Python numpy.size() Examples
The following are 30 code examples for showing how to use numpy.size(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: Tensorflow-YOLOv3 Author: kcosta42 File: utils.py License: MIT License | 9 votes |
def draw_boxes_frame(frame, frame_size, boxes_dicts, class_names, input_size): """Draws detected boxes in a video frame""" boxes_dict = boxes_dicts[0] resize_factor = (frame_size[0] / input_size[1], frame_size[1] / input_size[0]) for cls in range(len(class_names)): boxes = boxes_dict[cls] color = (0, 0, 255) if np.size(boxes) != 0: for box in boxes: xy = box[:4] xy = [int(xy[i] * resize_factor[i % 2]) for i in range(4)] cv2.rectangle(frame, (xy[0], xy[1]), (xy[2], xy[3]), color[::-1], 2) (test_width, text_height), baseline = cv2.getTextSize(class_names[cls], cv2.FONT_HERSHEY_SIMPLEX, 0.75, 1) cv2.rectangle(frame, (xy[0], xy[1]), (xy[0] + test_width, xy[1] - text_height - baseline), color[::-1], thickness=cv2.FILLED) cv2.putText(frame, class_names[cls], (xy[0], xy[1] - baseline), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 0), 1)
Example 2
Project: fin Author: vsmolyakov File: olmar.py License: MIT License | 6 votes |
def initialize(context, eps = 10, window_length = 50): #init context.stocks = STOCKS context.sids = SIDS #context.sids = [context.symbol(symb) for symb in context.stocks] context.m = np.size(STOCKS) context.price = {} context.b_t = np.ones(context.m)/float(context.m) context.prev_weights = np.ones(context.m)/float(context.m) context.eps = eps context.init = True context.days = 0 context.window_length = window_length add_history(window_length, '1d', 'price') #set commision and slippage #context.set_commision(commission.PerShare(cost=0)) #context.set_slippage(slippage.VolumeShareSlippage(volume_limit=0.25, price_impact=0.1))
Example 3
Project: fin Author: vsmolyakov File: olmar.py License: MIT License | 6 votes |
def analyze(context=None, results=None): f, (ax1, ax2, ax3) = plt.subplots(3, sharex = True) ax1.plot(results.portfolio_value, linewidth = 2.0, label = 'porfolio') ax1.set_title('On-Line Moving Average Reversion') ax1.set_ylabel('Portfolio value (USD)') ax1.legend(loc=0) ax1.grid(True) ax2.plot(results['AAPL'], color = 'b', linestyle = '-', linewidth = 2.0, label = 'AAPL') ax2.plot(results['MSFT'], color = 'r', linestyle = '-', linewidth = 2.0, label = 'MSFT') ax2.set_ylabel('stock price (USD)') ax2.legend(loc=0) ax2.grid(True) ax3.semilogy(results['step_size'], color = 'b', linestyle = '-', linewidth = 2.0, label = 'step-size') ax3.semilogy(results['variability'], color = 'r', linestyle = '-', linewidth = 2.0, label = 'variability') ax3.legend(loc=0) ax3.grid(True) plt.show()
Example 4
Project: quadcopter-simulation Author: hbd730 File: quadPlot.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def set_frame(frame): # convert 3x6 world_frame matrix into three line_data objects which is 3x2 (row:point index, column:x,y,z) lines_data = [frame[:,[0,2]], frame[:,[1,3]], frame[:,[4,5]]] ax = plt.gca() lines = ax.get_lines() for line, line_data in zip(lines[:3], lines_data): x, y, z = line_data line.set_data(x, y) line.set_3d_properties(z) global history, count # plot history trajectory history[count] = frame[:,4] if count < np.size(history, 0) - 1: count += 1 zline = history[:count,-1] xline = history[:count,0] yline = history[:count,1] lines[-1].set_data(xline, yline) lines[-1].set_3d_properties(zline) # ax.plot3D(xline, yline, zline, 'blue')
Example 5
Project: pyscf Author: pyscf File: kpts_helper.py License: Apache License 2.0 | 6 votes |
def flush(self): """ Composes the vector. Returns: The composed vector. """ if self.__data__ is None: self.__data__ = result = np.empty(self.__total_size__, dtype=self.__dtype__) offset = 0 else: offset = self.__data__.size self.__data__ = result = np.empty(self.__total_size__ + self.__data__.size, dtype=self.__dtype__) for i in self.__transactions__: s = i.size result[offset:offset + s] = i.reshape(-1) offset += s self.__transactions__ = [] return result
Example 6
Project: pyscf Author: pyscf File: gw.py License: Apache License 2.0 | 6 votes |
def si_c(self, ww, use_numba_impl=False): from numpy.linalg import solve """ This computes the correlation part of the screened interaction W_c by solving <self.nprod> linear equations (1-K chi0) W = K chi0 K or v_{ind}\sim W_{c} = (1-v\chi_{0})^{-1}v\chi_{0}v scr_inter[w,p,q], where w in ww, p and q in 0..self.nprod """ if not hasattr(self, 'pab2v_den'): self.pab2v_den = einsum('pab->apb', self.pb.get_ac_vertex_array()) si0 = np.zeros((ww.size, self.nprod, self.nprod), dtype=self.dtypeComplex) if use_numba and use_numba_impl: # numba implementation suffer from some continuous array issue # for example in test test_0087_o2_gw.py # use only for expeimental test si_correlation_numba(si0, ww, self.x, self.kernel_sq, self.ksn2f, self.ksn2e, self.pab2v_den, self.nprod, self.norbs, self.bsize, self.nspin, self.nfermi, self.vstart) else: si_correlation(rf0_den(self, ww), si0, ww, self.kernel_sq, self.nprod) return si0
Example 7
Project: feets Author: quatrope File: core.py License: MIT License | 6 votes |
def __repr__(self): """x.__repr__() <==> repr(x).""" if not hasattr(self, "__repr"): params = self.params or {} parsed_params = [] for k, v in params.items(): sk = str(k) if np.ndim(v) != 0 and np.size(v) > MAX_VALUES_TO_REPR: tv = type(v) sv = f"<{tv.__module__}.{tv.__name__}>" else: sv = str(v) parsed_params.append(f"{sk}={sv}") str_params = ", ".join(parsed_params) self.__repr = f"{self.name}({str_params})" return self.__repr
Example 8
Project: DeblurGAN-tf Author: LeeDoYup File: data_loader.py License: MIT License | 6 votes |
def read_image_pair(pair_path, resize_or_crop=None, image_size=(256,256)): image_blur = cv2.imread(pair_path[0], cv2.IMREAD_COLOR) image_blur = image_blur / 255.0 * 2.0 - 1.0 image_real = cv2.imread(pair_path[1], cv2.IMREAD_COLOR) image_real = image_real / 255.0 * 2.0 - 1.0 if resize_or_crop != None: assert image_size != None if resize_or_crop == 'resize': image_blur = cv2.resize(image_blur, image_size, interpolation=cv2.INTER_AREA) image_real = cv2.resize(image_real, image_size, interpolation=cv2.INTER_AREA) elif resize_or_crop == 'crop': image_blur = cv2.crop(image_blur, image_size) image_real = cv2.crop(image_real, image_size) else: raise if np.size(np.shape(image_blur)) == 3: image_blur = np.expand_dims(image_blur, axis=0) if np.size(np.shape(image_real)) == 3: image_real = np.expand_dims(image_real, axis=0) image_blur = np.array(image_blur, dtype=np.float32) image_real = np.array(image_real, dtype=np.float32) return image_blur, image_real
Example 9
Project: DeblurGAN-tf Author: LeeDoYup File: data_loader.py License: MIT License | 6 votes |
def read_image(path, resize_or_crop=None, image_size=(256,256)): image = cv2.imread(path, cv2.IMREAD_COLOR) image = image/255.0 * 2.0 - 1.0 assert resize_or_crop != None assert image_size != None if resize_or_crop == 'resize': image = cv2.resize(image, image_size, interpolation=cv2.INTER_AREA) elif resize_or_crop == 'crop': image = cv2.crop(image, image_size) if np.size(np.shape(image)) == 3: image = np.expand_dims(image, axis=0) image = np.array(image, dtype=np.float32) return image
Example 10
Project: recruit Author: Frank-qlu File: test_numeric.py License: Apache License 2.0 | 6 votes |
def test_count_nonzero_axis_consistent(self): # Check that the axis behaviour for valid axes in # non-special cases is consistent (and therefore # correct) by checking it against an integer array # that is then casted to the generic object dtype from itertools import combinations, permutations axis = (0, 1, 2, 3) size = (5, 5, 5, 5) msg = "Mismatch for axis: %s" rng = np.random.RandomState(1234) m = rng.randint(-100, 100, size=size) n = m.astype(object) for length in range(len(axis)): for combo in combinations(axis, length): for perm in permutations(combo): assert_equal( np.count_nonzero(m, axis=perm), np.count_nonzero(n, axis=perm), err_msg=msg % (perm,))
Example 11
Project: recruit Author: Frank-qlu File: test_function.py License: Apache License 2.0 | 6 votes |
def test_count_uses_size_on_exception(): class RaisingObjectException(Exception): pass class RaisingObject(object): def __init__(self, msg='I will raise inside Cython'): super(RaisingObject, self).__init__() self.msg = msg def __eq__(self, other): # gets called in Cython to check that raising calls the method raise RaisingObjectException(self.msg) df = DataFrame({'a': [RaisingObject() for _ in range(4)], 'grp': list('ab' * 2)}) result = df.groupby('grp').count() expected = DataFrame({'a': [2, 2]}, index=pd.Index( list('ab'), name='grp')) tm.assert_frame_equal(result, expected) # size # --------------------------------
Example 12
Project: ibllib Author: int-brain-lab File: test_task.py License: MIT License | 6 votes |
def test_responsive_units(self): if self.test_data is None: return spike_times = self.test_data['spike_times'] spike_clusters = self.test_data['spike_clusters'] event_times = self.test_data['event_times'] alpha = 0.5 sig_units, stats, p_values, cluster_ids = bb.task.responsive_units(spike_times, spike_clusters, event_times, pre_time=[0.5, 0], post_time=[0, 0.5], alpha=alpha) num_clusters = np.size(np.unique(spike_clusters)) self.assertTrue(np.size(sig_units) == 125) self.assertTrue(np.sum(p_values < alpha) == np.size(sig_units)) self.assertTrue(np.size(cluster_ids) == num_clusters)
Example 13
Project: ibllib Author: int-brain-lab File: test_task.py License: MIT License | 6 votes |
def test_roc_between_two_events(self): if self.test_data is None: return spike_times = self.test_data['spike_times'] spike_clusters = self.test_data['spike_clusters'] event_times = self.test_data['event_times'] event_groups = self.test_data['event_groups'] auc_roc, cluster_ids = bb.task.roc_between_two_events(spike_times, spike_clusters, event_times, event_groups, pre_time=0.5, post_time=0.5) num_clusters = np.size(np.unique(spike_clusters)) self.assertTrue(np.sum(auc_roc < 0.3) == 24) self.assertTrue(np.sum(auc_roc > 0.7) == 10) self.assertTrue(np.size(cluster_ids) == num_clusters)
Example 14
Project: reinforcement-learning-an-introduction Author: ShangtongZhang File: car_rental_synchronous.py License: MIT License | 6 votes |
def policy_improvement(self, actions, values, policy): new_policy = np.copy(policy) expected_action_returns = np.zeros((MAX_CARS + 1, MAX_CARS + 1, np.size(actions))) cooks = dict() with mp.Pool(processes=8) as p: for action in actions: k = np.arange(MAX_CARS + 1) all_states = ((i, j) for i, j in itertools.product(k, k)) cooks[action] = partial(self.expected_return_pi, values, action) results = p.map(cooks[action], all_states) for v, i, j, a in results: expected_action_returns[i, j, self.inverse_actions[a]] = v for i in range(expected_action_returns.shape[0]): for j in range(expected_action_returns.shape[1]): new_policy[i, j] = actions[np.argmax(expected_action_returns[i, j])] policy_change = (new_policy != policy).sum() print(f'Policy changed in {policy_change} states') return policy_change, new_policy # O(n^4) computation for all possible requests and returns
Example 15
Project: aboleth Author: gradientinstitute File: kernels.py License: Apache License 2.0 | 6 votes |
def _init_lenscale(given_lenscale, learn_lenscale, input_dim): """Provide the lenscale variable and its initial value.""" given_lenscale = (np.sqrt(1.0 / input_dim) if given_lenscale is None else np.array(given_lenscale).squeeze()).astype( np.float32) if learn_lenscale: lenscale = pos_variable(given_lenscale, name="kernel_lenscale") if np.size(given_lenscale) == 1: summary_scalar(lenscale) else: summary_histogram(lenscale) else: lenscale = given_lenscale lenscale_vec = tf.ones(input_dim, dtype=tf.float32) * lenscale init_lenscale = given_lenscale * np.ones(input_dim, dtype=np.float32) return lenscale_vec, init_lenscale
Example 16
Project: models Author: kipoi File: bio_utils.py License: MIT License | 5 votes |
def remove_post_padding(signal): X_not_padded = len(signal) * [[]] for i in range(len(signal)): pad_initIdx = np.where(signal[i] == 0) if np.size(pad_initIdx) == 0: X_not_padded[i] = signal[i] else: X_not_padded[i] = signal[i][0:pad_initIdx[0][0]] return (X_not_padded)
Example 17
Project: discomll Author: romanorac File: naivebayes.py License: Apache License 2.0 | 5 votes |
def map_fit(interface, state, label, inp): """ Function counts occurrences of feature values for every row in given data chunk. For continuous features it returns number of values and it calculates mean and variance for every feature. For discrete features it counts occurrences of labels and values for every feature. It returns occurrences of pairs: label, feature index, feature values. """ import numpy as np combiner = {} # combiner used for joining of intermediate pairs out = interface.output(0) # all outputted pairs have the same output label for row in inp: # for every row in data chunk row = row.strip().split(state["delimiter"]) # split row if len(row) > 1: # check if row is empty for i, j in enumerate(state["X_indices"]): # for defined features if row[j] not in state["missing_vals"]: # check missing values # creates a pair - label, feature index pair = row[state["y_index"]] + state["delimiter"] + str(j) if state["X_meta"][i] == "c": # continuous features if pair in combiner: # convert to float and store value combiner[pair].append(np.float32(row[j])) else: combiner[pair] = [np.float32(row[j])] else: # discrete features # add feature value to pair pair += state["delimiter"] + row[j] # increase counts of current pair combiner[pair] = combiner.get(pair, 0) + 1 # increase label counts combiner[row[state["y_index"]]] = combiner.get(row[state["y_index"]], 0) + 1 for k, v in combiner.iteritems(): # all pairs in combiner are output if len(k.split(state["delimiter"])) == 2: # continous features # number of elements, partial mean and variance out.add(k, (np.size(v), np.mean(v, dtype=np.float32), np.var(v, dtype=np.float32))) else: # discrete features and labels out.add(k, v)
Example 18
Project: pynvr Author: JFF-Bohdan File: motion_detection.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def motionDetected(self, new_frame): frame = self.preprocessInputFrame(new_frame) gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) gray = cv.GaussianBlur(gray, (21, 21), 0) if self.prevFrame is None: self.prevFrame = gray return False frameDiff = cv.absdiff(gray, self.prevFrame) # kernel = np.ones((5, 5), np.uint8) opening = cv.morphologyEx(frameDiff, cv.MORPH_OPEN, None) # noqa closing = cv.morphologyEx(frameDiff, cv.MORPH_CLOSE, None) # noqa ret1, th1 = cv.threshold(frameDiff, 10, 255, cv.THRESH_BINARY) height = np.size(th1, 0) width = np.size(th1, 1) nb = cv.countNonZero(th1) avg = (nb * 100) / (height * width) # Calculate the average of black pixel in the image self.prevFrame = gray # cv.DrawContours(currentframe, self.currentcontours, (0, 0, 255), (0, 255, 0), 1, 2, cv.CV_FILLED) # cv.imshow("frame", current_frame) ret = avg > self.threshold # If over the ceiling trigger the alarm if ret: self.updateMotionDetectionDts() return ret
Example 19
Project: differential-privacy-library Author: IBM File: validation.py License: MIT License | 5 votes |
def clip_to_bounds(array, bounds): """Clips the examples of a 2-dimensional array to given bounds. Parameters ---------- array : np.ndarray Array to be clipped. After clipping, all examples have a 2-norm of at most `clip`. bounds : tuple Tuple of bounds of the form (min, max) which the array is to be clipped to. `min` and `max` must be scalar, unless array is 2-dimensional. Returns ------- array : np.ndarray The clipped array. """ if not isinstance(array, np.ndarray): raise TypeError("Input array must be a numpy array, got {}.".format(type(array))) if np.shape(bounds[0]) != np.shape(bounds[1]): raise ValueError("Bounds must be of the same shape, got {} and {}.".format(np.shape(bounds[0]), np.shape(bounds[1]))) lower, upper = check_bounds(bounds, np.size(bounds[0]), min_separation=0) clipped_array = array.copy() if np.allclose(lower, np.min(lower)) and np.allclose(upper, np.max(upper)): clipped_array = np.clip(clipped_array, np.min(lower), np.max(upper)) else: if array.ndim != 2: raise ValueError("For non-scalar bounds, input array must be 2-dimensional. Got %d dimensions." % array.ndim) for feature in range(array.shape[1]): clipped_array[:, feature] = np.clip(array[:, feature], lower[feature], upper[feature]) return clipped_array
Example 20
Project: fin Author: vsmolyakov File: olmar.py License: MIT License | 5 votes |
def simplex_projection(v, b=1): v = np.array(v) p = np.size(v) v = (v > 0)*v u = np.sort(v)[::-1] sv = np.cumsum(u) rho = np.where(u > (sv-b) / np.arange(1,p+1))[0][-1] theta = np.max([0, (sv[rho]-b)/(rho+1)]) w = v - theta w[w<0] = 0 return w
Example 21
Project: pymoo Author: msu-coinlab File: go_funcs_G.py License: Apache License 2.0 | 5 votes |
def fun(self, x, *args): self.nfev += 1 i = arange(1., np.size(x) + 1.) return sum(x ** 2 / 4000) - prod(cos(x / sqrt(i))) + 1
Example 22
Project: pymoo Author: msu-coinlab File: rmetric.py License: Apache License 2.0 | 5 votes |
def _filter(self): def check_dominance(a, b, n_obj): flag1 = False flag2 = False for i in range(n_obj): if a[i] < b[i]: flag1 = True else: if a[i] > b[i]: flag2 = True if flag1 and not flag2: return 1 elif not flag1 and flag2: return -1 else: return 0 num_objs = np.size(self.curr_pop, axis=1) index_array = np.zeros(np.size(self.curr_pop, axis=0)) for i in range(np.size(self.curr_pop, 0)): for j in range(np.size(self.whole_pop, 0)): flag = check_dominance(self.curr_pop[i, :], self.whole_pop[j, :], num_objs) if flag == -1: index_array[i] = 1 break final_index = np.logical_not(index_array) filtered_pop = self.curr_pop[final_index, :] return filtered_pop
Example 23
Project: pymoo Author: msu-coinlab File: rmetric.py License: Apache License 2.0 | 5 votes |
def _preprocess(self, data, ref_point, w_point): datasize = np.size(data, 0) # Identify representative point ref_matrix = np.tile(ref_point, (datasize, 1)) w_matrix = np.tile(w_point, (datasize, 1)) # ratio of distance to the ref point over the distance between the w_point and the ref_point diff_matrix = (data - ref_matrix) / (w_matrix - ref_matrix) agg_value = np.amax(diff_matrix, axis=1) idx = np.argmin(agg_value) zp = [data[idx, :]] return zp,
Example 24
Project: scarlet Author: pmelchior File: resampling.py License: MIT License | 5 votes |
def _pix2radec(coord, wcs): """Converts coordinates from pixels to Ra-Dec given a wcs """ y,x = coord if np.size(wcs.array_shape) == 2: ra, dec = wcs.all_pix2world(x, y, 0, ra_dec_order=True) elif np.size(wcs.array_shape) == 3: ra, dec = wcs.all_pix2world(x, y, 0, 0, ra_dec_order=True) else: raise ValueError("WCSs must have either 2 or 3 dimensions. Received "+str(np.size(wcs.array_shape))+".") return (ra, dec)
Example 25
Project: scarlet Author: pmelchior File: resampling.py License: MIT License | 5 votes |
def _radec2pix(coord, wcs): """Converts coordinates from Ra-Dec to pixels given a wcs """ ra, dec = coord # Positions of coords in the frame of the obs if np.size(wcs.array_shape) == 2: X, Y = wcs.all_world2pix(ra, dec, 0, ra_dec_order=True) elif np.size(wcs.array_shape) == 3: X, Y, _ = wcs.all_world2pix(ra, dec, 0, 0, ra_dec_order=True) else: raise ValueError("WCSs must have either 2 or 3 dimensions. Received "+str(np.size(wcs.array_shape))+".") return (Y, X)
Example 26
Project: Tensorflow-YOLOv3 Author: kcosta42 File: utils.py License: MIT License | 5 votes |
def load_image(img_path, input_size): """Loads image in a 4D array""" img = Image.open(img_path) img = img.resize(size=input_size) img = np.array(img, dtype=np.float32) img = np.expand_dims(img[:, :, :3], axis=0) return img
Example 27
Project: Tensorflow-YOLOv3 Author: kcosta42 File: utils.py License: MIT License | 5 votes |
def draw_boxes(img_name, boxes_dict, class_names, input_size): """Draws detected boxes""" img = Image.open(img_name) draw = ImageDraw.Draw(img) font = ImageFont.truetype(font="./data/Roboto-Black.ttf", size=(img.size[0] + img.size[1]) // 100) resize_factor = (img.size[0] / input_size[0], img.size[1] / input_size[1]) for cls in range(len(class_names)): boxes = boxes_dict[cls] if np.size(boxes) != 0: for box in boxes: xy, confidence = box[:4], box[4] xy = [xy[i] * resize_factor[i % 2] for i in range(4)] x0, y0 = xy[0], xy[1] thickness = (img.size[0] + img.size[1]) // 300 for t in np.linspace(0, 1, thickness): xy[0], xy[1] = xy[0] + t, xy[1] + t xy[2], xy[3] = xy[2] - t, xy[3] - t draw.rectangle(xy, outline="blue") text = f"{class_names[cls]} {(confidence * 100):.1f}%" text_size = draw.textsize(text, font=font) draw.rectangle([x0, y0 - text_size[1], x0 + text_size[0], y0], fill="blue") draw.text((x0, y0 - text_size[1]), text, fill="black", font=font) print(text) rgb_img = img.convert('RGB') rgb_img.save('./detections/image_output.jpg') print("Image Saved at \"" + './detections/image_output.jpg' + "\"") rgb_img.show()
Example 28
Project: pyscf Author: pyscf File: kpts_helper.py License: Apache License 2.0 | 5 votes |
def member(kpt, kpts): kpts = np.reshape(kpts, (len(kpts),kpt.size)) dk = np.einsum('ki->k', abs(kpts-kpt.ravel())) return np.where(dk < KPT_DIFF_TOL)[0]
Example 29
Project: pyscf Author: pyscf File: kpts_helper.py License: Apache License 2.0 | 5 votes |
def get_kconserv3(cell, kpts, kijkab): r'''Get the momentum conservation array for a set of k-points. This function is similar to get_kconserv, but instead finds the 'kc' that satisfies momentum conservation for 5 k-points, (ki + kj + kk - ka - kb - kc) dot a = 2n\pi where these kpoints are stored in kijkab[ki, kj, kk, ka, kb]. ''' a = cell.lattice_vectors() / (2*np.pi) kpts_i, kpts_j, kpts_k, kpts_a, kpts_b = \ [kpts[x].reshape(-1,3) for x in kijkab] shape = [np.size(x) for x in kijkab] kconserv = np.zeros(shape, dtype=int) kv_kab = kpts_k[:,None,None,:] - kpts_a[:,None,:] - kpts_b for i, kpti in enumerate(kpts_i): for j, kptj in enumerate(kpts_j): kv_ijkab = kv_kab + kpti + kptj for c, kptc in enumerate(kpts): s = np.einsum('kabx,wx->kabw', kv_ijkab - kptc, a) s_int = np.rint(s) mask = np.einsum('kabw->kab', abs(s - s_int)) < 1e-9 kconserv[i,j,mask] = c new_shape = [shape[i] for i, x in enumerate(kijkab) if not isinstance(x, (int,np.int))] kconserv = kconserv.reshape(new_shape) return kconserv
Example 30
Project: pyscf Author: pyscf File: kpts_helper.py License: Apache License 2.0 | 5 votes |
def get(self, destination, slc=None): """ Retrieves the next array. Args: destination: the shape of the destination array or the destination array itself; slc: an optional slice; Returns: The array. """ if isinstance(destination, Number): destination = np.zeros((destination,), dtype=self.__data__.dtype) elif isinstance(destination, tuple): destination = np.zeros(destination, dtype=self.__data__.dtype) elif isinstance(destination, np.ndarray): pass else: raise ValueError("Unknown destination: %s" % str(destination)) if slc is None: take_size = np.prod(destination.shape) take_shape = destination.shape else: slc = np.ix_(*slc) take_size = destination[slc].size take_shape = destination[slc].shape avail = self.__data__.size - self.__offset__ if take_size > avail: raise ValueError("Insufficient # of elements: required %d %s, found %d" % (take_size, take_shape, avail)) if slc is None: destination[:] = self.__data__[self.__offset__:self.__offset__ + take_size].reshape(take_shape) else: destination[slc] = self.__data__[self.__offset__:self.__offset__ + take_size].reshape(take_shape) self.__offset__ += take_size return destination