Python numpy.divide() Examples
The following are 30 code examples for showing how to use numpy.divide(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: sparse-subspace-clustering-python Author: abhinav4192 File: SpectralClustering.py License: MIT License | 6 votes |
def SpectralClustering(CKSym, n): # This is direct port of JHU vision lab code. Could probably use sklearn SpectralClustering. CKSym = CKSym.astype(float) N, _ = CKSym.shape MAXiter = 1000 # Maximum number of iterations for KMeans REPlic = 20 # Number of replications for KMeans DN = np.diag(np.divide(1, np.sqrt(np.sum(CKSym, axis=0) + np.finfo(float).eps))) LapN = identity(N).toarray().astype(float) - np.matmul(np.matmul(DN, CKSym), DN) _, _, vN = np.linalg.svd(LapN) vN = vN.T kerN = vN[:, N - n:N] normN = np.sqrt(np.sum(np.square(kerN), axis=1)) kerNS = np.divide(kerN, normN.reshape(len(normN), 1) + np.finfo(float).eps) km = KMeans(n_clusters=n, n_init=REPlic, max_iter=MAXiter, n_jobs=-1).fit(kerNS) return km.labels_
Example 2
Project: HardRLWithYoutube Author: MaxSobolMark File: mpi_adam_optimizer.py License: MIT License | 6 votes |
def compute_gradients(self, loss, var_list, **kwargs): grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs) grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) shapes = [v.shape.as_list() for g, v in grads_and_vars] sizes = [int(np.prod(s)) for s in shapes] num_tasks = self.comm.Get_size() buf = np.zeros(sum(sizes), np.float32) def _collect_grads(flat_grad): self.comm.Allreduce(flat_grad, buf, op=MPI.SUM) np.divide(buf, float(num_tasks), out=buf) return buf avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32) avg_flat_grad.set_shape(flat_grad.shape) avg_grads = tf.split(avg_flat_grad, sizes, axis=0) avg_grads_and_vars = [(tf.reshape(g, v.shape), v) for g, (_, v) in zip(avg_grads, grads_and_vars)] return avg_grads_and_vars
Example 3
Project: argus-freesound Author: lRomul File: tiles.py License: MIT License | 6 votes |
def merge(self, tiles: List[np.ndarray], dtype=np.float32): if len(tiles) != len(self.crops): raise ValueError channels = 1 if len(tiles[0].shape) == 2 else tiles[0].shape[2] target_shape = self.image_height + self.margin_bottom + self.margin_top, self.image_width + self.margin_right + self.margin_left, channels image = np.zeros(target_shape, dtype=np.float64) norm_mask = np.zeros(target_shape, dtype=np.float64) w = np.dstack([self.weight] * channels) for tile, (x, y, tile_width, tile_height) in zip(tiles, self.crops): # print(x, y, tile_width, tile_height, image.shape) image[y:y + tile_height, x:x + tile_width] += tile * w norm_mask[y:y + tile_height, x:x + tile_width] += w # print(norm_mask.min(), norm_mask.max()) norm_mask = np.clip(norm_mask, a_min=np.finfo(norm_mask.dtype).eps, a_max=None) normalized = np.divide(image, norm_mask).astype(dtype) crop = self.crop_to_orignal_size(normalized) return crop
Example 4
Project: speech_separation Author: bill9800 File: utils.py License: MIT License | 6 votes |
def generate_cRM(Y,S): ''' :param Y: mixed/noisy stft :param S: clean stft :return: structed cRM ''' M = np.zeros(Y.shape) epsilon = 1e-8 # real part M_real = np.multiply(Y[:,:,0],S[:,:,0])+np.multiply(Y[:,:,1],S[:,:,1]) square_real = np.square(Y[:,:,0])+np.square(Y[:,:,1]) M_real = np.divide(M_real,square_real+epsilon) M[:,:,0] = M_real # imaginary part M_img = np.multiply(Y[:,:,0],S[:,:,1])-np.multiply(Y[:,:,1],S[:,:,0]) square_img = np.square(Y[:,:,0])+np.square(Y[:,:,1]) M_img = np.divide(M_img,square_img+epsilon) M[:,:,1] = M_img return M
Example 5
Project: speech_separation Author: bill9800 File: utils.py License: MIT License | 6 votes |
def cRM_tanh_compress(M,K=10,C=0.1): ''' Recall that the irm takes on vlaues in the range[0,1],compress the cRM with hyperbolic tangent :param M: crm (298,257,2) :param K: parameter to control the compression :param C: parameter to control the compression :return crm: compressed crm ''' numerator = 1-np.exp(-C*M) numerator[numerator == inf] = 1 numerator[numerator == -inf] = -1 denominator = 1+np.exp(-C*M) denominator[denominator == inf] = 1 denominator[denominator == -inf] = -1 crm = K * np.divide(numerator,denominator) return crm
Example 6
Project: connecting_the_dots Author: autonomousvision File: geometry.py License: MIT License | 6 votes |
def axisangle_from_rotm(R): # logarithm of rotation matrix # R = R.reshape(-1,3,3) # tr = np.trace(R, axis1=1, axis2=2) # phi = np.arccos(np.clip((tr - 1) / 2, -1, 1)) # scale = np.zeros_like(phi) # div = 2 * np.sin(phi) # np.divide(phi, div, out=scale, where=np.abs(div) > 1e-6) # A = (R - R.transpose(0,2,1)) * scale.reshape(-1,1,1) # aa = np.stack((A[:,2,1], A[:,0,2], A[:,1,0]), axis=1) # return aa.squeeze() R = R.reshape(-1,3,3) omega = np.empty((R.shape[0], 3), dtype=R.dtype) omega[:,0] = R[:,2,1] - R[:,1,2] omega[:,1] = R[:,0,2] - R[:,2,0] omega[:,2] = R[:,1,0] - R[:,0,1] r = np.linalg.norm(omega, axis=1).reshape(-1,1) t = np.trace(R, axis1=1, axis2=2).reshape(-1,1) omega = np.arctan2(r, t-1) * omega aa = np.zeros_like(omega) np.divide(omega, r, out=aa, where=r != 0) return aa.squeeze()
Example 7
Project: Reinforcement_Learning_for_Traffic_Light_Control Author: quantumiracle File: mpi_adam_optimizer.py License: Apache License 2.0 | 6 votes |
def compute_gradients(self, loss, var_list, **kwargs): grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs) grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) shapes = [v.shape.as_list() for g, v in grads_and_vars] sizes = [int(np.prod(s)) for s in shapes] num_tasks = self.comm.Get_size() buf = np.zeros(sum(sizes), np.float32) def _collect_grads(flat_grad): self.comm.Allreduce(flat_grad, buf, op=MPI.SUM) np.divide(buf, float(num_tasks), out=buf) return buf avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32) avg_flat_grad.set_shape(flat_grad.shape) avg_grads = tf.split(avg_flat_grad, sizes, axis=0) avg_grads_and_vars = [(tf.reshape(g, v.shape), v) for g, (_, v) in zip(avg_grads, grads_and_vars)] return avg_grads_and_vars
Example 8
Project: Reinforcement_Learning_for_Traffic_Light_Control Author: quantumiracle File: mpi_adam_optimizer.py License: Apache License 2.0 | 6 votes |
def compute_gradients(self, loss, var_list, **kwargs): grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs) grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) shapes = [v.shape.as_list() for g, v in grads_and_vars] sizes = [int(np.prod(s)) for s in shapes] num_tasks = self.comm.Get_size() buf = np.zeros(sum(sizes), np.float32) def _collect_grads(flat_grad): self.comm.Allreduce(flat_grad, buf, op=MPI.SUM) np.divide(buf, float(num_tasks), out=buf) return buf avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32) avg_flat_grad.set_shape(flat_grad.shape) avg_grads = tf.split(avg_flat_grad, sizes, axis=0) avg_grads_and_vars = [(tf.reshape(g, v.shape), v) for g, (_, v) in zip(avg_grads, grads_and_vars)] return avg_grads_and_vars
Example 9
Project: Reinforcement_Learning_for_Traffic_Light_Control Author: quantumiracle File: mpi_adam_optimizer.py License: Apache License 2.0 | 6 votes |
def compute_gradients(self, loss, var_list, **kwargs): grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs) grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) shapes = [v.shape.as_list() for g, v in grads_and_vars] sizes = [int(np.prod(s)) for s in shapes] num_tasks = self.comm.Get_size() buf = np.zeros(sum(sizes), np.float32) def _collect_grads(flat_grad): self.comm.Allreduce(flat_grad, buf, op=MPI.SUM) np.divide(buf, float(num_tasks), out=buf) return buf avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32) avg_flat_grad.set_shape(flat_grad.shape) avg_grads = tf.split(avg_flat_grad, sizes, axis=0) avg_grads_and_vars = [(tf.reshape(g, v.shape), v) for g, (_, v) in zip(avg_grads, grads_and_vars)] return avg_grads_and_vars
Example 10
Project: recruit Author: Frank-qlu File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 11
Project: recruit Author: Frank-qlu File: test_numeric.py License: Apache License 2.0 | 6 votes |
def test_warnings(self): # test warning code path with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") with np.errstate(all="warn"): np.divide(1, 0.) assert_equal(len(w), 1) assert_("divide by zero" in str(w[0].message)) np.array(1e300) * np.array(1e300) assert_equal(len(w), 2) assert_("overflow" in str(w[-1].message)) np.array(np.inf) - np.array(np.inf) assert_equal(len(w), 3) assert_("invalid value" in str(w[-1].message)) np.array(1e-300) * np.array(1e-300) assert_equal(len(w), 4) assert_("underflow" in str(w[-1].message))
Example 12
Project: recruit Author: Frank-qlu File: test_timedelta64.py License: Apache License 2.0 | 6 votes |
def test_td64arr_rmul_numeric_array(self, box_with_array, vector, dtype): # GH#4521 # divide/multiply by integers xbox = get_upcast_box(box_with_array, vector) tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') vector = vector.astype(dtype) expected = Series(['1180 Days', '1770 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, xbox) result = tdser * vector tm.assert_equal(result, expected) result = vector * tdser tm.assert_equal(result, expected)
Example 13
Project: typhon Author: atmtools File: em.py License: MIT License | 6 votes |
def planck(f, T): """Calculate black body radiation for given frequency and temperature. Parameters: f (float or ndarray): Frquencies [Hz]. T (float or ndarray): Temperature [K]. Returns: float or ndarray: Radiances. """ c = constants.speed_of_light h = constants.planck k = constants.boltzmann return 2 * h * f**3 / (c**2 * (np.exp(np.divide(h * f, (k * T))) - 1))
Example 14
Project: typhon Author: atmtools File: em.py License: MIT License | 6 votes |
def planck_wavelength(l, T): """Calculate black body radiation for given wavelength and temperature. Parameters: l (float or ndarray): Wavelength [m]. T (float or ndarray): Temperature [K]. Returns: float or ndarray: Radiances. """ c = constants.speed_of_light h = constants.planck k = constants.boltzmann return 2 * h * c**2 / (l**5 * (np.exp(np.divide(h * c, (l * k * T))) - 1))
Example 15
Project: typhon Author: atmtools File: em.py License: MIT License | 6 votes |
def planck_wavenumber(n, T): """Calculate black body radiation for given wavenumber and temperature. Parameters: n (float or ndarray): Wavenumber. T (float or ndarray): Temperature [K]. Returns: float or ndarray: Radiances. """ c = constants.speed_of_light h = constants.planck k = constants.boltzmann return 2 * h * c**2 * n**3 / (np.exp(np.divide(h * c * n, (k * T))) - 1)
Example 16
Project: typhon Author: atmtools File: em.py License: MIT License | 6 votes |
def rayleighjeans_wavelength(l, T): """Calculates the Rayleigh-Jeans approximation of the Planck function. Calculates the approximation of the Planck function for given wavelength and temperature. Parameters: l (float or ndarray): Wavelength [m]. T (float or ndarray): Temperature [K]. Returns: float or ndarray: Radiance [W/(m2*Hz*sr)]. """ c = constants.speed_of_light k = constants.boltzmann return np.divide(2 * c * k * T, l**4)
Example 17
Project: Financial-NLP Author: Coldog2333 File: NLP.py License: Apache License 2.0 | 5 votes |
def unitvec(vector, ax=1): v=vector*vector if len(vector.shape)==1: sqrtv=np.sqrt(np.sum(v)) elif len(vector.shape)==2: sqrtv=np.sqrt([np.sum(v, axis=ax)]) else: raise Exception('It\'s too large.') if ax==1: result=np.divide(vector,sqrtv.T) elif ax==0: result=np.divide(vector,sqrtv) return result
Example 18
Project: DOTA_models Author: ringringyi File: object_detection_evaluation_test.py License: Apache License 2.0 | 5 votes |
def test_evaluate(self): (average_precision_per_class, mean_ap, precisions_per_class, recalls_per_class, corloc_per_class, mean_corloc) = self.od_eval.evaluate() expected_precisions_per_class = [np.array([0, 0.5], dtype=float), np.array([], dtype=float), np.array([0], dtype=float)] expected_recalls_per_class = [ np.array([0, 1. / 3.], dtype=float), np.array([], dtype=float), np.array([0], dtype=float) ] expected_average_precision_per_class = np.array([1. / 6., 0, 0], dtype=float) expected_corloc_per_class = np.array([0, np.divide(0, 0), 0], dtype=float) expected_mean_ap = 1. / 18 expected_mean_corloc = 0.0 for i in range(self.od_eval.num_class): self.assertTrue(np.allclose(expected_precisions_per_class[i], precisions_per_class[i])) self.assertTrue(np.allclose(expected_recalls_per_class[i], recalls_per_class[i])) self.assertTrue(np.allclose(expected_average_precision_per_class, average_precision_per_class)) self.assertTrue(np.allclose(expected_corloc_per_class, corloc_per_class)) self.assertAlmostEqual(expected_mean_ap, mean_ap) self.assertAlmostEqual(expected_mean_corloc, mean_corloc)
Example 19
Project: object_detector_app Author: datitran File: object_detection_evaluation_test.py License: MIT License | 5 votes |
def test_evaluate(self): (average_precision_per_class, mean_ap, precisions_per_class, recalls_per_class, corloc_per_class, mean_corloc) = self.od_eval.evaluate() expected_precisions_per_class = [np.array([0, 0.5], dtype=float), np.array([], dtype=float), np.array([0], dtype=float)] expected_recalls_per_class = [ np.array([0, 1. / 3.], dtype=float), np.array([], dtype=float), np.array([0], dtype=float) ] expected_average_precision_per_class = np.array([1. / 6., 0, 0], dtype=float) expected_corloc_per_class = np.array([0, np.divide(0, 0), 0], dtype=float) expected_mean_ap = 1. / 18 expected_mean_corloc = 0.0 for i in range(self.od_eval.num_class): self.assertTrue(np.allclose(expected_precisions_per_class[i], precisions_per_class[i])) self.assertTrue(np.allclose(expected_recalls_per_class[i], recalls_per_class[i])) self.assertTrue(np.allclose(expected_average_precision_per_class, average_precision_per_class)) self.assertTrue(np.allclose(expected_corloc_per_class, corloc_per_class)) self.assertAlmostEqual(expected_mean_ap, mean_ap) self.assertAlmostEqual(expected_mean_corloc, mean_corloc)
Example 20
Project: argus-freesound Author: lRomul File: tiles.py License: MIT License | 5 votes |
def compute_pyramid_patch_weight_loss(width, height) -> np.ndarray: """Compute a weight matrix that assigns bigger weight on pixels in center and less weight to pixels on image boundary. This weight matrix then used for merging individual tile predictions and helps dealing with prediction artifacts on tile boundaries. :param width: Tile width :param height: Tile height :return: Since-channel image [Width x Height] """ xc = width * 0.5 yc = height * 0.5 xl = 0 xr = width yb = 0 yt = height Dc = np.zeros((width, height)) De = np.zeros((width, height)) for i in range(width): for j in range(height): Dc[i, j] = np.sqrt(np.square(i - xc + 0.5) + np.square(j - yc + 0.5)) De_l = np.sqrt(np.square(i - xl + 0.5) + np.square(j - j + 0.5)) De_r = np.sqrt(np.square(i - xr + 0.5) + np.square(j - j + 0.5)) De_b = np.sqrt(np.square(i - i + 0.5) + np.square(j - yb + 0.5)) De_t = np.sqrt(np.square(i - i + 0.5) + np.square(j - yt + 0.5)) De[i, j] = np.min([De_l, De_r, De_b, De_t]) alpha = (width * height) / np.sum(np.divide(De, np.add(Dc, De))) W = alpha * np.divide(De, np.add(Dc, De)) return W, Dc, De
Example 21
Project: tensortrade Author: tensortrade-org File: node.py License: Apache License 2.0 | 5 votes |
def __truediv__(self, other): if np.isscalar(other): other = Constant(other, "Constant({})".format(other)) name = "Divide({},{})".format(self.name, other.name) return BinOp(np.divide, name)(self, other) assert isinstance(other, Node) name = "Divide({},{})".format(self.name, other.name) return BinOp(np.divide, name)(self, other)
Example 22
Project: tensortrade Author: tensortrade-org File: node.py License: Apache License 2.0 | 5 votes |
def __rtruediv__(self, other): if not np.isscalar(other): raise Exception("Invalid node operation.") other = Constant(other, "Constant({})".format(other)) name = "Divide({},{})".format(other.name, self.name) return BinOp(np.divide, name)(other, self)
Example 23
Project: ciftify Author: edickie File: ciftify_falff.py License: MIT License | 5 votes |
def calculate_falff(timeseries, min_low_freq, max_low_freq, min_total_freq, max_total_freq, calc_alff): ''' this will calculate falff from a timeseries''' n = len(timeseries) time = (np.arange(n))*2 # Takes fast Fourier transform of timeseries fft_timeseries = fft(timeseries) # Calculates frequency scale freq_scale = np.fft.fftfreq(n, 1/1) # Calculates power of fft mag = (abs(fft_timeseries))**0.5 # Finds low frequency range (0.01-0.08) and total frequency range (0.0-0.25) low_ind = np.where((float(min_low_freq) <= freq_scale) & (freq_scale <= float(max_low_freq))) total_ind = np.where((float(min_total_freq) <= freq_scale) & (freq_scale <= float(max_total_freq))) # Indexes power to low frequency index, total frequency range low_power = mag[low_ind] total_power = mag[total_ind] # Calculates sum of lower power and total power low_pow_sum = np.sum(low_power) total_pow_sum = np.sum(total_power) # Calculates alff as the sum of amplitudes within the low frequency range if calc_alff: calc = low_pow_sum # Calculates falff as the sum of power in low frequnecy range divided by sum of power in the total frequency range else: calc = np.divide(low_pow_sum, total_pow_sum) return calc
Example 24
Project: NeuroKit Author: neuropsychology File: utils.py License: MIT License | 5 votes |
def _phi_divide(phi): if phi[0] == 0: return -np.inf division = np.divide(phi[1], phi[0]) if division == 0: return np.inf return -np.log(division) # ============================================================================= # Get Embedded # =============================================================================
Example 25
Project: recordlinkage Author: J535D165 File: string.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def cosine_similarity(s1, s2, include_wb=True, ngram=(2, 2)): if len(s1) != len(s2): raise ValueError('Arrays or Series have to be same length.') if len(s1) == len(s2) == 0: return [] # include word boundaries or not analyzer = 'char_wb' if include_wb is True else 'char' # The vectorizer vectorizer = CountVectorizer( analyzer=analyzer, strip_accents='unicode', ngram_range=ngram) data = s1.append(s2).fillna('') vec_fit = vectorizer.fit_transform(data) def _metric_sparse_cosine(u, v): a = np.sqrt(u.multiply(u).sum(axis=1)) b = np.sqrt(v.multiply(v).sum(axis=1)) ab = v.multiply(u).sum(axis=1) with warnings.catch_warnings(): warnings.simplefilter("ignore") m = np.divide(ab, np.multiply(a, b)).A1 return m return _metric_sparse_cosine(vec_fit[:len(s1)], vec_fit[len(s1):])
Example 26
Project: speech_separation Author: bill9800 File: utils.py License: MIT License | 5 votes |
def cRM_tanh_recover(O,K=10,C=0.1): ''' :param O: predicted compressed crm :param K: parameter to control the compression :param C: parameter to control the compression :return M : uncompressed crm ''' numerator = K-O denominator = K+O M = -np.multiply((1.0/C),np.log(np.divide(numerator,denominator))) return M
Example 27
Project: speech_separation Author: bill9800 File: utils.py License: MIT License | 5 votes |
def SNR(true_file,pred_file): T_true,_ = librosa.load(true_file,sr=16000) F_true = fast_stft(T_true) T_pred, _ = librosa.load(pred_file,sr=16000) F_pred = fast_stft(T_pred) F_inter = F_true - F_pred P_true = np.sum(np.square(F_true[:,:,0])+np.square(F_true[:,:,1])) P_inter = np.sum(np.square(F_inter[:,:,0])+np.square(F_inter[:,:,1])) return 10*np.log10(np.divide(P_true,P_inter))
Example 28
Project: connecting_the_dots Author: autonomousvision File: metric.py License: MIT License | 5 votes |
def get(self): tps = np.array(self.tps).astype(np.float32) fps = np.array(self.fps).astype(np.float32) fns = np.array(self.fns).astype(np.float32) tns = np.array(self.tns).astype(np.float32) wp = self.thresholds ret = {} precisions = np.divide(tps, tps + fps, out=np.zeros_like(tps), where=tps + fps != 0) recalls = np.divide(tps, tps + fns, out=np.zeros_like(tps), where=tps + fns != 0) # tprs fprs = np.divide(fps, fps + tns, out=np.zeros_like(tps), where=fps + tns != 0) precisions = np.r_[0, precisions, 1] recalls = np.r_[1, recalls, 0] fprs = np.r_[1, fprs, 0] ret['auc'] = float(-np.trapz(recalls, fprs)) ret['prauc'] = float(-np.trapz(precisions, recalls)) ret['ap'] = float(-(np.diff(recalls) * precisions[:-1]).sum()) accuracies = np.divide(tps + tns, tps + tns + fps + fns) aacc = np.mean(accuracies) for t in np.linspace(0,1,num=11)[1:-1]: idx = np.argmin(np.abs(t - wp)) ret[f'acc{wp[idx]:.2f}'] = float(accuracies[idx]) return ret
Example 29
Project: connecting_the_dots Author: autonomousvision File: geometry.py License: MIT License | 5 votes |
def rotm_from_axisangle(a): # exponential a = a.reshape(-1,3) phi = np.linalg.norm(a, axis=1).reshape(-1,1,1) iphi = np.zeros_like(phi) np.divide(1, phi, out=iphi, where=phi != 0) A = cross_prod_mat(a) * iphi R = np.eye(3, dtype=a.dtype) + np.sin(phi) * A + (1 - np.cos(phi)) * A @ A return R.squeeze()
Example 30
Project: connecting_the_dots Author: autonomousvision File: geometry.py License: MIT License | 5 votes |
def axisangle_from_quat(q): q = q.reshape(-1,4) phi = 2 * np.arccos(q[:,0]) denom = np.zeros_like(q[:,0]) np.divide(1, np.sqrt(1 - q[:,0]**2), out=denom, where=q[:,0] != 1) axis = q[:,1:] * denom.reshape(-1,1) denom = np.linalg.norm(axis, axis=1).reshape(-1,1) a = np.zeros_like(axis) np.divide(phi.reshape(-1,1) * axis, denom, out=a, where=denom != 0) aa = a.astype(q.dtype) return aa.squeeze()