Python numpy.square() Examples
The following are 30 code examples for showing how to use numpy.square(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: neural-combinatorial-optimization-rl-tensorflow Author: MichelDeudon File: dataset.py License: MIT License | 6 votes |
def reward(tsptw_sequence,speed): # Convert sequence to tour (end=start) tour = np.concatenate((tsptw_sequence,np.expand_dims(tsptw_sequence[0],0))) # Compute tour length inter_city_distances = np.sqrt(np.sum(np.square(tour[:-1,:2]-tour[1:,:2]),axis=1)) distance = np.sum(inter_city_distances) # Compute develiry times at each city and count late cities elapsed_time = -10 late_cities = 0 for i in range(tsptw_sequence.shape[0]-1): travel_time = inter_city_distances[i]/speed tw_open = tour[i+1,2] tw_close = tour[i+1,3] elapsed_time += travel_time if elapsed_time <= tw_open: elapsed_time = tw_open elif elapsed_time > tw_close: late_cities += 1 # Reward return distance + 100000000*late_cities # Swap city[i] with city[j] in sequence
Example 2
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: utils.py License: Apache License 2.0 | 6 votes |
def pred_test(testing_data, exe, param_list=None, save_path=""): ret = numpy.zeros((testing_data.shape[0], 2)) if param_list is None: for i in range(testing_data.shape[0]): exe.arg_dict['data'][:] = testing_data[i, 0] exe.forward(is_train=False) ret[i, 0] = exe.outputs[0].asnumpy() ret[i, 1] = numpy.exp(exe.outputs[1].asnumpy()) numpy.savetxt(save_path, ret) else: for i in range(testing_data.shape[0]): pred = numpy.zeros((len(param_list),)) for j in range(len(param_list)): exe.copy_params_from(param_list[j]) exe.arg_dict['data'][:] = testing_data[i, 0] exe.forward(is_train=False) pred[j] = exe.outputs[0].asnumpy() ret[i, 0] = pred.mean() ret[i, 1] = pred.std()**2 numpy.savetxt(save_path, ret) mse = numpy.square(ret[:, 0] - testing_data[:, 0] **3).mean() return mse, ret
Example 3
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: stt_datagenerator.py License: Apache License 2.0 | 6 votes |
def preprocess_sample_normalize(self, threadIndex, audio_paths, overwrite, return_dict): if len(audio_paths) > 0: audio_clip = audio_paths[0] feat = self.featurize(audio_clip=audio_clip, overwrite=overwrite) feat_squared = np.square(feat) count = float(feat.shape[0]) dim = feat.shape[1] if len(audio_paths) > 1: for audio_path in audio_paths[1:]: next_feat = self.featurize(audio_clip=audio_path, overwrite=overwrite) next_feat_squared = np.square(next_feat) feat_vertically_stacked = np.concatenate((feat, next_feat)).reshape(-1, dim) feat = np.sum(feat_vertically_stacked, axis=0, keepdims=True) feat_squared_vertically_stacked = np.concatenate( (feat_squared, next_feat_squared)).reshape(-1, dim) feat_squared = np.sum(feat_squared_vertically_stacked, axis=0, keepdims=True) count += float(next_feat.shape[0]) return_dict[threadIndex] = {'feat': feat, 'feat_squared': feat_squared, 'count': count}
Example 4
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: profiler_ndarray.py License: Apache License 2.0 | 6 votes |
def test_ndarray_elementwise(): np.random.seed(0) nrepeat = 10 maxdim = 4 all_type = [np.float32, np.float64, np.float16, np.uint8, np.int32] real_type = [np.float32, np.float64, np.float16] for repeat in range(nrepeat): for dim in range(1, maxdim): check_with_uniform(lambda x, y: x + y, 2, dim, type_list=all_type) check_with_uniform(lambda x, y: x - y, 2, dim, type_list=all_type) check_with_uniform(lambda x, y: x * y, 2, dim, type_list=all_type) check_with_uniform(lambda x, y: x / y, 2, dim, type_list=real_type) check_with_uniform(lambda x, y: x / y, 2, dim, rmin=1, type_list=all_type) check_with_uniform(mx.nd.sqrt, 1, dim, np.sqrt, rmin=0) check_with_uniform(mx.nd.square, 1, dim, np.square, rmin=0) check_with_uniform(lambda x: mx.nd.norm(x).asscalar(), 1, dim, np.linalg.norm)
Example 5
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: profiler_ndarray.py License: Apache License 2.0 | 6 votes |
def test_broadcast(): sample_num = 1000 def test_broadcast_to(): for i in range(sample_num): ndim = np.random.randint(1, 6) target_shape = np.random.randint(1, 11, size=ndim) shape = target_shape.copy() axis_flags = np.random.randint(0, 2, size=ndim) axes = [] for (axis, flag) in enumerate(axis_flags): if flag: shape[axis] = 1 dat = np.random.rand(*shape) - 0.5 numpy_ret = dat ndarray_ret = mx.nd.array(dat).broadcast_to(shape=target_shape) if type(ndarray_ret) is mx.ndarray.NDArray: ndarray_ret = ndarray_ret.asnumpy() assert (ndarray_ret.shape == target_shape).all() err = np.square(ndarray_ret - numpy_ret).mean() assert err < 1E-8 test_broadcast_to()
Example 6
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: mxnet_export_test.py License: Apache License 2.0 | 6 votes |
def test_square(): input1 = np.random.randint(1, 10, (2, 3)).astype("float32") ipsym = mx.sym.Variable("input1") square = mx.sym.square(data=ipsym) model = mx.mod.Module(symbol=square, data_names=['input1'], label_names=None) model.bind(for_training=False, data_shapes=[('input1', np.shape(input1))], label_shapes=None) model.init_params() args, auxs = model.get_params() params = {} params.update(args) params.update(auxs) converted_model = onnx_mxnet.export_model(square, params, [np.shape(input1)], np.float32, "square.onnx") sym, arg_params, aux_params = onnx_mxnet.import_model(converted_model) result = forward_pass(sym, arg_params, aux_params, ['input1'], input1) numpy_op = np.square(input1) npt.assert_almost_equal(result, numpy_op)
Example 7
Project: graph-neural-networks Author: alelab-upenn File: graphTools.py License: GNU General Public License v3.0 | 6 votes |
def adjacencyToLaplacian(W): """ adjacencyToLaplacian: Computes the Laplacian from an Adjacency matrix Input: W (np.array): adjacency matrix Output: L (np.array): Laplacian matrix """ # Check that the matrix is square assert W.shape[0] == W.shape[1] # Compute the degree vector d = np.sum(W, axis = 1) # And build the degree matrix D = np.diag(d) # Return the Laplacian return D - W
Example 8
Project: graph-neural-networks Author: alelab-upenn File: graphTools.py License: GNU General Public License v3.0 | 6 votes |
def normalizeAdjacency(W): """ NormalizeAdjacency: Computes the degree-normalized adjacency matrix Input: W (np.array): adjacency matrix Output: A (np.array): degree-normalized adjacency matrix """ # Check that the matrix is square assert W.shape[0] == W.shape[1] # Compute the degree vector d = np.sum(W, axis = 1) # Invert the square root of the degree d = 1/np.sqrt(d) # And build the square root inverse degree matrix D = np.diag(d) # Return the Normalized Adjacency return D @ W @ D
Example 9
Project: graph-neural-networks Author: alelab-upenn File: graphTools.py License: GNU General Public License v3.0 | 6 votes |
def normalizeLaplacian(L): """ NormalizeLaplacian: Computes the degree-normalized Laplacian matrix Input: L (np.array): Laplacian matrix Output: normL (np.array): degree-normalized Laplacian matrix """ # Check that the matrix is square assert L.shape[0] == L.shape[1] # Compute the degree vector (diagonal elements of L) d = np.diag(L) # Invert the square root of the degree d = 1/np.sqrt(d) # And build the square root inverse degree matrix D = np.diag(d) # Return the Normalized Laplacian return D @ L @ D
Example 10
Project: robosuite Author: StanfordVL File: sawyer_lift.py License: MIT License | 6 votes |
def _gripper_visualization(self): """ Do any needed visualization here. Overrides superclass implementations. """ # color the gripper site appropriately based on distance to cube if self.gripper_visualization: # get distance to cube cube_site_id = self.sim.model.site_name2id("cube") dist = np.sum( np.square( self.sim.data.site_xpos[cube_site_id] - self.sim.data.get_site_xpos("grip_site") ) ) # set RGBA for the EEF site here max_dist = 0.1 scaled = (1.0 - min(dist / max_dist, 1.)) ** 15 rgba = np.zeros(4) rgba[0] = 1 - scaled rgba[1] = scaled rgba[3] = 0.5 self.sim.model.site_rgba[self.eef_site_id] = rgba
Example 11
Project: robosuite Author: StanfordVL File: panda_lift.py License: MIT License | 6 votes |
def _gripper_visualization(self): """ Do any needed visualization here. Overrides superclass implementations. """ # color the gripper site appropriately based on distance to cube if self.gripper_visualization: # get distance to cube cube_site_id = self.sim.model.site_name2id("cube") dist = np.sum( np.square( self.sim.data.site_xpos[cube_site_id] - self.sim.data.get_site_xpos("grip_site") ) ) # set RGBA for the EEF site here max_dist = 0.1 scaled = (1.0 - min(dist / max_dist, 1.)) ** 15 rgba = np.zeros(4) rgba[0] = 1 - scaled rgba[1] = scaled rgba[3] = 0.5 self.sim.model.site_rgba[self.eef_site_id] = rgba
Example 12
Project: sparse-subspace-clustering-python Author: abhinav4192 File: SpectralClustering.py License: MIT License | 6 votes |
def SpectralClustering(CKSym, n): # This is direct port of JHU vision lab code. Could probably use sklearn SpectralClustering. CKSym = CKSym.astype(float) N, _ = CKSym.shape MAXiter = 1000 # Maximum number of iterations for KMeans REPlic = 20 # Number of replications for KMeans DN = np.diag(np.divide(1, np.sqrt(np.sum(CKSym, axis=0) + np.finfo(float).eps))) LapN = identity(N).toarray().astype(float) - np.matmul(np.matmul(DN, CKSym), DN) _, _, vN = np.linalg.svd(LapN) vN = vN.T kerN = vN[:, N - n:N] normN = np.sqrt(np.sum(np.square(kerN), axis=1)) kerNS = np.divide(kerN, normN.reshape(len(normN), 1) + np.finfo(float).eps) km = KMeans(n_clusters=n, n_init=REPlic, max_iter=MAXiter, n_jobs=-1).fit(kerNS) return km.labels_
Example 13
Project: pointnet-registration-framework Author: vinits5 File: test_icp.py License: MIT License | 6 votes |
def find_errors(gt_pose, final_pose): # Simple euler distand between translation part. gt_position = gt_pose[0:3] predicted_position = final_pose[0:3] translation_error = np.sqrt(np.sum(np.square(gt_position - predicted_position))) # Convert euler angles rotation matrix. gt_euler = gt_pose[3:6] pt_euler = final_pose[3:6] gt_mat = t3d.euler2mat(gt_euler[2],gt_euler[1],gt_euler[0],'szyx') pt_mat = t3d.euler2mat(pt_euler[2],pt_euler[1],pt_euler[0],'szyx') # Multiply inverse of one rotation matrix with another rotation matrix. error_mat = np.dot(pt_mat,np.linalg.inv(gt_mat)) _,angle = transforms3d.axangles.mat2axangle(error_mat) # Convert matrix to axis angle representation and that angle is error. return translation_error, abs(angle*(180/np.pi)) # Store all the results. # if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
Example 14
Project: pointnet-registration-framework Author: vinits5 File: helper_analysis.py License: MIT License | 6 votes |
def find_errors(self, gt_pose, final_pose): import transforms3d gt_position = gt_pose[0,0:3] predicted_position = final_pose[0,0:3] translation_error = np.sqrt(np.sum(np.square(gt_position - predicted_position))) print("Translation Error: {}".format(translation_error)) gt_euler = gt_pose[0,3:6] pt_euler = final_pose[0,3:6] gt_mat = t3d.euler2mat(gt_euler[2],gt_euler[1],gt_euler[0],'szyx') pt_mat = t3d.euler2mat(pt_euler[2],pt_euler[1],pt_euler[0],'szyx') error_mat = np.dot(pt_mat,np.linalg.inv(gt_mat)) _,angle = transforms3d.axangles.mat2axangle(error_mat) print("Rotation Error: {}".format(abs(angle*(180/np.pi)))) return translation_error, angle*(180/np.pi)
Example 15
Project: pointnet-registration-framework Author: vinits5 File: results_itrPCRNet.py License: MIT License | 6 votes |
def find_errors(gt_pose, final_pose): # Simple euler distand between translation part. gt_position = gt_pose[0:3] predicted_position = final_pose[0:3] translation_error = np.sqrt(np.sum(np.square(gt_position - predicted_position))) # Convert euler angles rotation matrix. gt_euler = gt_pose[3:6] pt_euler = final_pose[3:6] gt_mat = t3d.euler2mat(gt_euler[2],gt_euler[1],gt_euler[0],'szyx') pt_mat = t3d.euler2mat(pt_euler[2],pt_euler[1],pt_euler[0],'szyx') # Multiply inverse of one rotation matrix with another rotation matrix. error_mat = np.dot(pt_mat,np.linalg.inv(gt_mat)) _,angle = transforms3d.axangles.mat2axangle(error_mat) # Convert matrix to axis angle representation and that angle is error. return translation_error, abs(angle*(180/np.pi))
Example 16
Project: deep_sort Author: nwojke File: nn_matching.py License: GNU General Public License v3.0 | 6 votes |
def _pdist(a, b): """Compute pair-wise squared distance between points in `a` and `b`. Parameters ---------- a : array_like An NxM matrix of N samples of dimensionality M. b : array_like An LxM matrix of L samples of dimensionality M. Returns ------- ndarray Returns a matrix of size len(a), len(b) such that eleement (i, j) contains the squared distance between `a[i]` and `b[j]`. """ a, b = np.asarray(a), np.asarray(b) if len(a) == 0 or len(b) == 0: return np.zeros((len(a), len(b))) a2, b2 = np.square(a).sum(axis=1), np.square(b).sum(axis=1) r2 = -2. * np.dot(a, b.T) + a2[:, None] + b2[None, :] r2 = np.clip(r2, 0., float(np.inf)) return r2
Example 17
Project: sopt Author: Lyrichu File: Gradients.py License: MIT License | 6 votes |
def run(self): variables = self.init_variables self.s = np.zeros(self.variables_num) for i in range(self.epochs): grads = gradients(self.func,variables) self.s += np.square(grads) if self.func_type == gradients_config.func_type_min: variables -= self.lr*grads/(np.sqrt(self.s+self.eps)) else: variables += self.lr*grads/(np.sqrt(self.s+self.eps)) self.generations_points.append(variables) self.generations_targets.append(self.func(variables)) if self.func_type == gradients_config.func_type_min: self.global_best_target = np.min(np.array(self.generations_targets)) self.global_best_index = np.argmin(np.array(self.generations_targets)) self.global_best_point = self.generations_points[int(self.global_best_index)] else: self.global_best_target = np.max(np.array(self.generations_targets)) self.global_best_index = np.argmax(np.array(self.generations_targets)) self.global_best_point = self.generations_points[int(self.global_best_index)]
Example 18
Project: sopt Author: Lyrichu File: Gradients.py License: MIT License | 6 votes |
def run(self): variables = self.init_variables self.s = np.zeros(self.variables_num) for i in range(self.epochs): grads = gradients(self.func,variables) self.s = self.beta*self.s + (1-self.beta)*np.square(grads) if self.func_type == gradients_config.func_type_min: variables -= self.lr*grads/(np.sqrt(self.s+self.eps)) else: variables += self.lr*grads/(np.sqrt(self.s+self.eps)) self.generations_points.append(variables) self.generations_targets.append(self.func(variables)) if self.func_type == gradients_config.func_type_min: self.global_best_target = np.min(np.array(self.generations_targets)) self.global_best_index = np.argmin(np.array(self.generations_targets)) self.global_best_point = self.generations_points[int(self.global_best_index)] else: self.global_best_target = np.max(np.array(self.generations_targets)) self.global_best_index = np.argmax(np.array(self.generations_targets)) self.global_best_point = self.generations_points[int(self.global_best_index)]
Example 19
Project: sopt Author: Lyrichu File: Gradients.py License: MIT License | 6 votes |
def run(self): variables = self.init_variables self.s = np.zeros(self.variables_num) self.m = np.zeros(self.variables_num) for i in range(self.epochs): grads = gradients(self.func,variables) self.m = self.beta1*self.m +(1-self.beta1)*grads self.s = self.beta2*self.s + (1-self.beta2)*np.square(grads) self.m /= (1-self.beta1**(i+1)) self.s /= (1-self.beta2**(i+1)) if self.func_type == gradients_config.func_type_min: variables -= self.lr*self.m/(np.sqrt(self.s+self.eps)) else: variables += self.lr*self.m/(np.sqrt(self.s+self.eps)) self.generations_points.append(variables) self.generations_targets.append(self.func(variables)) if self.func_type == gradients_config.func_type_min: self.global_best_target = np.min(np.array(self.generations_targets)) self.global_best_index = np.argmin(np.array(self.generations_targets)) self.global_best_point = self.generations_points[int(self.global_best_index)] else: self.global_best_target = np.max(np.array(self.generations_targets)) self.global_best_index = np.argmax(np.array(self.generations_targets)) self.global_best_point = self.generations_points[int(self.global_best_index)]
Example 20
Project: lightnn Author: l11x0m7 File: optimizers.py License: Apache License 2.0 | 6 votes |
def minimize(self, params, grads): shapes = [p.shape for p in params] # accumulate gradients accumulators = [np.zeros(shape) for shape in shapes] # accumulate updates delta_accumulators = [np.zeros(shape) for shape in shapes] self.weights = accumulators + delta_accumulators self.updates = [] for p, g in zip(params, grads): a = self.__accmulators.setdefault(id(p), np.zeros_like(p)) d_a = self.__delta_accumulators.setdefault(id(p), np.zeros_like(p)) # update accumulator new_a = self.rho * a + (1. - self.rho) * np.square(g) # use the new accumulator and the *old* delta_accumulator update = g * np.sqrt(d_a + self.epsilon) / np.sqrt(new_a + self.epsilon) p -= self.lr * update # update delta_accumulator new_d_a = self.rho * d_a + (1 - self.rho) * np.square(update) self.__accmulators[id(p)] = new_a self.__delta_accumulators[id(p)] = new_d_a super(Adadelta, self).update()
Example 21
Project: disentangling_conditional_gans Author: zalandoresearch File: util_scripts.py License: MIT License | 5 votes |
def generate_interpolation_video(run_id, snapshot=None, grid_size=[1,1], image_shrink=1, image_zoom=1, duration_sec=60.0, smoothing_sec=1.0, mp4=None, mp4_fps=30, mp4_codec='libx265', mp4_bitrate='16M', random_seed=1000, minibatch_size=8): network_pkl = misc.locate_network_pkl(run_id, snapshot) if mp4 is None: mp4 = misc.get_id_string_for_network_pkl(network_pkl) + '-lerp.mp4' num_frames = int(np.rint(duration_sec * mp4_fps)) random_state = np.random.RandomState(random_seed) print('Loading network from "%s"...' % network_pkl) G, D, Gs = misc.load_network_pkl(run_id, snapshot) print('Generating latent vectors...') shape = [num_frames, np.prod(grid_size)] + Gs.input_shape[1:] # [frame, image, channel, component] all_latents = random_state.randn(*shape).astype(np.float32) all_latents = scipy.ndimage.gaussian_filter(all_latents, [smoothing_sec * mp4_fps] + [0] * len(Gs.input_shape), mode='wrap') all_latents /= np.sqrt(np.mean(np.square(all_latents))) # Frame generation func for moviepy. def make_frame(t): frame_idx = int(np.clip(np.round(t * mp4_fps), 0, num_frames - 1)) latents = all_latents[frame_idx] labels = np.zeros([latents.shape[0], 0], np.float32) images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8) grid = misc.create_image_grid(images, grid_size).transpose(1, 2, 0) # HWC if image_zoom > 1: grid = scipy.ndimage.zoom(grid, [image_zoom, image_zoom, 1], order=0) if grid.shape[2] == 1: grid = grid.repeat(3, 2) # grayscale => RGB return grid # Generate video. import moviepy.editor # pip install moviepy result_subdir = misc.create_result_subdir(config.result_dir, config.desc) moviepy.editor.VideoClip(make_frame, duration=duration_sec).write_videofile(os.path.join(result_subdir, mp4), fps=mp4_fps, codec='libx264', bitrate=mp4_bitrate) open(os.path.join(result_subdir, '_done.txt'), 'wt').close() #---------------------------------------------------------------------------- # Generate MP4 video of training progress for a previous training run. # To run, uncomment the appropriate line in config.py and launch train.py.
Example 22
Project: deep-learning-note Author: wdxtub File: 8_eager_execution.py License: MIT License | 5 votes |
def square(x): return x**2
Example 23
Project: neural-combinatorial-optimization-rl-tensorflow Author: MichelDeudon File: dataset.py License: MIT License | 5 votes |
def get_tour_length(self, sequence): # Convert sequence to tour (end=start) tour = np.concatenate((sequence,np.expand_dims(sequence[0],0))) # Compute tour length inter_city_distances = np.sqrt(np.sum(np.square(tour[:-1]-tour[1:]),axis=1)) return np.sum(inter_city_distances) # Reorder sequence with random k NN (TODO: Less computations)
Example 24
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: stt_datagenerator.py License: Apache License 2.0 | 5 votes |
def sample_normalize(self, k_samples=1000, overwrite=False): """ Estimate the mean and std of the features from the training set Params: k_samples (int): Use this number of samples for estimation """ log = LogUtil().getlogger() log.info("Calculating mean and std from samples") # if k_samples is negative then it goes through total dataset if k_samples < 0: audio_paths = self.audio_paths # using sample else: k_samples = min(k_samples, len(self.train_audio_paths)) samples = self.rng.sample(self.train_audio_paths, k_samples) audio_paths = samples manager = Manager() return_dict = manager.dict() jobs = [] for threadIndex in range(cpu_count()): proc = Process(target=self.preprocess_sample_normalize, args=(threadIndex, audio_paths, overwrite, return_dict)) jobs.append(proc) proc.start() for proc in jobs: proc.join() feat = np.sum(np.vstack([item['feat'] for item in return_dict.values()]), axis=0) count = sum([item['count'] for item in return_dict.values()]) feat_squared = np.sum(np.vstack([item['feat_squared'] for item in return_dict.values()]), axis=0) self.feats_mean = feat / float(count) self.feats_std = np.sqrt(feat_squared / float(count) - np.square(self.feats_mean)) np.savetxt( generate_file_path(self.save_dir, self.model_name, 'feats_mean'), self.feats_mean) np.savetxt( generate_file_path(self.save_dir, self.model_name, 'feats_std'), self.feats_std) log.info("End calculating mean and std from samples")
Example 25
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: metrics.py License: Apache License 2.0 | 5 votes |
def rse(label, pred): """computes the root relative squared error (condensed using standard deviation formula)""" numerator = np.sqrt(np.mean(np.square(label - pred), axis = None)) denominator = np.std(label, axis = None) return numerator / denominator
Example 26
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: test_ndarray.py License: Apache License 2.0 | 5 votes |
def test_ndarray_elementwise(): nrepeat = 10 maxdim = 4 all_type = [np.float32, np.float64, np.float16, np.uint8, np.int8, np.int32, np.int64] real_type = [np.float32, np.float64, np.float16] for repeat in range(nrepeat): for dim in range(1, maxdim): check_with_uniform(lambda x, y: x + y, 2, dim, type_list=all_type) check_with_uniform(lambda x, y: x - y, 2, dim, type_list=all_type) check_with_uniform(lambda x, y: x * y, 2, dim, type_list=all_type) check_with_uniform(lambda x, y: x / y, 2, dim, type_list=real_type) check_with_uniform(lambda x, y: x / y, 2, dim, rmin=1, type_list=all_type) check_with_uniform(mx.nd.sqrt, 1, dim, np.sqrt, rmin=0) check_with_uniform(mx.nd.square, 1, dim, np.square, rmin=0) check_with_uniform(lambda x: mx.nd.norm(x).asscalar(), 1, dim, np.linalg.norm)
Example 27
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: test_sparse_ndarray.py License: Apache License 2.0 | 5 votes |
def test_sparse_nd_fluent(): def check_fluent_regular(stype, func, kwargs, shape=(5, 17), equal_nan=False): with mx.name.NameManager(): data = mx.nd.random_uniform(shape=shape, ctx=default_context()).tostype(stype) regular = getattr(mx.ndarray, func)(data, **kwargs) fluent = getattr(data, func)(**kwargs) if isinstance(regular, list): for r, f in zip(regular, fluent): assert almost_equal(r.asnumpy(), f.asnumpy(), equal_nan=equal_nan) else: assert almost_equal(regular.asnumpy(), fluent.asnumpy(), equal_nan=equal_nan) all_funcs = ['zeros_like', 'square', 'round', 'rint', 'fix', 'floor', 'ceil', 'trunc', 'abs', 'sign', 'sin', 'degrees', 'radians', 'expm1'] for func in all_funcs: check_fluent_regular('csr', func, {}) check_fluent_regular('row_sparse', func, {}) all_funcs = ['arcsin', 'arctan', 'tan', 'sinh', 'tanh', 'arcsinh', 'arctanh', 'log1p', 'sqrt', 'relu'] for func in all_funcs: check_fluent_regular('csr', func, {}, equal_nan=True) check_fluent_regular('row_sparse', func, {}, equal_nan=True) check_fluent_regular('csr', 'slice', {'begin': (2, 5), 'end': (4, 7)}, shape=(5, 17)) check_fluent_regular('row_sparse', 'clip', {'a_min': -0.25, 'a_max': 0.75}) for func in ['sum', 'mean', 'norm']: check_fluent_regular('csr', func, {'axis': 0})
Example 28
Project: DOTA_models Author: ringringyi File: nav_env.py License: Apache License 2.0 | 5 votes |
def _get_relative_goal_loc(goal_loc, loc, theta): r = np.sqrt(np.sum(np.square(goal_loc - loc), axis=1)) t = np.arctan2(goal_loc[:,1] - loc[:,1], goal_loc[:,0] - loc[:,0]) t = t-theta[:,0] + np.pi/2 return np.expand_dims(r,axis=1), np.expand_dims(t, axis=1)
Example 29
Project: DOTA_models Author: ringringyi File: utils.py License: Apache License 2.0 | 5 votes |
def distance(point1, point2): return np.sqrt(np.sum(np.square(point1 - point2)))
Example 30
Project: soccer-matlab Author: utra-robosoccer File: filter.py License: BSD 2-Clause "Simplified" License | 5 votes |
def push(self, x): x = np.asarray(x) # Unvectorized update of the running statistics. assert x.shape == self._M.shape, ("x.shape = {}, self.shape = {}" .format(x.shape, self._M.shape)) n1 = self._n self._n += 1 if self._n == 1: self._M[...] = x else: delta = x - self._M deltaM2 = np.square(x) - self._M2 self._M[...] += delta / self._n self._S[...] += delta * delta * n1 / self._n