LON (rows) and LAT (columns) # values given in W m−2 sr−1 μm−1 for a wavelength of 500 nm path = os.path.split(inspect.getfile(self.__class__))[0] Izod = np.loadtxt(os.path.join(path, 'Leinert98_table17.txt'))*1e-8 # W/m2/sr/um # create data point coordinates lon_pts = np.array([0., 5, 10, 15, 20, 25, 30, 35, 40, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180]) # deg lat_pts = np.array([0., 5, 10, 15, 20, 25, 30, 45, 60, 75, 90]) # deg y_pts, x_pts = np.meshgrid(lat_pts, lon_pts) points = np.array(list(zip(np.concatenate(x_pts), np.concatenate(y_pts)))) # create data values, normalized by (90,0) value z = Izod/Izod[12,0] values = z.reshape(z.size) return points, values
Example #8
Source File: spectral_graph_partition.py From LanczosNetwork with MIT License | 6 votes |
def get_L_cluster_cut(L, node_label): adj = L - np.diag(np.diag(L)) adj[adj != 0] = 1.0 num_nodes = adj.shape[0] idx_row, idx_col = np.meshgrid(range(num_nodes), range(num_nodes)) idx_row, idx_col = idx_row.flatten().astype( np.int64), idx_col.flatten().astype(np.int64) mask = (node_label[idx_row] == node_label[idx_col]).reshape( num_nodes, num_nodes).astype(np.float) adj_cluster = adj * mask adj_cut = adj - adj_cluster L_cut = get_laplacian(adj_cut, graph_laplacian_type='L4') L_cluster = get_laplacian(adj_cluster, graph_laplacian_type='L4') return L_cluster, L_cut
Example #9
Source File: test_common.py From pyscf with Apache License 2.0 | 6 votes |
def ov_order(model, slc=None): nocc = k_nocc(model) if slc is None: slc = numpy.ones((len(model.mo_coeff), model.mo_coeff[0].shape[1]), dtype=bool) e_occ = tuple(e[:o][s[:o]] for e, o, s in zip(model.mo_energy, nocc, slc)) e_virt = tuple(e[o:][s[o:]] for e, o, s in zip(model.mo_energy, nocc, slc)) sort_o = [] sort_v = [] for o in e_occ: for v in e_virt: _v, _o = numpy.meshgrid(v, o) sort_o.append(_o.reshape(-1)) sort_v.append(_v.reshape(-1)) sort_o, sort_v = numpy.concatenate(sort_o), numpy.concatenate(sort_v) vals = numpy.array( list(zip(sort_o, sort_v)), dtype=[('o', sort_o[0].dtype), ('v', sort_v[0].dtype)] ) result = numpy.argsort(vals, order=('o', 'v')) # Double for other blocks return numpy.concatenate([result, result + len(result)])
Example #10
Source File: test_common.py From pyscf with Apache License 2.0 | 6 votes |
def ov_order(model, slc=None): nocc = k_nocc(model) if slc is None: slc = numpy.ones((len(model.mo_coeff), model.mo_coeff[0].shape[1]), dtype=bool) e_occ = tuple(e[:o][s[:o]] for e, o, s in zip(model.mo_energy, nocc, slc)) e_virt = tuple(e[o:][s[o:]] for e, o, s in zip(model.mo_energy, nocc, slc)) sort_o = [] sort_v = [] for o in e_occ: for v in e_virt: _v, _o = numpy.meshgrid(v, o) sort_o.append(_o.reshape(-1)) sort_v.append(_v.reshape(-1)) sort_o, sort_v = numpy.concatenate(sort_o), numpy.concatenate(sort_v) vals = numpy.array( list(zip(sort_o, sort_v)), dtype=[('o', sort_o[0].dtype), ('v', sort_v[0].dtype)] ) result = numpy.argsort(vals, order=('o', 'v')) # Double for other blocks return numpy.concatenate([result, result + len(result)])
Example #11
Source File: test_common.py From pyscf with Apache License 2.0 | 6 votes |
def ov_order(model, slc=None): nocc = k_nocc(model) if slc is None: slc = numpy.ones((len(model.mo_coeff), model.mo_coeff[0].shape[1]), dtype=bool) e_occ = tuple(e[:o][s[:o]] for e, o, s in zip(model.mo_energy, nocc, slc)) e_virt = tuple(e[o:][s[o:]] for e, o, s in zip(model.mo_energy, nocc, slc)) sort_o = [] sort_v = [] for o in e_occ: for v in e_virt: _v, _o = numpy.meshgrid(v, o) sort_o.append(_o.reshape(-1)) sort_v.append(_v.reshape(-1)) sort_o, sort_v = numpy.concatenate(sort_o), numpy.concatenate(sort_v) vals = numpy.array( list(zip(sort_o, sort_v)), dtype=[('o', sort_o[0].dtype), ('v', sort_v[0].dtype)] ) result = numpy.argsort(vals, order=('o', 'v')) # Double for other blocks return numpy.concatenate([result, result + len(result)])
Example #12
Source File: test_common.py From pyscf with Apache License 2.0 | 6 votes |
def ov_order(model, slc=None): nocc = k_nocc(model) if slc is None: slc = numpy.ones((len(model.mo_coeff), model.mo_coeff[0].shape[1]), dtype=bool) e_occ = tuple(e[:o][s[:o]] for e, o, s in zip(model.mo_energy, nocc, slc)) e_virt = tuple(e[o:][s[o:]] for e, o, s in zip(model.mo_energy, nocc, slc)) sort_o = [] sort_v = [] for o in e_occ: for v in e_virt: _v, _o = numpy.meshgrid(v, o) sort_o.append(_o.reshape(-1)) sort_v.append(_v.reshape(-1)) sort_o, sort_v = numpy.concatenate(sort_o), numpy.concatenate(sort_v) vals = numpy.array( list(zip(sort_o, sort_v)), dtype=[('o', sort_o[0].dtype), ('v', sort_v[0].dtype)] ) result = numpy.argsort(vals, order=('o', 'v')) # Double for other blocks return numpy.concatenate([result, result + len(result)])
Example #13
Source File: test_electrode_placement.py From simnibs with GNU General Public License v3.0 | 6 votes |
def test_draw_polygon_2D(self): X, Y = np.meshgrid(np.linspace(-8, 8, 25, dtype=float), np.linspace(-8, 8, 25, dtype=float)) nodes = np.vstack([X.reshape(-1), Y.reshape(-1)]).T tri = scipy.spatial.Delaunay(nodes) poly = np.array([[5.5, 5.5], [5.5, -5.5], [-5.5, -5.5], [-5.5, 5.5]]) #angles = np.linspace(0, 2*np.pi, endpoint=False, num=20) #poly = np.vstack([5*np.sin(angles), 5*np.cos(angles)]).T trs = tri.simplices[:, [1,0,2]] new_points, _ = electrode_placement._draw_polygon_2D( poly, tri.points, trs, ends=True) bar = np.mean(new_points[trs], axis=1) m = new_points[trs[:, 1:]] -\ new_points[trs[:, 0]][:, None, :] area = .5 * -np.linalg.det(m) inside = electrode_placement._point_inside_polygon(poly, bar, tol=1e-3) #plt.triplot(new_points[:, 0], new_points[:, 1], tri.simplices.copy()) #plt.show() assert np.isclose(np.sum(area[inside]), 11**2)
Example #14
Source File: test_electrode_placement.py From simnibs with GNU General Public License v3.0 | 6 votes |
def test_inside_complex_polygon(self): X, Y = np.meshgrid(np.linspace(-8, 8, 17, dtype=float), np.linspace(-8, 8, 17, dtype=float)) nodes = np.vstack([X.reshape(-1), Y.reshape(-1)]).T tri = scipy.spatial.Delaunay(nodes) poly = np.array([[5, 5], [5, -5], [-5, -5], [-5, 5]]) hole1 = np.array([[2, 2], [2, -2], [-2, -2], [-2, 2]]) hole2 = np.array([[4, 4], [4, 3], [3, 3], [3, 4]]) trs = tri.simplices[:, [1,0,2]] inside = electrode_placement._inside_complex_polygon(poly, tri.points, trs, holes=[hole1, hole2], tol=1e-3) m = tri.points[trs[inside, 1:]] -\ tri.points[trs[inside, 0]][:, None, :] area = .5 * -np.linalg.det(m) assert np.isclose(np.sum(area), 100-16-1)
Example #15
Source File: test_mesh_io.py From simnibs with GNU General Public License v3.0 | 6 votes |
def test_find_tetrahedron_with_points_non_convex(self, sphere3_msh): X, Y, Z = np.meshgrid(np.linspace(-100, 100, 100), np.linspace(-40, 40, 100), [0]) points = np.vstack([X.reshape(-1), Y.reshape(-1), Z.reshape(-1)]).T dist = np.linalg.norm(points, axis=1) msh = sphere3_msh.crop_mesh(5) points_outside = points[(dist > 95) + (dist < 89)] th_with_points, bar = msh.find_tetrahedron_with_points(points_outside) assert np.all(th_with_points == -1) assert np.allclose(bar, 0) points_inside = points[(dist <= 94) * (dist >= 91)] th_with_points, bar = msh.find_tetrahedron_with_points(points_inside) eps = 1e-3 assert np.all(th_with_points != -1) assert np.all(bar >= 0 - eps) assert np.all(bar <= 1. + eps) th_coords = \ msh.nodes[msh.elm[th_with_points]] assert np.allclose(np.einsum('ikj, ik -> ij', th_coords, bar), points_inside)
Example #16
Source File: test_mesh_io.py From simnibs with GNU General Public License v3.0 | 6 votes |
def test_inside_volume(self, sphere3_msh): X, Y, Z = np.meshgrid(np.linspace(-100, 100, 100), np.linspace(-40, 40, 10), [0]) np.random.seed(0) points = np.vstack([X.reshape(-1), Y.reshape(-1), Z.reshape(-1)]).T points += np.random.random_sample(points.shape) - .5 dist = np.linalg.norm(points, axis=1) msh = sphere3_msh.crop_mesh([4, 5]) points_outside = points[(dist > 95) + (dist < 84)] inside = msh.test_inside_volume(points_outside) assert np.all(~inside) points_inside = points[(dist <= 94) * (dist >= 86)] inside = msh.test_inside_volume(points_inside) assert np.all(inside)
Example #17
Source File: test_mesh_io.py From simnibs with GNU General Public License v3.0 | 6 votes |
def test_to_nonlinear_grid(self, sphere3_msh): import nibabel data = sphere3_msh.elm.tag1 f = mesh_io.ElementData(data, mesh=sphere3_msh) affine = np.array([[1, 0, 0, -100.5], [0, 1, 0, -5], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=float) x, y, z = np.meshgrid(np.arange(-100, 100), np.arange(-5, 5), np.arange(0, 1), indexing='ij') nonl_transform = np.concatenate( (x[..., None], y[..., None], z[..., None]), axis=3).astype(float) img = nibabel.Nifti1Pair(nonl_transform, affine) tempf = tempfile.NamedTemporaryFile(suffix='.nii', delete=False) fn = tempf.name tempf.close() nibabel.save(img, fn) interp = f.to_deformed_grid(fn, fn, method='assign') interp = interp.get_data() assert np.isclose(interp[100, 5, 0], 3) assert np.isclose(interp[187, 5, 0], 4) assert np.isclose(interp[193, 5, 0], 5) assert np.isclose(interp[198, 5, 0], 0)
Example #18
Source File: test_mesh_io.py From simnibs with GNU General Public License v3.0 | 6 votes |
def test_to_nonlinear_grid_crop(self, sphere3_msh): import nibabel data = sphere3_msh.elm.tag1 f = mesh_io.ElementData(data, mesh=sphere3_msh) affine = np.array([[1, 0, 0, -100.5], [0, 1, 0, -5], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=float) x, y, z = np.meshgrid(np.arange(-100, 100), np.arange(-5, 5), np.arange(0, 1), indexing='ij') nonl_transform = np.concatenate( (x[..., None], y[..., None], z[..., None]), axis=3).astype(float) img = nibabel.Nifti1Pair(nonl_transform, affine) tempf = tempfile.NamedTemporaryFile(suffix='.nii', delete=False) fn = tempf.name tempf.close() nibabel.save(img, fn) interp = f.to_deformed_grid(fn, fn, tags=3, method='assign') interp = interp.get_data() assert np.isclose(interp[100, 5, 0], 3) assert np.isclose(interp[187, 5, 0], 0) assert np.isclose(interp[193, 5, 0], 0) assert np.isclose(interp[198, 5, 0], 0)
Example #19
Source File: test_mesh_io.py From simnibs with GNU General Public License v3.0 | 6 votes |
def test_from_data_grid_vec_extra_args(self, sphere3_msh): X, Y, Z = np.meshgrid(np.linspace(-100, 100, 201), np.linspace(-100, 100, 201), np.linspace(-1, 1, 3), indexing='ij') V = np.stack([X, Y, Z], axis=3) affine = np.array([[1, 0, 0, -100], [0, 1, 0, -100], [0, 0, 1, -1], [0, 0, 0, 1]], dtype=float) ed = mesh_io.ElementData.from_data_grid(sphere3_msh, V, affine, cval=0.0, order=1) bar = sphere3_msh.elements_baricenters().value in_area = (bar[:, 2] >= -1) * (bar[:, 2] <= 1) assert np.allclose(bar[in_area], ed.value[in_area]) assert np.allclose(ed.value[~in_area], 0)
Example #20
Source File: test_sq.py From pyqmc with MIT License | 6 votes |
def test_big_cell(): import time a = 1 ncell = (2, 2, 2) Lvecs = np.diag(ncell) * a unit_cell = np.zeros((4, 3)) unit_cell[1:] = (np.ones((3, 3)) - np.eye(3)) * a / 2 grid = np.meshgrid(*map(np.arange, ncell), indexing="ij") shifts = np.stack(list(map(np.ravel, grid)), axis=1) supercell = (shifts[:, np.newaxis] + unit_cell[np.newaxis]).reshape(1, -1, 3) configs = supercell.repeat(1000, axis=0) configs += np.random.randn(*configs.shape) * 0.1 df = run(Lvecs, configs, 8) df = df.groupby("qmag").mean().reset_index() large_q = df[-35:-10]["Sq"] mean = np.mean(large_q - 1) rms = np.sqrt(np.mean((large_q - 1) ** 2)) assert np.abs(mean) < 0.01, mean assert rms < 0.1, rms
Example #21
Source File: viz.py From libTLDA with MIT License | 5 votes |
def plotc(parameters, ax=[], color='k', gridsize=(101, 101)): """ Plot a linear classifier in a 2D scatterplot. INPUT (1) tuple 'parameters': consists of a list of class proportions (1 by K classes), an array of class means (K classes by D features), an array of class-covariance matrices (D features by D features by K classes) (2) object 'ax': axes of a pyplot figure or subject (def: empty) (3) str 'colors': colors of the contours in the plot (def: 'k') (4) tuple 'gridsize': number of points in the grid (def: (101, 101)) OUTPUT None """ # Check for figure object if fig: ax = fig.gca() else: fig, ax = plt.subplots() # Get axes limits xl = ax.get_xlim() yl = ax.get_ylim() # Define grid gx = np.linspace(xl[0], xl[1], gridsize[0]) gy = np.linspace(yl[0], yl[1], gridsize[1]) x, y = np.meshgrid(gx, gy) xy = np.vstack((x.ravel(), y.ravel())).T # Values of grid z = np.dot(xy, parameters[:-1, :]) + parameters[-1, :] z = np.reshape(z[:, 0] - z[:, 1], gridsize) # Plot grid ax.contour(x, y, z, levels=0, colors=colors)
Example #22
Source File: plot_bh.py From dustmaps with GNU General Public License v2.0 | 5 votes |
def main(): w,h = (2056,1024) l_0 = 0. # Create a grid of coordinates print('Creating grid of coordinates...') l = np.linspace(-180.+l_0, 180.+l_0, 2*w) b = np.linspace(-90., 90., 2*h+2) b = b[1:-1] l,b = np.meshgrid(l, b) l += (np.random.random(l.shape) - 0.5) * 360./(2.*w) b += (np.random.random(l.shape) - 0.5) * 180./(2.*h) coords = SkyCoord(l*u.deg, b*u.deg, frame='galactic') # Set up BH query object print('Loading BH map...') bh = BHQuery() print('Querying map...') ebv = bh.query(coords) # Convert the output array to a PIL image and save print('Saving image...') img = numpy2pil(ebv[::-1,::-1], 0., 1.5) img = img.resize((w,h), resample=PIL.Image.LANCZOS) fname = 'bh.png' img.save(fname) return 0
Example #23
Source File: plot_marshall.py From dustmaps with GNU General Public License v2.0 | 5 votes |
def main(): w,h = (2*2056, 2*int(2056*(20./200.))) l_0 = 0. # Set up MarshallQuery object print('Loading Marshall map...') query = MarshallQuery() # Create a grid of coordinates print('Creating grid of coordinates...') l = np.linspace(-100.+l_0, 100.+l_0, 2*w) b = np.linspace(-10., 10., 2*h) dl = l[1] - l[0] db = b[1] - b[0] l,b = np.meshgrid(l, b) l += (np.random.random(l.shape) - 0.5) * dl b += (np.random.random(l.shape) - 0.5) * db A = np.empty(l.shape+(3,), dtype='f8') for k,d in enumerate([1., 2.5, 5.]): coords = SkyCoord(l*u.deg, b*u.deg, d*u.kpc, frame='galactic') # Get the mean dust extinction at each coordinate print('Querying map...') A[:,:,k] = query(coords, return_sigma=False) A[:,:,2] -= A[:,:,1] A[:,:,1] -= A[:,:,0] # Convert the output array to a PIL image and save print('Saving image...') img = numpy2pil(A[::-1,::-1,:], 0., 1., fill=255) img = img.resize((w,h), resample=PIL.Image.LANCZOS) fname = 'marshall.png' img.save(fname) return 0
Example #24
Source File: plot_bayestar.py From dustmaps with GNU General Public License v2.0 | 5 votes |
def main(): w,h = (2056,1024) l_0 = 130. # Set up Bayestar query object print('Loading bayestar map...') bayestar = BayestarQuery(max_samples=1) # Create a grid of coordinates print('Creating grid of coordinates...') l = np.linspace(-180.+l_0, 180.+l_0, 2*w) b = np.linspace(-90., 90., 2*h+2) b = b[1:-1] l,b = np.meshgrid(l, b) l += (np.random.random(l.shape) - 0.5) * 360./(2.*w) b += (np.random.random(l.shape) - 0.5) * 180./(2.*h) ebv = np.empty(l.shape+(3,), dtype='f8') for k,d in enumerate([0.5, 1.5, 5.]): # d = 5. # We'll query integrated reddening to a distance of 5 kpc coords = SkyCoord(l*u.deg, b*u.deg, d*u.kpc, frame='galactic') # Get the dust median reddening at each coordinate print('Querying map...') ebv[:,:,k] = bayestar.query(coords, mode='median') ebv[:,:,2] -= ebv[:,:,1] ebv[:,:,1] -= ebv[:,:,0] # Convert the output array to a PIL image and save print('Saving image...') img = numpy2pil(ebv[::-1,::-1,:], 0., 1.5) img = img.resize((w,h), resample=PIL.Image.LANCZOS) fname = 'bayestar.png' img.save(fname) return 0
Example #25
Source File: plot_lenz2017.py From dustmaps with GNU General Public License v2.0 | 5 votes |
def main(): w,h = (2056,1024) l_0 = 0. # Create a grid of coordinates print('Creating grid of coordinates...') l = np.linspace(-180.+l_0, 180.+l_0, 2*w) b = np.linspace(-90., 90., 2*h+2) b = b[1:-1] l,b = np.meshgrid(l, b) l += (np.random.random(l.shape) - 0.5) * 360./(2.*w) b += (np.random.random(l.shape) - 0.5) * 180./(2.*h) coords = SkyCoord(l*u.deg, b*u.deg, frame='galactic') # Set up Lenz+(2017) query object print('Loading Lenz+(2017) map...') q = Lenz2017Query() print('Querying map...') ebv = q.query(coords) # Convert the output array to a PIL image and save print('Saving image...') img = numpy2pil(ebv[::-1,::-1], 0., 0.05) img = img.resize((w,h), resample=PIL.Image.LANCZOS) fname = 'lenz2017.png' img.save(fname) return 0
Example #26
Source File: plot_planck.py From dustmaps with GNU General Public License v2.0 | 5 votes |
def main(): w,h = (2056,1024) l_0 = 0. # Create a grid of coordinates print('Creating grid of coordinates...') l = np.linspace(-180.+l_0, 180.+l_0, 2*w) b = np.linspace(-90., 90., 2*h+2) b = b[1:-1] l,b = np.meshgrid(l, b) l += (np.random.random(l.shape) - 0.5) * 360./(2.*w) b += (np.random.random(l.shape) - 0.5) * 180./(2.*h) coords = SkyCoord(l*u.deg, b*u.deg, frame='galactic') planck_components = [ ('ebv', 0., 1.5), ('radiance', 0., 1.5), ('tau', 0., 1.5), ('temp', 15.*u.K, 25.*u.K), ('err_temp', 0.*u.K, 4.*u.K), ('beta', 1., 3.), ('err_beta', 0., 0.2)] for component,vmin,vmax in planck_components: # Set up Planck query object print('Loading Planck map...') planck = PlanckQuery(component=component) print('Querying map...') res = planck.query(coords) # Convert the output array to a PIL image and save print('Saving image...') img = numpy2pil(res[::-1,::-1], vmin, vmax) img = img.resize((w,h), resample=PIL.Image.LANCZOS) fname = 'planck_{}.png'.format(component) img.save(fname) return 0
Example #27
Source File: plot_sfd.py From dustmaps with GNU General Public License v2.0 | 5 votes |
def main(): w,h = (2056,1024) l_0 = 0. # Create a grid of coordinates print('Creating grid of coordinates...') l = np.linspace(-180.+l_0, 180.+l_0, 2*w) b = np.linspace(-90., 90., 2*h+2) b = b[1:-1] l,b = np.meshgrid(l, b) l += (np.random.random(l.shape) - 0.5) * 360./(2.*w) b += (np.random.random(l.shape) - 0.5) * 180./(2.*h) coords = SkyCoord(l*u.deg, b*u.deg, frame='galactic') # Set up SFD query object print('Loading SFD map...') sfd = SFDQuery() print('Querying map...') ebv = sfd.query(coords) # Convert the output array to a PIL image and save print('Saving image...') img = numpy2pil(ebv[::-1,::-1], 0., 1.5) img = img.resize((w,h), resample=PIL.Image.LANCZOS) fname = 'sfd.png' img.save(fname) return 0
Example #28
Source File: plot_iphas.py From dustmaps with GNU General Public License v2.0 | 5 votes |
def main(): w,h = (2*2056, 2*int(2056*(30./200.))) l_0 = 122.5 # Set up IPHASquery object print('Loading IPHAS map...') iphas = IPHASQuery() # Create a grid of coordinates print('Creating grid of coordinates...') l = np.linspace(-100.+l_0, 100.+l_0, 2*w) b = np.linspace(-15., 15., 2*h) dl = l[1] - l[0] db = b[1] - b[0] l,b = np.meshgrid(l, b) l += (np.random.random(l.shape) - 0.5) * dl b += (np.random.random(l.shape) - 0.5) * db A = np.empty(l.shape+(3,), dtype='f8') for k,d in enumerate([0.5, 1.5, 5.]): # d = 5. # We'll query integrated reddening to a distance of 5 kpc coords = SkyCoord(l*u.deg, b*u.deg, d*u.kpc, frame='galactic') # Get the dust median reddening at each coordinate print('Querying map...') A[:,:,k] = iphas.query(coords, mode='random_sample') A[:,:,2] -= A[:,:,1] A[:,:,1] -= A[:,:,0] # Convert the output array to a PIL image and save print('Saving image...') img = numpy2pil(A[::-1,::-1,:], 0., 4.5, fill=255) img = img.resize((w,h), resample=PIL.Image.LANCZOS) fname = 'iphas.png' img.save(fname) return 0
Example #29
Source File: utils.py From deep-learning-note with MIT License | 5 votes |
def show_trace_2d(f, results): plt.plot(*zip(*results), '-o', color='#ff7f0e') x1, x2 = np.meshgrid(np.arange(-5.5, 1.0, 0.1), np.arange(-3.0, 1.0, 0.1)) plt.contour(x1, x2, f(x1, x2), colors='#1f77b4') plt.xlabel('x1') plt.ylabel('x2') plt.show()
Example #30
Source File: 38_gradient_descent.py From deep-learning-note with MIT License | 5 votes |
def show_trace_2d(f, results): plt.plot(*zip(*results), '-o', color='#ff7f0e') x1, x2 = np.meshgrid(np.arange(-5.5, 1.0, 0.1), np.arange(-3.0, 1.0, 0.1)) plt.contour(x1, x2, f(x1, x2), colors='#1f77b4') plt.xlabel('x1') plt.ylabel('x2') plt.show()